Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19

Author(s): Jabeena Khazir, Sajad Ahmed, Rakesh Kr Thakur, Manzoor Hussain, Sumit G. Gandhi, Sadhana Babbar, Shabir Ahmad Mir, Nusrat Shafi, Libert Brice Tonfack, Vijay Rani Rajpal*, Tariq Maqbool*, Bilal Ahmad Mir* and Latif Ahmad Peer*

Volume 24, Issue 7, 2024

Published on: 20 February, 2024

Page: [614 - 633] Pages: 20

DOI: 10.2174/0115680266276749240206101847

Price: $65

conference banner
Abstract

COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.

Graphical Abstract

[1]
Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of respiratory viral infections. Annu. Rev. Virol., 2020, 7(1), 83-101.
[http://dx.doi.org/10.1146/annurev-virology-012420-022445] [PMID: 32196426]
[2]
Groneberg, D.A.; Hilgenfeld, R.; Zabel, P. Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir. Res., 2005, 6(1), 8.
[http://dx.doi.org/10.1186/1465-9921-6-8] [PMID: 15661082]
[3]
Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joynt, G.M.; Ahuja, A.; Yung, M.Y.; Leung, C.B.; To, K.F.; Lui, S.F.; Szeto, C.C.; Chung, S.; Sung, J.J.Y. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med., 2003, 348(20), 1986-1994.
[http://dx.doi.org/10.1056/NEJMoa030685] [PMID: 12682352]
[4]
Cheng, V.C.C.; Lau, S.K.P.; Woo, P.C.Y.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev., 2007, 20(4), 660-694.
[http://dx.doi.org/10.1128/CMR.00023-07] [PMID: 17934078]
[5]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[6]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[7]
Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections-More than just the common cold. JAMA, 2020, 323(8), 707-708.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[8]
Lau, S.K.P.; Woo, P.C.Y.; Li, K.S.M.; Huang, Y.; Tsoi, H.W.; Wong, B.H.L.; Wong, S.S.Y.; Leung, S.Y.; Chan, K.H.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci., 2005, 102(39), 14040-14045.
[http://dx.doi.org/10.1073/pnas.0506735102] [PMID: 16169905]
[9]
Reusken, C.B.E.M.; Haagmans, B.L.; Müller, M.A.; Gutierrez, C.; Godeke, G.J.; Meyer, B.; Muth, D.; Raj, V.S.; Vries, L.S-D.; Corman, V.M.; Drexler, J.F.; Smits, S.L.; El Tahir, Y.E.; De Sousa, R.; van Beek, J.; Nowotny, N.; van Maanen, K.; Hidalgo-Hermoso, E.; Bosch, B.J.; Rottier, P.; Osterhaus, A.; Gortázar-Schmidt, C.; Drosten, C.; Koopmans, M.P.G. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study. Lancet Infect. Dis., 2013, 13(10), 859-866.
[http://dx.doi.org/10.1016/S1473-3099(13)70164-6] [PMID: 23933067]
[10]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[11]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098.
[PMID: 32329419]
[12]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[13]
York, A. Novel coronavirus takes flight from bats? Nat. Rev. Microbiol., 2020, 18(4), 191-191.
[http://dx.doi.org/10.1038/s41579-020-0336-9] [PMID: 32051570]
[14]
Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 2020, 579, 270-273.
[15]
Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed., 2020, 91(1), 157-160.
[PMID: 32191675]
[16]
Rajpal, V.R.; Sharma, S.; Sehgal, D.; Singh, A.; Kumar, A.; Vaishnavi, S.; Tiwari, M.; Bhalla, H.; Goel, S.; Raina, S.N. A comprehensive account of SARS-CoV-2 genome structure, incurred mutations, lineages and COVID-19 vaccination program. Future Virol., 2022, 17(9), 687-706.
[http://dx.doi.org/10.2217/fvl-2021-0277] [PMID: 35747328]
[17]
Rajpal, V.R.; Sharma, S.; Kumar, A.; Chand, S.; Joshi, L.; Chandra, A.; Babbar, S.; Goel, S.; Raina, S.N.; Shiran, B. “Is Omicron mild”? Testing this narrative with the mutational landscape of its three lineages and response to existing vaccines and therapeutic antibodies. J. Med. Virol., 2022, 94(8), 3521-3539.
[http://dx.doi.org/10.1002/jmv.27749] [PMID: 35355267]
[18]
Rajpal, V.R.; Sharma, S.; Kumar, A.; Vaishnavi, S.; Singh, A.; Sehgal, D.; Tiwari, M.; Goel, S.; Raina, S.N. Mapping of SARS-CoV-2 spike protein evolution during the first and second waves of COVID-19 infections in India. Future Virol., 2022, 17(8), 557-575.
[http://dx.doi.org/10.2217/fvl-2021-0267] [PMID: 35747327]
[19]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[20]
Kruse, R.L. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000 Res., 2020, 9, 72.
[http://dx.doi.org/10.12688/f1000research.22211.2] [PMID: 32117569]
[21]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[22]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[23]
Kupferschmidt, K.; Cohen, J. Race to find COVID-19 treatments accelerates. Science, 2020, 367(6485), 1412-1413.
[http://dx.doi.org/10.1126/science.367.6485.1412]
[24]
Kivrak, A.; Ulaş, B.; Kivrak, H. A comparative analysis for anti-viral drugs: Their efficiency against SARS-CoV-2. Int. Immunopharmacol., 2021, 90, 107232.
[http://dx.doi.org/10.1016/j.intimp.2020.107232] [PMID: 33290969]
[25]
Cecon, E.; Izabelle, C.; Poder, S.L.; Real, F.; Zhu, A.; Tu, L.; Ghigna, M.R.; Klonjkowski, B.; Bomsel, M.; Jockers, R.; Dam, J. Therapeutic potential of melatonin and melatonergic drugs on K18‐ hACE2 mice infected with SARS‐CoV‐2. J. Pineal Res., 2022, 72(1), e12772.
[http://dx.doi.org/10.1111/jpi.12772] [PMID: 34586649]
[26]
Huang, J.; Tao, G.; Liu, J.; Cai, J.; Huang, Z.; Chen, J. Current prevention of COVID-19: Natural products and herbal medicine. Front. Pharmacol., 2020, 11, 588508.
[http://dx.doi.org/10.3389/fphar.2020.588508] [PMID: 33178026]
[27]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[28]
Bauso, L.; Imbesi, C.; Irene, G.; Calì, G.; Bitto, A. New approaches and repurposed antiviral drugs for the treatment of the SARSCoV-2 infection. Pharmaceuticals, 2021, 14(6), 503.
[http://dx.doi.org/10.3390/ph14060503] [PMID: 34070359]
[29]
Chakravarti, R.; Singh, R.; Ghosh, A.; Dey, D.; Sharma, P.; Velayutham, R.; Roy, S.; Ghosh, D. A review on potential of natural products in the management of COVID-19. RSC Advances, 2021, 11(27), 16711-16735.
[http://dx.doi.org/10.1039/D1RA00644D] [PMID: 35479175]
[30]
Pawełczyk, A.; Zaprutko, L. Anti-COVID drugs: Repurposing existing drugs or search for new complex entities, strategies and perspectives. Future Med. Chem., 2020, 12(19), 1743-1757.
[http://dx.doi.org/10.4155/fmc-2020-0204] [PMID: 32698626]
[31]
Khan, T.; Khan, M.A.; Mashwani, Z.R.; Ullah, N.; Nadhman, A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal. Agric. Biotechnol., 2021, 31, 101890.
[http://dx.doi.org/10.1016/j.bcab.2020.101890] [PMID: 33520034]
[32]
Wijayasinghe, Y.S.; Bhansali, P.; Viola, R.E.; Kamal, M.A.; Poddar, N.K. Natural products: A rich source of antiviral drug lead candidates for the management of COVID-19. Curr. Pharm. Des., 2021, 27(33), 3526-3550.
[http://dx.doi.org/10.2174/18734286MTEx6NjI23] [PMID: 33213322]
[33]
Junior, A.G.; Tolouei, S.E.L.; Dos Reis Lívero, F.A.; Gasparotto, F.; Boeing, T.; de Souza, P. Natural agents modulating ACE-2: A review of compounds with potential against SARS-CoV-2 infections. Curr. Pharm. Des., 2021, 27(13), 1588-1596.
[http://dx.doi.org/10.2174/18734286MTEzvMzMcw] [PMID: 33459225]
[34]
Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother., 2020, 64(7), e00819-e00820.
[http://dx.doi.org/10.1128/AAC.00819-20] [PMID: 32366720]
[35]
Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol., 2010, 84(24), 12658-12664.
[http://dx.doi.org/10.1128/JVI.01542-10] [PMID: 20926566]
[36]
Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.; Hull, M.V.; Chang, M.W.; Chan, J.F.W.; Cao, J.; Poon, V.K.M.; Herbert, K.M.; Cheng, K.; Nguyen, T.T.H.; Rubanov, A.; Pu, Y.; Nguyen, C.; Choi, A.; Rathnasinghe, R.; Schotsaert, M.; Miorin, L.; Dejosez, M.; Zwaka, T.P.; Sit, K.Y.; Martinez-Sobrido, L.; Liu, W.C.; White, K.M.; Chapman, M.E.; Lendy, E.K.; Glynne, R.J.; Albrecht, R.; Ruppin, E.; Mesecar, A.D.; Johnson, J.R.; Benner, C.; Sun, R.; Schultz, P.G.; Su, A.I.; García-Sastre, A.; Chatterjee, A.K.; Yuen, K.Y.; Chanda, S.K. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827), 113-119.
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[37]
Isidoro, C.; Chang, A.C.-F.; Sheen, L.-Y. Natural products as a source of novel drugs for treating SARS-CoV2 infection. J Tradit Complement Med, 2022, 12(1), 1-5.
[http://dx.doi.org/10.1016/j.jtcme.2022.02.001]
[38]
Hensel, A.; Bauer, R.; Heinrich, M.; Spiegler, V.; Kayser, O.; Hempel, G.; Kraft, K. Challenges at the time of COVID-19: Opportunities and innovations in antivirals from nature. Planta Med., 2020, 86(10), 659-664.
[http://dx.doi.org/10.1055/a-1177-4396] [PMID: 32434254]
[39]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[40]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[41]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[42]
Benarba, B.; Pandiella, A. Medicinal plants as sources of active molecules against COVID-19. Front. Pharmacol., 2020, 11, 1189.
[http://dx.doi.org/10.3389/fphar.2020.01189] [PMID: 32848790]
[43]
Orhan, I.E.; Senol Deniz, F.S. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2? Nat. Prod. Bioprospect., 2020, 10(4), 171-186.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[44]
Jahan, I.; Onay, A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk. J. Biol., 2020, 44(3), 228-241.
[http://dx.doi.org/10.3906/biy-2005-114] [PMID: 32595359]
[45]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284, 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[46]
Merarchi, M.; Dudha, N.; Das, B.C.; Garg, M. Natural products and phytochemicals as potential ANTI‐SARS‐COV ‐2 drugs. Phytother. Res., 2021, 35(10), 5384-5396.
[http://dx.doi.org/10.1002/ptr.7151] [PMID: 34132421]
[47]
Adhikari, B.; Marasini, B.P.; Rayamajhee, B.; Bhattarai, B.R.; Lamichhane, G.; Khadayat, K.; Adhikari, A.; Khanal, S.; Parajuli, N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID ‐19: A review. Phytother. Res., 2021, 35(3), 1298-1312.
[http://dx.doi.org/10.1002/ptr.6893] [PMID: 33037698]
[48]
Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Mandalari, G.; Sciortino, M.T. Antiviral activity exerted by natural products against human viruses. Viruses, 2021, 13(5), 828.
[http://dx.doi.org/10.3390/v13050828] [PMID: 34064347]
[49]
Scotti, L.; Lopes, S.M.; de Medeiros, H.I.R.; Scotti, M.T. Natural products against COVID-19 inflammation: A mini-review. Comb. Chem. High Throughput Screen., 2022, 25(14), 2358-2369.
[http://dx.doi.org/10.2174/1386207325666220128114547] [PMID: 35088662]
[50]
Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res., 2018, 32(5), 811-822.
[http://dx.doi.org/10.1002/ptr.6024] [PMID: 29356205]
[51]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[52]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[53]
Pamuru, R.R.; Ponneri, N.; Damu, A.G.; Vadde, R. Targeting natural products for the treatment of COVID-19–an updated review. Curr. Pharm. Des., 2020, 26(41), 5278-5285.
[http://dx.doi.org/10.2174/1381612826666200903122536] [PMID: 32881659]
[54]
Boozari, M.; Hosseinzadeh, H. Natural products for COVID ‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res., 2021, 35(2), 864-876.
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[55]
Maurya, V.K.; Kumar, S.; Prasad, A.K.; Bhatt, M.L.B.; Saxena, S.K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 2020, 31(2), 179-193.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[56]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[57]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[58]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[59]
Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[60]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses: methods and protocols, 2015, 1-23|.
[61]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.M.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[62]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[63]
Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 2014, 88(2), 1293-1307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[64]
Sawicki, S.; Sawicki, D. Coronavirus transcription: A perspective. Coronavirus replication and reverse genetics., 2005, 31-35.
[65]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[66]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[67]
Kuhn, J.H.; Radoshitzky, S.R.; Li, W.; Wong, S.K.; Choe, H.; Farzan, M. The SARS Coronavirus receptor ACE 2 A potential target for antiviral therapy; New Concepts of Antiviral Therapy, 2006, pp. 397-418.
[http://dx.doi.org/10.1007/978-0-387-31047-3_15]
[68]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[69]
Ghildiyal, R.; Prakash, V.; Chaudhary, V.; Gupta, V.; Gabrani, R. Phytochemicals as antiviral agents: Recent updates. Plant-derived bioactives: production, properties and therapeutic applications, 2020, 279-295.
[70]
Ishfaq, M.; Chen, C.; Bao, J.; Zhang, W.; Wu, Z.; Wang, J.; Liu, Y.; Tian, E.; Hamid, S.; Li, R.; Ding, L.; Li, J. Baicalin ameliorates oxidative stress and apoptosis by restoring mitochondrial dynamics in the spleen of chickens via the opposite modulation of NF-κB and Nrf2/HO-1 signaling pathway during Mycoplasma gallisepticum infection. Poult. Sci., 2019, 98(12), 6296-6310.
[http://dx.doi.org/10.3382/ps/pez406] [PMID: 31376349]
[71]
Chen, F.; Chan, K.H.; Jiang, Y.; Kao, R.Y.T.; Lu, H.T.; Fan, K.W.; Cheng, V.C.C.; Tsui, W.H.W.; Hung, I.F.N.; Lee, T.S.W.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol., 2004, 31(1), 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[72]
Deng, Y.F.; Aluko, R.E.; Jin, Q.; Zhang, Y.; Yuan, L.J. Inhibitory activities of baicalin against renin and angiotensinconverting enzyme. Pharm. Biol., 2012, 50(4), 401-406.
[http://dx.doi.org/10.3109/13880209.2011.608076] [PMID: 22136493]
[73]
Chen, H.H.; Du, Q. Potential natural compounds for preventing 2019-nCoV infection; Europe PMC, 2020, p. 10.
[74]
Linda Laksmiani, N.P.; Febryana Larasanty, L.P.; Gde Jaya Santika, A.A.; Andika Prayoga, P.A.; Intan Kharisma Dewi, A.A.; Ayu Kristiara Dewi, N.P. Active compounds activity from the medicinal plants against SARS-CoV-2 using in silico assay. Biomed. Pharmacol. J., 2020, 13(2), 873-881.
[http://dx.doi.org/10.13005/bpj/1953]
[75]
Wang, D.; Guo, H.; Chang, J.; Wang, D.; Liu, B.; Gao, P.; Wei, W. Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front. Microbiol., 2018, 9, 2407.
[http://dx.doi.org/10.3389/fmicb.2018.02407] [PMID: 30349523]
[76]
Wang, W.; Ma, X.; Han, J.; Zhou, M.; Ren, H.; Pan, Q.; Zheng, C.; Zheng, Q. Neuroprotective effect of scutellarin on ischemic cerebral injury by down-regulating the expression of angiotensin-converting enzyme and AT1 receptor. PLoS One, 2016, 11(1), e0146197.
[http://dx.doi.org/10.1371/journal.pone.0146197] [PMID: 26730961]
[77]
Yu, X.; Sun, S.; Guo, Y.; Liu, Y.; Yang, D.; Li, G.; Lü, S. Citri reticulatae pericarpium (Chenpi): Botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional chinese medicine. J. Ethnopharmacol., 2018, 220, 265-282.
[http://dx.doi.org/10.1016/j.jep.2018.03.031] [PMID: 29628291]
[78]
Antonio, A.S.; Wiedemann, L.S.M.; Veiga-Junior, V.F. Natural products’ role against COVID-19. RSC Advances, 2020, 10(39), 23379-23393.
[http://dx.doi.org/10.1039/D0RA03774E] [PMID: 35693131]
[79]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[80]
Zanwar, A.A.; Badole, S.L.; Shende, P.S.; Hegde, M.V.; Bodhankar, S.L. Cardiovascular effects of hesperidin: A flavanone glycoside. In: Polyphenols in human health and disease; Elsevier, 2014; pp. 989-992.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00076-1]
[81]
Jadeja, R.N.; Devkar, R.V. Polyphenols and flavonoids in controlling non-alcoholic steatohepatitis. In: Polyphenols in human health and disease; Elsevier, 2014; pp. 615-623.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00047-5]
[82]
Huang, F.; Li, Y.; Leung, E.L.H.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; Luo, H.; Luo, L. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol. Res., 2020, 158, 104929.
[http://dx.doi.org/10.1016/j.phrs.2020.104929] [PMID: 32442720]
[83]
Dong, W.; Wei, X.; Zhang, F.; Hao, J.; Huang, F.; Zhang, C.; Liang, W. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Sci. Rep., 2014, 4(1), 7237.
[http://dx.doi.org/10.1038/srep07237] [PMID: 25429875]
[84]
Ali, S.; Alam, M.; Khatoon, F.; Fatima, U.; Elasbali, A.M.; Adnan, M.; Islam, A.; Hassan, M.I.; Snoussi, M.; De Feo, V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed. Pharmacother., 2022, 147, 112658.
[http://dx.doi.org/10.1016/j.biopha.2022.112658] [PMID: 35066300]
[85]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[86]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[87]
Takenaka, T.T. Isolation of nicotianamine from soybean broth and antihypertensive effects in spontaneously hypertensive rats. JOURNAL OF THE BREWING SOCIETY OF JAPAN, 2009, 104(11), 858-865.
[http://dx.doi.org/10.6013/jbrewsocjapan.104.858]
[88]
Takahashi, S.; Yoshiya, T.; Yoshizawa-Kumagaye, K.; Sugiyama, T. <b>Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soy</b><b>bean </b>. Biomed. Res., 2015, 36(3), 219-224.
[http://dx.doi.org/10.2220/biomedres.36.219] [PMID: 26106051]
[89]
Yao, C.; Xi, C.; Hu, K.; Gao, W.; Cai, X.; Qin, J.; Lv, S.; Du, C.; Wei, Y. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol. J., 2018, 15(1), 116.
[http://dx.doi.org/10.1186/s12985-018-1023-6] [PMID: 30064445]
[90]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[91]
Nguyen, T.T.H.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[92]
Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-512.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[93]
Omrani, M.; Keshavarz, M.; Nejad Ebrahimi, S.; Mehrabi, M.; McGaw, L.J.; Ali Abdalla, M.; Mehrbod, P. Potential natural products against respiratory viruses: A perspective to develop anti-COVID-19 medicines. Front. Pharmacol., 2021, 11, 586993.
[http://dx.doi.org/10.3389/fphar.2020.586993] [PMID: 33679384]
[94]
Prasansuklab, A.; Theerasri, A.; Rangsinth, P.; Sillapachaiyaporn, C.; Chuchawankul, S.; Tencomnao, T. Anti-COVID-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection. J. Tradit. Complement. Med., 2021, 11(2), 144-157.
[http://dx.doi.org/10.1016/j.jtcme.2020.12.001] [PMID: 33520683]
[95]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[96]
Lin, S.C.; Ho, C.T.; Chuo, W.H.; Li, S.; Wang, T.T.; Lin, C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[97]
Dai, Y.; Chen, S.R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide., Crit. Rev. Food Sci. Nutr., 2019, 59 (sup1), S17-S29.
[http://dx.doi.org/10.1080/10408398.2018.1501657] [PMID: 30040451]
[98]
Ding, Y.; Chen, L.; Wu, W.; Yang, J.; Yang, Z.; Liu, S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect., 2017, 19(12), 605-615.
[http://dx.doi.org/10.1016/j.micinf.2017.08.009] [PMID: 28889969]
[99]
Uttekar, M.M.; Das, T.; Pawar, R.S.; Bhandari, B.; Menon, V.; Nutan; Gupta, S.K.; Bhat, S.V. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur. J. Med. Chem., 2012, 56, 368-374.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.030] [PMID: 22858223]
[100]
Wintachai, P.; Kaur, P.; Lee, R.C.H.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.J.H.; Smith, D.R. Activity of andrographolide against chikungunya virus infection. Sci. Rep., 2015, 5(1), 14179.
[http://dx.doi.org/10.1038/srep14179] [PMID: 26384169]
[101]
Panraksa, P.; Ramphan, S.; Khongwichit, S.; Smith, D.R. Activity of andrographolide against dengue virus. Antiviral Res., 2017, 139, 69-78.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.014] [PMID: 28034742]
[102]
Yu, B.; Dai, C.; Jiang, Z.; Li, E.; Chen, C.; Wu, X.; Chen, J.; Liu, Q.; Zhao, C.; He, J.; Ju, D.; Chen, X. Andrographolide as an Anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway. Chin. J. Integr. Med., 2014, 20(7), 540-545.
[http://dx.doi.org/10.1007/s11655-014-1860-0] [PMID: 24972581]
[103]
Kim, S.; Hwang, B.Y.; Su, B-N.; Chai, H.; Mi, Q.; Kinghorn, A.D.; Wild, R.; Swanson, S.M. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res., 2007, 27(4B), 2175-2183.
[PMID: 17695501]
[104]
Biedenkopf, N.; Lange-Grünweller, K.; Schulte, F.W.; Weißer, A.; Müller, C.; Becker, D.; Becker, S.; Hartmann, R.K.; Grünweller, A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Res., 2017, 137, 76-81.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.011] [PMID: 27864075]
[105]
Müller, C.; Schulte, F.W.; Lange-Grünweller, K.; Obermann, W.; Madhugiri, R.; Pleschka, S.; Ziebuhr, J.; Hartmann, R.K.; Grünweller, A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res., 2018, 150, 123-129.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.010] [PMID: 29258862]
[106]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[107]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[108]
Saravanan, K.M.; Zhang, H.; Senthil, R.; Vijayakumar, K.K.; Sounderrajan, V.; Wei, Y.; Shakila, H. Structural basis for the inhibition of SARS-CoV2 main protease by Indian medicinal plant-derived antiviral compounds. J. Biomol. Struct. Dyn., 2022, 40(5), 1970-1978.
[http://dx.doi.org/10.1080/07391102.2020.1834457] [PMID: 33073712]
[109]
Wu, C.Y.; Jan, J.T.; Ma, S.H.; Kuo, C.J.; Juan, H.F.; Cheng, Y.S.E.; Hsu, H.H.; Huang, H.C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci., 2004, 101(27), 10012-10017.
[http://dx.doi.org/10.1073/pnas.0403596101] [PMID: 15226499]
[110]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[111]
Chen, C.N.; Lin, C.P.C.; Huang, K.K.; Chen, W.C.; Hsieh, H.P.; Liang, P.H.; Hsu, J.T.A. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3′-digallate (TF3). Evid. Based Complement. Alternat. Med., 2005, 2(2), 209-215.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[112]
Paraiso, I.L.; Revel, J.S.; Stevens, J.F. Potential use of polyphenols in the battle against COVID-19. Curr. Opin. Food Sci., 2020, 32, 149-155.
[http://dx.doi.org/10.1016/j.cofs.2020.08.004] [PMID: 32923374]
[113]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[114]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[115]
Park, J.Y.; Kim, J.H.; Kwon, J.M.; Kwon, H.J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem., 2013, 21(13), 3730-3737.
[http://dx.doi.org/10.1016/j.bmc.2013.04.026] [PMID: 23647823]
[116]
Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[117]
Tsai, Y.C.; Lee, C.L.; Yen, H.R.; Chang, Y.S.; Lin, Y.P.; Huang, S.H.; Lin, C.W. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 2020, 10(3), 366.
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[118]
Kim, D.; Min, J.; Jang, M.; Lee, J.; Shin, Y.; Park, C.; Song, J.; Kim, H.; Kim, S.; Jin, Y-H.; Kwon, S. Natural bis-benzyliso-quinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 2019, 9(11), 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[119]
Cao, J.; Forrest, J.C.; Zhang, X. A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res., 2015, 114, 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.010] [PMID: 25451075]
[120]
Romero, M.; Serrano, M.; Efferth, T.; Alvarez, M.; Marin, J. Effect of cantharidin, cephalotaxine and homoharringtonine on “in vitro” models of hepatitis B virus (HBV) and bovine viral diarrhoea virus (BVDV) replication. Planta Med., 2007, 73(6), 552-558.
[http://dx.doi.org/10.1055/s-2007-967184] [PMID: 17458779]
[121]
Zhuang, M.; Jiang, H.; Suzuki, Y.; Li, X.; Xiao, P.; Tanaka, T.; Ling, H.; Yang, B.; Saitoh, H.; Zhang, L.; Qin, C.; Sugamura, K.; Hattori, T. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res., 2009, 82(1), 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[122]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[123]
Zhang, D.; Wu, K.; Zhang, X.; Deng, S.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[124]
Tahir ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[125]
Sinha, S.K.; Shakya, A.; Prasad, S.K.; Singh, S.; Gurav, N.S.; Prasad, R.S.; Gurav, S.S. An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. J. Biomol. Struct. Dyn., 2021, 39(9), 3244-3255.
[PMID: 32345124]
[126]
Vivek-Ananth, R.P.; Rana, A.; Rajan, N.; Biswal, H.S.; Samal, A. In silico identification of potential natural product inhibitors of human proteases key to SARS-CoV-2 infection. Molecules, 2020, 25(17), 3822.
[http://dx.doi.org/10.3390/molecules25173822] [PMID: 32842606]
[127]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints, 2020, 2020030226.
[128]
Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn., 2021, 39(9), 3225-3234.
[PMID: 32345140]
[129]
Adem, S.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Ali, M. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against corona. 2020.
[130]
Prasanth, D.S.N.B.K.; Murahari, M.; Chandramohan, V.; Panda, S.P.; Atmakuri, L.R.; Guntupalli, C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J. Biomol. Struct. Dyn., 2021, 39(13), 4618-4632.
[http://dx.doi.org/10.1080/07391102.2020.1779129] [PMID: 32567989]
[131]
Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences. Nat. Prod. Bioprospect., 2020, 10(5), 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[132]
Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-ldrissi, M.; Bouachrine, M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979.
[http://dx.doi.org/10.1080/07391102.2020.1758790] [PMID: 32306860]
[133]
Soleymani, S.; Zabihollahi, R.; Shahbazi, S.; Bolhassani, A. Antiviral effects of saffron and its major ingredients. Curr. Drug Deliv., 2018, 15(5), 698-704.
[http://dx.doi.org/10.2174/1567201814666171129210654] [PMID: 29189153]
[134]
Boff, L.; Munkert, J.; Ottoni, F.M.; Zanchett Schneider, N.F.; Ramos, G.S.; Kreis, W.; Fernandes de Andrade, S.; Dias de Souza Filho, J.; Braga, F.C.; Alves, R.J.; Maia de Pádua, R.; Oliveira Simões, C.M. Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur. J. Med. Chem., 2019, 167, 546-561.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.076] [PMID: 30798081]
[135]
Astani, A.; Reichling, J.; Schnitzler, P. Screening for antiviral activities of isolated compounds from essential oils. Evid. Based Complement. Alternat. Med., 2011, 2011, 253643.
[http://dx.doi.org/10.1093/ecam/nep187]
[136]
Chandra, S.; Palai, S.; Fagner Ferreira-Matias, E.; Cavalcante Pita-Neto, I.; Lucas Gomes-Ramalho, C.E.R.O.; Martins De Andrade, E.; Silva De Almeida, R.; Iriti, M.; Douglas Melo-Coutinho, H. Indian medicinal plants are effective in the treatment and management of COVID-19. Biocell, 2023, 47(4), 677-695.
[http://dx.doi.org/10.32604/biocell.2023.026081]
[137]
Kamkin, V.; Kamarova, A.; Shalabayev, B.; Kussainov, A.; Anuarbekov, M.; Abeuov, S. Comparative analysis of the efficiency of medicinal plants for the treatment and prevention of COVID-19. Int. J. Biomater., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/5943649] [PMID: 36536929]
[138]
Thakur, R.K.; Rajpal, V.R.; Raina, S.N.; Kumar, P.; Sonkar, A.; Joshi, L. UPLC-DAD assisted phytochemical quantitation reveals a sex, ploidy and ecogeography specificity in the expression levels of selected secondary metabolites in medicinal tinospora cordifolia: Implications for elites’ identification program. Curr. Top. Med. Chem., 2020, 20(8), 698-709.
[http://dx.doi.org/10.2174/1568026620666200124105027] [PMID: 31976836]
[139]
Jain, S.K. Herbal Immunity Boosters Against COVID-19; Bentham Science Publishers, 2022.
[http://dx.doi.org/10.2174/97898150794561220101]
[140]
Remali, J.; Aizat, W.M. A review on plant bioactive compounds and their modes of action against coronavirus infection. Front. Pharmacol., 2021, 11, 589044.
[http://dx.doi.org/10.3389/fphar.2020.589044] [PMID: 33519449]
[141]
Ackova, D.G.; Maksimova, V.; Smilko, K. Plant bioactive compounds affecting biomarkers and final outcome of COVID-19. Archives of pharmacy, 2022, 72, 212-230.
[142]
Khaliq, B.; Ali, N.; Akrem, A.; Ashraf, M.Y.; Malik, A.; Tahir, A.; Zia-Ul-Haq, M. Medicinal plants against COVID-19. In: The COVID-19 Pandemic; Apple Academic Press, 2022; pp. 297-337.
[http://dx.doi.org/10.1201/9781003283607-12]
[143]
Shamna, K.; Arthanari, M.; Poyil, M. Apple academic pressphytocompounds in the management of COVID-19: A review. Annals of Phytomedicine-an International Journal, 2022, 30-35.
[144]
Zhang, B.; Qi, F. Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19. Biosci. Trends, 2023, 17(1), 14-20.
[http://dx.doi.org/10.5582/bst.2022.01534] [PMID: 36596560]
[145]
Abdelgawad, S.M.; Hassab, M.A.E.; Abourehab, M.A.S.; Elkaeed, E.B.; Eldehna, W.M. Olive leaves as a potential phytotherapy in the treatment of COVID-19 disease; a mini-review. Front. Pharmacol., 2022, 13, 879118.
[http://dx.doi.org/10.3389/fphar.2022.879118] [PMID: 35496299]
[146]
Hussain, M.; Kr Thakur, R.; Khazir, J.; Ahmed, S.; Khan, M.I.; Rahi, P.; Peer, L.A.; Pragadheesh, V.S.; Kaur, S.; Raina, S.N.; Reshi, Z.A. Traditional uses, phytochemistry, pharmacology, and toxicology of the genus artemisia L.(Asteraceae): A high-value medicinal plant. Current Topics in Medicinal Chemistry, 2023, 23, 142-147.
[147]
Xiao, S.; Liu, W.; Bi, J.; Liu, S.; Zhao, H.; Gong, N.; Xing, D.; Gao, H.; Gong, M.; Raina, S.N. Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair. Journal of inflammation, 2023, 15, 1-8.
[148]
Homayouni, F.; Haidari, F.; Hedayati, M.; Zakerkish, M.; Ahmadi, K. Blood pressure lowering and anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized double‐blind controlled clinical trial. Phytother. Res., 2018, 32(6), 1073-1079.
[http://dx.doi.org/10.1002/ptr.6046] [PMID: 29468764]
[149]
Haggag, Y.A.; El-Ashmawy, N.E.; Okasha, K.M. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med. Hypotheses, 2020, 144, 109957.
[http://dx.doi.org/10.1016/j.mehy.2020.109957] [PMID: 32531538]
[150]
Bailly, C.; Vergoten, G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther., 2020, 214, 107618.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107618] [PMID: 32592716]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy