Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Emergence of N. sativa L. as a Green Antifungal Agent

Author(s): Raghvendra Pandey, Brijesh Pandey and Atul Bhargava*

Volume 24, Issue 16, 2024

Published on: 23 February, 2024

Page: [1521 - 1534] Pages: 14

DOI: 10.2174/0113895575282914240217060251

Price: $65

Abstract

Background: Nigella sativa L. has been widely used in the Unani, Ayurveda, Chinese, and Arabic medicine systems and has a long history of medicinal and folk uses. Several phytoconstituents of the plant are reported to have excellent therapeutic properties. In-vitro and in-vivo studies have revealed that seed oil and thymoquinone have excellent inhibitory efficacy on a wide range of both pathogenic and non-pathogenic fungi.

Objective: The present review aims to undertake a comprehensive and systematic evaluation of the antifungal effects of different phytochemical constituents of black cumin.

Method: An exhaustive database retrieval was conducted on PubMed, Scopus, ISI Web of Science, SciFinder, Google Scholar, and CABI to collect scientific information about the antifungal activity of N. sativa L. with 1990 to 2023 as a reference range using ‘Nigella sativa,’ ‘Nigella oil,’ ‘antifungal uses,’ ‘dermatophytic fungi,’ ‘candidiasis,’ ‘anti-aflatoxin,’ ‘anti-biofilm’ and ‘biological activity’ as the keywords.

Results: Black cumin seeds, as well as the extract of aerial parts, were found to exhibit strong antifungal activity against a wide range of fungi. Among the active compounds, thymoquinone exhibited the most potent antifungal effect. Several recent studies proved that black cumin inhibits biofilm formation and growth.

Conclusion: The review provides an in-depth analysis of the antifungal activity of black cumin. This work emphasizes the need to expand studies on this plant to exploit its antifungal properties for biomedical applications.

Graphical Abstract

[1]
Seyedmousavi, S.; Bosco, S.M.G.; de Hoog, S.; Ebel, F.; Elad, D.; Gomes, R.R.; Jacobsen, I.D.; Jensen, H.E.; Martel, A.; Mignon, B.; Pasmans, F.; Piecková, E.; Rodrigues, A.M.; Singh, K.; Vicente, V.A.; Wibbelt, G.; Wiederhold, N.P.; Guillot, J. Fungal infections in animals: A patchwork of different situations. Med. Mycol., 2018, 56(1)(Suppl. 1), S165-S187.
[http://dx.doi.org/10.1093/mmy/myx104] [PMID: 29538732]
[2]
Khan, M.A. Antimicrobial action of thymoquinone, molecular and therapeutic actions of thymoquinone. Spring; Singap, 2018, pp. 57-64.
[http://dx.doi.org/10.1007/978-981-10-8800-1_5]
[3]
Wiederhold, N.P. Emerging fungal infections: New species, new names, and antifungal resistance. Clin. Chem., 2021, 68(1), 83-90.
[http://dx.doi.org/10.1093/clinchem/hvab217] [PMID: 34969112]
[4]
Pradhan, S.; Dubey, R.C. Molecular docking of a bioactive compound of C. sinensis n-heptadecanol-1 with opportunistic fungi. CRGSC, 2021, 4, 100208.
[http://dx.doi.org/10.1016/j.crgsc.2021.100208]
[5]
Siscar-Lewin, S.; Hube, B.; Brunke, S. Emergence and evolution of virulence in human pathogenic fungi. Trends Microbiol., 2022, 30(7), 693-704.
[http://dx.doi.org/10.1016/j.tim.2021.12.013] [PMID: 35058122]
[6]
Roemer, T.; Krysan, D.J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med., 2014, 4(5), a019703.
[http://dx.doi.org/10.1101/cshperspect.a019703] [PMID: 24789878]
[7]
Van Daele, R.; Spriet, I.; Wauters, J.; Maertens, J.; Mercier, T.; Van Hecke, S.; Brüggemann, R. Antifungal drugs: What brings the future? Med. Mycol., 2019, 57(3)(Suppl. 3), S328-S343.
[http://dx.doi.org/10.1093/mmy/myz012] [PMID: 31292663]
[8]
Assress, H.A.; Selvarajan, R.; Nyoni, H.; Ogola, H.J.O.; Mamba, B.B.; Msagati, T.A.M. Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. Environ. Sci. Pollut. Res. Int., 2021, 28(3), 3217-3229.
[http://dx.doi.org/10.1007/s11356-020-10688-1] [PMID: 32914303]
[9]
Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Molecular mechanisms in Candida albicans and Beyond. Chem. Rev., 2021, 121(6), 3390-3411.
[http://dx.doi.org/10.1021/acs.chemrev.0c00199] [PMID: 32441527]
[10]
Sanchez Armengol, E.; Harmanci, M.; Laffleur, F. Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiol. Res., 2021, 252, 126867.
[http://dx.doi.org/10.1016/j.micres.2021.126867] [PMID: 34521051]
[11]
Garima, S.; Ajit Kumar, P.; Marcy, D.M.; Sakthivel, R.; Bhim Pratap, S.; Nachimuthu Senthil, K. Ethnobotanical survey of medicinal plants used in the management of cancer and diabetes. J. Tradit. Chin. Med., 2020, 40(6), 1007-1017.
[http://dx.doi.org/10.19852/j.cnki.jtcm.2020.06.012]
[12]
Shikov, A.N.; Narkevich, I.A.; Flisyuk, E.V.; Luzhanin, V.G.; Pozharitskaya, O.N. Medicinal plants from the 14th edition of the Russian pharmacopoeia, recent update. In: J. Ethnopharmacol; , 2021; 268, p. 113685.
[http://dx.doi.org/10.1016/j.jep.2020.113685]
[13]
Cherifa, A.; Nacira, G.; Haouaria, H.; Lakhdar, M.; Ali, B.; Larbi, B. In vitro antifungal effect of Cotula cinerea extracts against Fusarium oxysporum f. sp. albedinis and soil population assay. Adv. Biol. Earth Sci., 2022, 7(2), 104-115.
[14]
Bouziane, T.; Daouia, H.; Soumia, A. In vitro antifungal activity of the extracts of Punica granatum L. obtained by reflux method against Fusarium oxysoprum albedenis in South West of Algeria. Adv. Biol. Earth Sci., 2022, 7(3), 178-191.
[15]
Fatiha, A.; Larbi, B.; Ahmed, M. Antifungal activity of the Pistacia atlantica tar against Fusarium oxysporum f. sp. albedinis, the cause of the bayoud of the date palm in southwest Algeria. Adv. Biol. Earth Sci., 2023, 8(1), 75-82.
[16]
Baran, A.; Fırat Baran, M.; Keskin, C.; Hatipoğlu, A.; Yavuz, Ö.; İrtegün Kandemir, S.; Adican, M.T.; Khalilov, R.; Mammadova, A.; Ahmadian, E.; Rosić, G.; Selakovic, D.; Eftekhari, A. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front. Bioeng. Biotechnol., 2022, 10, 855136.
[http://dx.doi.org/10.3389/fbioe.2022.855136] [PMID: 35330628]
[17]
Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (Black Cumin): A promising natural remedy for wide range of illnesses. Evid. Based Complemen. Altern. Med. eCAM, 2019, 1528635.
[http://dx.doi.org/10.1155/2019/1528635]
[18]
Hwang, J.R.; Cartron, A.M.; Khachemoune, A. A review of Nigella sativa plant‐based therapy in dermatology. Int. J. Dermatol., 2021, 60(12), e493-e499.
[http://dx.doi.org/10.1111/ijd.15615] [PMID: 33899217]
[19]
Shaaban, H.A.; Sadek, Z.; Edris, A.E.; Saad-Hussein, A. Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system. J. Oleo Sci., 2015, 64(2), 223-232.
[http://dx.doi.org/10.5650/jos.ess14177] [PMID: 25748382]
[20]
Rajabian, A.; Hosseinzadeh, H. Dermatological effects of Nigella sativa and its constituent, thymoquinone: A review. In: Nuts and seeds in health and disease prevention, 2nd ed; Academic press, 2020; pp. 329-355.
[http://dx.doi.org/10.1016/B978-0-12-818553-7.00024-3]
[21]
Dalli, M.; Bekkouch, O.; Azizi, S.; Azghar, A.; Gseyra, N.; Kim, B. Nigella sativa L. phytochemistry and pharmacological activities: A review (2019-2021). Biomolecules, 2021, 12(1), 20.
[http://dx.doi.org/10.3390/biom12010020] [PMID: 35053168]
[22]
Hassanien, M.F.R.; Mahgoub, S.A.; El-Zahar, K.M. Soft cheese supplemented with black cumin oil: Impact on food borne pathogens and quality during storage. Saudi J. Biol. Sci., 2014, 21(3), 280-288.
[http://dx.doi.org/10.1016/j.sjbs.2013.10.005] [PMID: 24955014]
[23]
Abdel-Latif, E.F.; Abbas, K.A.; Abdelmontaleb, H.S.; Hamdy, S.M. <em>Nigella sativa</em> oil: A promising prospective antifungal agent in the manufacture of low-salt soft cheese. Ital. J. Food Saf., 2021, 10(4), 9862.
[http://dx.doi.org/10.4081/ijfs.2021.9862] [PMID: 35071058]
[24]
Malik, S.; Singh, A.; Negi, P.; Kapoor, V.K. Thymoquinone: A small molecule from nature with high therapeutic potential. Drug Discov. Today, 2021, 26(11), 2716-2725.
[http://dx.doi.org/10.1016/j.drudis.2021.07.013] [PMID: 34303824]
[25]
Tania, M.; Asad, A.; Li, T.; Islam, M.S.; Islam, S.B.; Hossen, M.M.; Bhuiyan, M.R.; Khan, M.A. Thymoquinone against infectious diseases: Perspectives in recent pandemics and future therapeutics. Iran. J. Basic Med. Sci., 2021, 24(8), 1014-1022.
[http://dx.doi.org/10.22038/ijbms.2021.56250.12548] [PMID: 34804418]
[26]
Gnanasekaran, P.; Roy, A.; Sirpu Natesh, N.; Raman, V.; Ganapathy, P.; Arumugam, M.K. Removal of microbial pathogens and anticancer activity of synthesized nano-thymoquinone from Nigella sativa seeds. Environ. Technol. Innov., 2021, 24, 102068.
[http://dx.doi.org/10.1016/j.eti.2021.102068]
[27]
Taha, M.; Azeiz, A.; Saudi, W. Antifungal effect of thymol, thymoquinone and thymohydroquinone against yeasts, dermatophytes and non-dermatophyte molds isolated from skin and nails fungal infections. Egypt. J. Biochem. Mol. Biol., 2010, 28(2)
[http://dx.doi.org/10.4314/ejbmb.v28i2.60802]
[28]
Halamova, K.; Kokoska, L.; Flesar, J.; Sklenickova, O.; Svobodova, B.; Marsik, P. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels. J. Food Prot., 2010, 73(12), 2291-2295.
[http://dx.doi.org/10.4315/0362-028X-73.12.2291] [PMID: 21219751]
[29]
Shohayeb, M.; Halawani, E. Comparative antimicrobial activity of some active constituents of N. sativa L. World Appl. Sci. J., 2012, 20(2), 182-189.
[http://dx.doi.org/10.5829/IDOSI.WASJ.2012.20.02.7156]
[30]
Azeiz, A.Z.A.; Saad, A.H.; Darweesh, M.F. Efficacy of thymoquinone against vaginal candidiasis in prednisolone-induced immunosuppressed mice. J. Am. Sci., 2013, 9(4), 155-159. www.jofamericanscience.org
[31]
Rahman Al-Qurashi, A.; Akhtar, N.; Al-Jabre, S. Antifungal activity of thymoquinone and amphotericine B against Aspergillus niger. Sci. J. King Faisal Uni. Basic Appl. Sci., 2007, 8(1), 143-148.
[32]
Mahmoudvand, H.; Sepahvand, A.; Jahanbakhsh, S.; Ezatpour, B.; Ayatollahi Mousavi, S.A. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. J. Mycol. Med., 2014, 24(4), e155-e161.
[http://dx.doi.org/10.1016/j.mycmed.2014.06.048] [PMID: 25442918]
[33]
Elsharkawy, E.R.; Abdallah, E.M.; Markb, A.A. Potential cytotoxic, antifungal, and antioxidant activity of dithymoquinone and thymoquinone. J. Hunan Univ. Nat. Sci., 2021, 48(9), 90-99.
[34]
Elfadil, H.; Fahal, A.; Kloezen, W.; Ahmed, E.M.; van de Sande, W. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent. PLoS Negl. Trop. Dis., 2015, 9(3), e0003488.
[http://dx.doi.org/10.1371/journal.pntd.0003488] [PMID: 25768115]
[35]
Nili-Ahmadabadi, A.; Tavakoli, F.; Hasanzadeh, G.; Rahimi, H.; Sabzevari, O. Protective effect of pretreatment with thymoquinone against Aflatoxin B(1) induced liver toxicity in mice. Daru, 2011, 19(4), 282-287.
[PMID: 22615670]
[36]
Ates, M.B.; Ortatatli, M. The effects of Nigella sativa seeds and thymoquinone on aflatoxin phase-2 detoxification through glutathione and glutathione-S-transferase alpha-3, and the relationship between aflatoxin B1-DNA adducts in broilers. Toxicon, 2021, 193, 86-92.
[http://dx.doi.org/10.1016/j.toxicon.2021.01.020] [PMID: 33581172]
[37]
Khan, M.A.; Aljarbou, A.N.; Khan, A.; Younus, H. Liposomal thymoquinone effectively combats fluconazole-resistant Candida albicans in a murine model. Int. J. Biol. Macromol., 2015, 76, 203-208.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.02.015] [PMID: 25709021]
[38]
Khan, M.A.; Aldebasi, Y.H.; Alsuhaibani, S.A.; AlSahli, M.A.; Alzohairy, M.A.; Khan, A.; Younus, H. Therapeutic potential of thymoquinone liposomes against the systemic infection of Candida albicans in diabetic mice. PLoS One, 2018, 13(12), e0208951.
[http://dx.doi.org/10.1371/journal.pone.0208951] [PMID: 30589842]
[39]
Akhtar, N.; Alakloby, O.M.; Aljabre, S.H.M.; Alqurashi, A.R.M.; Randhawa, M.A. Comparison of antifungal activity of thymoquinone and amphotericin B against Fusarium solani in vitro. Sci. J. King Faisal Uni. Basic Appl. Sci, 2007, 8, 1428H.
[40]
Almshawit, H.; Macreadie, I. Fungicidal effect of thymoquinone involves generation of oxidative stress in Candida glabrata. Microbiol. Res., 2017, 195, 81-88.
[http://dx.doi.org/10.1016/j.micres.2016.11.008] [PMID: 28024529]
[41]
Özdal Zincir, Ö.; Özdal, U.; Ünlü, Ö.; Demirci, M.; Katiboğlu, A.B.; Egil, E.; Altan Şallı, G. Synergistic effect of thymoquinone and nystatin in the treatment of oral candidiasis; An in vitro study. Odontol, 2022, 110(2), 330-337.
[42]
Suthar, M.P.; Patel, P.N.; Shah, T.G.; Patel, R.K. In vitro screening of Nigella sativa seeds for antifungal activity. Int. J. Pharm. Appl. Sci, 2010, 1(2), 84-91.
[43]
Gupta, C.; Das, S.; Gaurav, V.; Singh, P.K.; Rai, G.; Datt, S.; Tigga, R.A.; Pandhi, D.; Bhattacharya, S.N.; Ansari, M.A.; Dar, S.A. Review on host-pathogen interaction in dermatophyte infections. J. Mycol. Med., 2023, 33(1), 101331.
[http://dx.doi.org/10.1016/j.mycmed.2022.101331] [PMID: 36272379]
[44]
Van Hees, C.; Naafs, B. Common skin diseases in Africa: An illustrated guide. Stichting TrodermaVan Hees, 2009, 91 Available from: https://books.google.co.in/books/about/Common_Skin_Diseases_in_Africa.html?id=O_WyQwAACAAJ&redir_esc=y
[45]
Bhayana, T.; Gupta, S. Elucidating the antifungal activity and mechanism of action of bioactive phytochemicals against fungal dermatitis isolates. Arch. Dermatol. Res., 2022, 315(5), 1129-1141.
[http://dx.doi.org/10.1007/s00403-022-02475-4] [PMID: 36436012]
[46]
Hay, R. Superficial fungal infections. Medicine, 2021, 49(11), 706-709.
[http://dx.doi.org/10.1016/j.mpmed.2021.08.006]
[47]
de Pauw, B. Is there a need for new antifungal agents? Clin. Microbiol. Infect., 2000, 6(2)(Suppl. 2), 23-28.
[http://dx.doi.org/10.1046/j.1469-0691.2000.00006.x] [PMID: 11523522]
[48]
Martinez-Rossi, N.M.; Peres, N.T.A.; Rossi, A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia, 2008, 166(5-6), 369-383.
[http://dx.doi.org/10.1007/s11046-008-9110-7] [PMID: 18478356]
[49]
Khosravi, R.A.; Shokri, H.; Farahnejat, Z.; Chalangari, R.; Katalin, M. Antimycotic efficacy of Iranian medicinal plants towards dermatophytes obtained from patients with dermatophytosis. Chin. J. Nat. Med., 2013, 11(1), 43-48.
[http://dx.doi.org/10.1016/S1875-5364(13)60006-0]
[50]
Aljabre, S.H.M.; Randhawa, M.A.; Akhtar, N.; Alakloby, O.M.; Alqurashi, A.M.; Aldossary, A. Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone. J. Ethnopharmacol., 2005, 101(1-3), 116-119.
[http://dx.doi.org/10.1016/j.jep.2005.04.002] [PMID: 15908151]
[51]
Sunita, M.; Meenakshi, S. Chemical composition and antidermatophytic activity of Nigella sativa essential oil. Afr. J. Pharm. Pharmacol., 2013, 7(20), 1286-1292.
[http://dx.doi.org/10.5897/AJPP12.1175]
[52]
Shoukat, M.; Ullah, F.; Tariq, M.N.; Din, G.; Khadija, B.; Faryal, R. Profiling of potential pathogenic candida species in obesity. Microb. Pathog., 2023, 174, 105894.
[http://dx.doi.org/10.1016/j.micpath.2022.105894] [PMID: 36496057]
[53]
Mba, I.E.; Nweze, E.I. Mechanism of Candida pathogenesis: Revisiting the vital drivers. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(10), 1797-1819.
[http://dx.doi.org/10.1007/s10096-020-03912-w] [PMID: 32372128]
[54]
Shokri, H. A review on the inhibitory potential of Nigella sativa against pathogenic and toxigenic fungi. Avi. J. phytomed., 2016, 6(1), 21-33.
[55]
Khan, M.A.U.; Ashfaq, M.K.; Zuberi, H.S.; Mahmood, M.S.; Gilani, A.H. The in vivo antifungal activity of the aqueous extract from Nigella sativa seeds. Phytother. Res., 2003, 17(2), 183-186.
[http://dx.doi.org/10.1002/ptr.1146] [PMID: 12601685]
[56]
Pal, M.; Kerorsa, G.B. Kerorsa, Growing significance of non-dermatophytic fungi in cutaneous disorders of humans and animals. J. Microbiol. Immunol. Biotechnol, 2020, 07, 27-32.
[57]
Tosti, A.; Piraccini, B.; Lorenzi, S. Onychomycosis caused by nondermatophytic molds: Clinical features and response to treatment of 59 cases. J. Am. Acad. Dermatol., 2000, 42(2), 217-224.
[http://dx.doi.org/10.1016/S0190-9622(00)90129-4] [PMID: 10642676]
[58]
Leung, A.K.C.; Lam, J.M.; Leong, K.F.; Hon, K.L.; Barankin, B.; Leung, A.A.M.; Wong, A.H.C. Onychomycosis: An updated review. Recent Pat. Inflamm. Allergy Drug Discov., 2020, 14(1), 32-45.
[http://dx.doi.org/10.2174/1872213X13666191026090713] [PMID: 31738146]
[59]
Bongomin, F.; Batac, C.R.; Richardson, M.D.; Denning, D.W. Denning, A review of onychomycosis due to Aspergillus species. Mycopathologia, 2018, 183(3), 485-493.
[http://dx.doi.org/10.1007/s11046-017-0222-9] [PMID: 29147866]
[60]
Oberoi, J.; Momin, T. Antibacterial, antifungal, antimycetoma activities of Nigella sativa. Acta Sci. Microbiol., 2020, 3(2), 1-5.
[http://dx.doi.org/10.31080/ASMI.2020.03.0481]
[61]
Lipner, S.R.; Scher, R.K. Onychomycosis. J. Am. Acad. Dermatol., 2019, 80(4), 835-851.
[http://dx.doi.org/10.1016/j.jaad.2018.03.062] [PMID: 29959961]
[62]
Ge, G.; Li, D.; Mei, H.; Lu, G.; Zheng, H.; Liu, W.; Shi, D. Different toenail onychomycosis due to Rhodotorula mucilaginosa and Candida parapsilosis in an immunocompetent young adult. Med. Mycol. Case Rep., 2019, 24, 69-71.
[http://dx.doi.org/10.1016/j.mmcr.2019.04.012] [PMID: 31080710]
[63]
Widaty, S.; Miranda, E.; Bramono, K.; Menaldi, S.L.; Marissa, M.; Oktarina, C.; Surya, D.; Kusumawardhani, H.T. Prognostic factors influencing the treatment outcome of onychomycosis Candida. Mycoses, 2020, 63(1), 71-77.
[http://dx.doi.org/10.1111/myc.13018] [PMID: 31603597]
[64]
Šegvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol., 2007, 44(1), 36-42.
[http://dx.doi.org/10.1111/j.1472-765X.2006.02032.x] [PMID: 17209812]
[65]
Rogozhin, E.A.; Oshchepkova, Y.I.; Odintsova, T.I.; Khadeeva, N.V.; Veshkurova, O.N.; Egorov, T.A.; Grishin, E.V.; Salikhov, S.I. Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol. Biochem., 2011, 49(2), 131-137.
[http://dx.doi.org/10.1016/j.plaphy.2010.10.008] [PMID: 21144761]
[66]
Pane, C.; Sigillo, L.; Caputo, M.; Serratore, G.; Zaccardelli, M.; Tripodi, P. Response of rocket salad germplasm (Eruca and Diplotaxis spp.) to major pathogens causing damping-off, wilting and leaf spot diseases. Arch. Phytopathol. Pflanzenschutz, 2017, 50(3-4), 167-177.
[http://dx.doi.org/10.1080/03235408.2017.1285511]
[67]
Wu, T.L.; Zhang, B.Q.; Luo, X.F.; Li, A.P.; Zhang, S.Y.; An, J.X.; Zhang, Z.J.; Liu, Y.Q. Antifungal efficacy of sixty essential oils and mechanism of oregano essential oil against Rhizoctonia solani. Ind. Crops Prod., 2023, 191, 115975.
[http://dx.doi.org/10.1016/j.indcrop.2022.115975]
[68]
Abbas, A.; Mubeen, M.; Zheng, H.; Sohail, M.A.; Shakeel, Q.; Solanki, M.K.; Iftikhar, Y.; Sharma, S.; Kashyap, B.K.; Hussain, S.; del Carmen Zuñiga Romano, M.; Moya-Elizondo, E.A.; Zhou, L. Trichoderma spp. Genes involved in the biocontrol activity against Rhizoctonia solani. Front. Microbiol., 2022, 13, 884469.
[http://dx.doi.org/10.3389/fmicb.2022.884469] [PMID: 35694310]
[69]
Gwinn, K.D.; Ownley, B.H.; Greene, S.E.; Clark, M.M.; Taylor, C.L.; Springfield, T.N.; Trently, D.J.; Green, J.F.; Reed, A.; Hamilton, S.L. Role of essential oils in control of Rhizoctonia damping-off in tomato with bioactive Monarda herbage. Phytopathology, 2010, 100(5), 493-501.
[http://dx.doi.org/10.1094/PHYTO-100-5-0493] [PMID: 20373971]
[70]
Elgorban, A.M.; Bahkali, A.H.; Metwally, M.A.E.; Elsheshtaw, M.; Wahab, M.A.A. In vitro antifungal activity of some plant essential oils. Int. J. Pharmacol., 2014, 11(1), 56-61.
[http://dx.doi.org/10.3923/ijp.2015.56.61]
[71]
Abd el aziz, S. M.; abo-shady, A.; ibrahim, M. A.; helmy, M. Inhibition of Rhizoctonia solani growth and its extracellular hydrolytic enzymes by different extracts of Cinnamon (Cinnamomum cassia) and black cumin seeds (Nigella sativa). Arab Univ J Agric Sci, 2022, 30(1), 1-18.
[http://dx.doi.org/10.21608/ajs.2022.92048.1410]
[72]
Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol., 2019, 35(10), 154.
[http://dx.doi.org/10.1007/s11274-019-2728-4] [PMID: 31576429]
[73]
Puvača, N.; Ljubojević Pelić, D.; Tomić, V.; Radišić, R.; Milanović, S.; Soleša, D.; Budakov, D.; Cara, M.; Bursić, V.; Petrović, A.; Vuković, G.; Pelić, M.; Konstantinović, B.; Carić, M. Antimicrobial efficiency of medicinal plants and their influence on cheeses quality. Dairy. J. Improve. Proizv. and milk processing, 2020, 70(1), 3-12.
[http://dx.doi.org/10.15567/mljekarstvo.2020.0102]
[74]
Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martín, A.; Córdoba, M.G. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int. J. Food Microbiol., 2018, 286, 98-110.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.07.031] [PMID: 30056262]
[75]
Echeverrigaray, S.; Randon, M.; da Silva, K.; Zacaria, J.; Delamare, A.P.L. Identification and characterization of non-saccharomyces spoilage yeasts isolated from Brazilian wines. World J. Microbiol. Biotechnol., 2013, 29(6), 1019-1027.
[http://dx.doi.org/10.1007/s11274-013-1265-9] [PMID: 23355138]
[76]
Garijo, P.; González-Arenzana, L.; López-Alfaro, I.; Garde-Cerdán, T.; López, R.; Santamaría, P.; Gutiérrez, A.R. Analysis of grapes and the first stages of the vinification process in wine contamination with Brettanomyces bruxellensis. Eur. Food Res. Technol., 2015, 240(3), 525-532.
[http://dx.doi.org/10.1007/s00217-014-2351-4]
[77]
Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Int. J. Food Microbiol., 2012, 154(3), 152-161.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.12.029] [PMID: 22277696]
[78]
Guzzon, R.; Widmann, G.; Malacarne, M.; Nardin, T.; Nicolini, G.; Larcher, R. Survey of the yeast population inside wine barrels and the effects of certain techniques in preventing microbiological spoilage. Eur. Food Res. Technol., 2011, 233(2), 285-291.
[http://dx.doi.org/10.1007/s00217-011-1523-8]
[79]
Manzanares, P.; Vallés, S.; Viana, F. Non-Saccharomyces yeasts in the winemaking process. In: Carrascosa, molecular wine microbiology; Acdemic Press: San Diego, CA,, 2011; 210, pp. 85-110.
[http://dx.doi.org/10.1016/B978-0-12-375021-1.10004-9]
[80]
Portugal, C.; Pinto, L.; Ribeiro, M.; Tenorio, C.; Igrejas, G.; Ruiz-Larrea, F. Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii. Int. J. Food Microbiol., 2015, 210, 113-120.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.06.005] [PMID: 26119188]
[81]
Sáez, J.S.; Lopes, C.A.; Kirs, V.C.; Sangorrín, M.P. Enhanced volatile phenols in wine fermented with Saccharomyces cerevisiae and spoiled with Pichia guilliermondii and Dekkera bruxellensis. Lett. Appl. Microbiol., 2010, 51(2) no
[http://dx.doi.org/10.1111/j.1472-765X.2010.02878.x] [PMID: 20565575]
[82]
Ocón, E.; Gutiérrez, A.R.; Garijo, P.; López, R.; Santamaría, P. Presence of non-Saccharomyces yeasts in cellar equipment and grape juice during harvest time. Food Microbiol., 2010, 27(8), 1023-1027.
[http://dx.doi.org/10.1016/j.fm.2010.06.012] [PMID: 20832680]
[83]
Gray, S.R.; Rawsthorne, H.; Dirks, B.; Phister, T.G. Detection and enumeration of Dekkera anomala in beer, cola, and cider using real-time PCR. Lett. Appl. Microbiol., 2011, 52(4), 352-359.
[http://dx.doi.org/10.1111/j.1472-765X.2011.03008.x] [PMID: 21244454]
[84]
Golomb, B.L.; Morales, V.; Jung, A.; Yau, B.; Boundy-Mills, K.L.; Marco, M.L. Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol., 2013, 33(1), 97-106.
[http://dx.doi.org/10.1016/j.fm.2012.09.004] [PMID: 23122507]
[85]
Doan, T.; Babu, D.; Buescher, R. Inhibition of yeast in commercial pickle brines. J. Food Res., 2012, 1(3), 295.
[http://dx.doi.org/10.5539/jfr.v1n3p295]
[86]
Franco, W.; Pérez-Díaz, I.M.; Johanningsmeier, S.D.; McFeeters, R.F. Characteristics of spoilage-associated secondary cucumber fermentation. Appl. Environ. Microbiol., 2012, 78(4), 1273-1284.
[http://dx.doi.org/10.1128/AEM.06605-11] [PMID: 22179234]
[87]
Franco, W.; Pérez-Díaz, I.M. Microbial interactions associated with secondary cucumber fermentation. J. Appl. Microbiol., 2013, 114(1), 161-172.
[http://dx.doi.org/10.1111/jam.12022] [PMID: 23013318]
[88]
Suzuki, A.; Muraoka, N.; Nakamura, M.; Yanagisawa, Y.; Amachi, S. Identification of undesirable white-colony-forming yeasts appeared on the surface of Japanese kimchi. Biosci. Biotechnol. Biochem., 2018, 82(2), 334-342.
[http://dx.doi.org/10.1080/09168451.2017.1419853] [PMID: 29327670]
[89]
Moon, S.H.; Chang, M.; Kim, H.Y.; Chang, H.C. Pichia kudriavzevii is the major yeast involved in film-formation, off-odor production, and texture-softening in over-ripened Kimchi. Food Sci. Biotechnol., 2014, 23(2), 489-497.
[http://dx.doi.org/10.1007/s10068-014-0067-7]
[90]
Wang, H.; Hu, Z.; Long, F.; Guo, C.; Niu, C.; Yuan, Y.; Yue, T. Combined effect of sugar content and pH on the growth of a wild strain of Zygosaccharomyces rouxii and time for spoilage in concentrated apple juice. Food Control, 2016, 59, 298-305.
[http://dx.doi.org/10.1016/j.foodcont.2015.05.040]
[91]
Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. In vitro evaluation of the antimicrobial activity of eugenol, limonene, and citrus extract against bacteria and yeasts, representative of the spoiling microflora of fruit juices. J. Food Prot., 2010, 73(5), 888-894.
[http://dx.doi.org/10.4315/0362-028X-73.5.888] [PMID: 20501040]
[92]
Burgain, A.; Bensoussan, M.; Dantigny, P. Validation of a predictive model for the growth of chalk yeasts on bread. Int. J. Food Microbiol., 2015, 204, 47-54.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.03.026] [PMID: 25847185]
[93]
Deschuyffeleer, N.; Audenaert, K.; Samapundo, S.; Ameye, S.; Eeckhout, M.; Devlieghere, F. Identification and characterization of yeasts causing chalk mould defects on par-baked bread. Food Microbiol., 2011, 28(5), 1019-1027.
[http://dx.doi.org/10.1016/j.fm.2011.02.002] [PMID: 21569947]
[94]
Giannone, V.; Pitino, I.; Pecorino, B.; Todaro, A.; Spina, A.; Lauro, M.R.; Tomaselli, F.; Restuccia, C. Effects of innovative and conventional sanitizing treatments on the reduction of Saccharomycopsis fibuligera defects on industrial durum wheat bread. Int. J. Food Microbiol., 2016, 235, 71-76.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.07.009] [PMID: 27438909]
[95]
Wrent, P.; Rivas, E.M.; de Prado, E.; Peinado, J.; de Silóniz, M.I. Assessment of the factors contributing to the growth or spoilage of Meyerozyma guilliermondii in organic yogurt: Comparison of methods for strain differentiation. Microorganisms, 2015, 3(3), 428-440.
[http://dx.doi.org/10.3390/microorganisms3030428] [PMID: 27682098]
[96]
Tofalo, R.; Fasoli, G.; Schirone, M.; Perpetuini, G.; Pepe, A.; Corsetti, A.; Suzzi, G. The predominance, biodiversity and biotechnological properties of Kluyveromyces marxianus in the production of Pecorino di Farindola cheese. Int. J. Food Microbiol., 2014, 187, 41-49.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.06.029] [PMID: 25038503]
[97]
Atanassova, M.R.; Fernández-Otero, C.; Rodríguez-Alonso, P.; Fernández-No, I.C.; Garabal, J.I.; Centeno, J.A. Characterization of yeasts isolated from artisanal short-ripened cows’ cheeses produced in Galicia (NW Spain). Food Microbiol., 2016, 53(Pt B), 172-181.
[http://dx.doi.org/10.1016/j.fm.2015.09.012] [PMID: 26678145]
[98]
Kabisch, J.; Erl-Höning, C.; Wenning, M.; Böhnlein, C.; Gareis, M.; Pichner, R. Spoilage of vacuum-packed beef by the yeast Kazachstania psychrophila. Food Microbiol., 2016, 53(Pt B), 15-23.
[http://dx.doi.org/10.1016/j.fm.2015.07.017] [PMID: 26678125]
[99]
Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol., 2018, 45, 62-72.
[http://dx.doi.org/10.1016/j.ifset.2017.09.020]
[100]
Riesute, R.; Salomskiene, J.; Moreno, D.S.; Gustiene, S. Effect of yeasts on food quality and safety and possibilities of their inhibition. Trends Food Sci. Technol., 2021, 108, 1-10.
[http://dx.doi.org/10.1016/j.tifs.2020.11.022]
[101]
Puvača, N. Bioactive compounds in selected hot spices and medicinal plants. Technol. Eng. Manag, 2018, 1(1), 8-17.
[http://dx.doi.org/10.3/JQUERY-UI.JS]
[102]
Wangia, R.N.; Tang, L.; Wang, J.S. Occupational exposure to aflatoxins and health outcomes: A review. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2019, 37(4), 215-234.
[http://dx.doi.org/10.1080/10590501.2019.1664836] [PMID: 31512547]
[103]
Saleemi, M.K.; Ashraf, K.; Gul, S.T.; Naseem, M.N.; Sajid, M.S.; Mohsin, M.; He, C.; Zubair, M.; Khan, A. Corrigendum to toxicopathological effects of feeding aflatoxins B1 in broilers and its ameliosration with indigenous mycotoxin binder. Ecotoxicol. Environ. Saf., 2020, 187, 109932.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109932] [PMID: 31732270]
[104]
Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin contamination, its impact and management strategies: An updated review. Toxins, 2022, 14(5), 307.
[http://dx.doi.org/10.3390/toxins14050307] [PMID: 35622554]
[105]
Coppock, R.W.; Christian, R.G.; Jacobsen, B.J. Aflatoxins, in veterinary toxicology: Basic and Clinical Principles, 3rd ed; Elsevier, 2018, pp. 983-994.
[http://dx.doi.org/10.1016/B978-0-12-811410-0.00069-6]
[106]
Yagudayev, E.; Ray, S.D. Aflatoxin, Ref. Module Biomed. Sci; Elsevier, 2023.
[107]
He, X.N.; Wu, P.; Jiang, W.D.; Liu, Y.; Kuang, S.Y.; Tang, L.; Ren, H.M.; Li, H.; Feng, L.; Zhou, X.Q. Aflatoxin B1 exposure induced developmental toxicity and inhibited muscle development in zebrafish embryos and larvae. Sci. Total Environ., 2023, 878, 163170.
[http://dx.doi.org/10.1016/j.scitotenv.2023.163170] [PMID: 37003331]
[108]
Jaćević, V.; Dumanović, J.; Alomar, S.Y.; Resanović, R.; Milovanović, Z.; Nepovimova, E.; Wu, Q.; Franca, T.C.C.; Wu, W.; Kuča, K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology, 2023, 492, 153549.
[http://dx.doi.org/10.1016/j.tox.2023.153549] [PMID: 37209941]
[109]
Bräse, S.; Gläser, F.; Kramer, C.; Lindner, S.; Linsenmeier, A.M.; Masters, K.S.; Meister, A.C.; Ruff, B.M.; Zhong, S. The Chemistry of Mycotoxins; Springer Vienna, 2013.
[http://dx.doi.org/10.1007/978-3-7091-1312-7]
[110]
Srivastava, S.; Bhargava, A. Biofilms and human health. Biotechnol. Lett., 2016, 38(1), 1-22.
[http://dx.doi.org/10.1007/s10529-015-1960-8] [PMID: 26386834]
[111]
Wall, G.; Montelongo-Jauregui, D.; Vidal Bonifacio, B.; Lopez-Ribot, J.L.; Uppuluri, P. Candida albicans biofilm growth and dispersal: Contributions to pathogenesis. Curr. Opin. Microbiol., 2019, 52, 1-6.
[http://dx.doi.org/10.1016/j.mib.2019.04.001] [PMID: 31085405]
[112]
Roudbary, M.; Vahedi-Shahandashti, R.; Santos, A.L.S.; Roudbar Mohammadi, S.; Aslani, P.; Lass-Flörl, C.; Rodrigues, C.F. Biofilm formation in clinically relevant filamentous fungi: A therapeutic challenge. Crit. Rev. Microbiol., 2022, 48(2), 197-221.
[http://dx.doi.org/10.1080/1040841X.2021.1950121] [PMID: 34358430]
[113]
Randhawa, M.A.; Gondal, M.A.; Al-Zahrani, A.H.J.; Rashid, S.G.; Ali, A. Synthesis, morphology and antifungal activity of nano-particulated amphotericin-B, ketoconazole and thymoquinone against Candida albicans yeasts and Candida biofilm. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2015, 50(2), 119-124.
[http://dx.doi.org/10.1080/10934529.2015.975042] [PMID: 25560257]
[114]
Kaypetch, R.; Rudrakanjana, P.; Churnjitapirom, P.; Tua-ngam, P.; Tonput, P.; Tantivitayakul, P. Geraniol and thymoquinone inhibit Candida spp. biofilm formation on acrylic denture resin without affecting surface roughness or color. J. Oral Sci., 2022, 64(2), 161-166.
[http://dx.doi.org/10.2334/josnusd.21-0435] [PMID: 35321964]
[115]
Qureshi, K.A.; Imtiaz, M.; Parvez, A.; Rai, P.K.; Jaremko, M.; Emwas, A.H.; Bholay, A.D.; Fatmi, M.Q. In vitro and in silico approaches for the evaluation of antimicrobial activity, time-kill kinetics, and anti-biofilm potential of thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione) against selected human pathogens. Antibiotics (Basel), 2022, 11(1), 79.
[http://dx.doi.org/10.3390/antibiotics11010079] [PMID: 35052956]
[116]
Rahsepar, S.; Roudbarmohammadi, S.H.; Delavari, H.; Roudbary, M. Mohammad; Hassan, Z. Design and synthesis of novel thymoquinone-zein nanoparticles; Evaluation of the inhibitory effect on Candida albicans and biofilm formation in vitro. Infect. Epidemiol. Microbiol., 2022, 8(2), 169-176.
[http://dx.doi.org/10.52547/iem.8.2.169]
[117]
Nouri, N.; Mohammadi, S.R.; Beardsley, J.; Aslani, P.; Ghaffarifar, F.; Roudbary, M.; Rodrigues, C.F. Thymoquinone antifungal activity against Candida glabrata oral isolates from patients in intensive care units- An in vitro study. Metabolites, 2023, 13(4), 580.
[http://dx.doi.org/10.3390/metabo13040580] [PMID: 37110238]
[118]
Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol., 2018, 45, 70-76.
[http://dx.doi.org/10.1016/j.mib.2018.02.005] [PMID: 29547801]
[119]
Hsu, H.; Sheth, C.C.; Veses, V. Herbal extracts with antifungal activity against Candida albicans: A systematic review. Mini Rev. Med. Chem., 2021, 21(1), 90-117.
[http://dx.doi.org/10.2174/18755607MTA3iNzICy] [PMID: 32600229]
[120]
Denning, D.W. Antifungal drug resistance: An update. Eur. J. Hosp. Pharm. Sci. Pract., 2022, 29(2), 109-112.
[http://dx.doi.org/10.1136/ejhpharm-2020-002604] [PMID: 35190454]
[121]
Lail, N.; Sattar, A.; Omer, M.O.; Hafeez, M.A.; Khalid, A.R.; Mahmood, S.; Shabbir, M.A.; Ahmed, W.; Aleem, M.T.; Alouffi, A.; Almutairi, M.M. Biosynthesis and characterization of zinc oxide nanoparticles using Nigella sativa against coccidiosis in commercial poultry. Sci. Rep., 2023, 13(1), 6568.
[http://dx.doi.org/10.1038/s41598-023-33416-4] [PMID: 37085577]
[122]
Malik, M.A.; AlHarbi, L.; Nabi, A.; Alzahrani, K.A.; Narasimharao, K.; Kamli, M.R. Facile synthesis of magnetic Nigella sativa seeds: Advances on nano-formulation approaches for delivering antioxidants and their antifungal activity against Candida albicans. Pharmaceutics, 2023, 15(2), 642.
[http://dx.doi.org/10.3390/pharmaceutics15020642] [PMID: 36839964]
[123]
Baig, A.S.R.; Srinivasan, H. Nigella sativa mediated green synthesis of silver nanoparticles to curb antibiotic resistance. J. Mater. Res., 2023, 38(14), 3548-3559.
[http://dx.doi.org/10.1557/s43578-023-01079-6]
[124]
Kaur, N.; Bains, A.; Kaushik, R.; Dhull, S.B.; Melinda, F.; Chawla, P. A review on antifungal efficiency of plant extracts entrenched polysaccharide-based nanohydrogels. Nutrients, 2021, 13(6), 2055.
[http://dx.doi.org/10.3390/nu13062055] [PMID: 34203999]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy