Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Quercetin Prevents Hypertension in Dahl Salt-sensitive Rats F ed a High-salt Diet Through Balancing Endothelial Nitric Oxide Synthase and Sirtuin 1

Author(s): Guanji Wu, Fuqiang Liu, Qing Cui, Tao Zhang, Jianjun Bao and Junjun Hao*

Volume 27, Issue 16, 2024

Published on: 19 February, 2024

Page: [2446 - 2453] Pages: 8

DOI: 10.2174/0113862073284196240214082904

Price: $65

Abstract

Background: A high-salt diet is a leading dietary risk factor for elevated blood pressure and cardiovascular disease. Quercetin reportedly exhibits cardioprotective and antihypertensive therapeutic effects.

Objectives: The objective of this study is to examine the effect of quercetin on high-salt dietinduced elevated blood pressure in Dahl salt-sensitive (SS) rats and determine the underlying molecular mechanism.

Materials and Methods: Rats of the Dahl SS and control SS-13 BN strains were separated into five groups, SS-13 BN rats fed a low-salt diet (BL group), SS-13 BN rats fed a high-salt diet (BH group), Dahl SS rats fed a low-salt diet (SL group), Dahl SS rats fed a high-salt diet (SH group), and SH rats treated with quercetin (SHQ group). Blood pressure was checked three weeks into the course of treatment, and biochemical markers in the urine and serum were examined. Additionally, western blot was done to evaluate the sirtuin 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) expression levels. Immunohistochemical analysis was performed to verify SIRT1 levels.

Results: We demonstrated that a high-salt diet elevated blood pressure in both SS-13 BN and Dahl SS rats, and quercetin supplementation alleviated the altered blood pressure. Compared with the SH group, quercetin significantly elevated the protein expression of SIRT1 and eNOS. Immunohistochemistry results further confirmed that quercetin could improve the protein expression of SIRT1.

Conclusion: Quercetin reduced blood pressure by enhancing the expression of SIRT1 and eNOS in Dahl SS rats fed a high-salt diet.

Graphical Abstract

[1]
Ma, Z.; Hummel, S.L.; Sun, N.; Chen, Y. From salt to hypertension, what is missed? J. Clin. Hypertens., 2021, 23(12), 2033-2041.
[http://dx.doi.org/10.1111/jch.14402] [PMID: 34846798]
[2]
Balafa, O.; Kalaitzidis, R.G. Salt sensitivity and hypertension. J. Hum. Hypertens., 2021, 35(3), 184-192.
[http://dx.doi.org/10.1038/s41371-020-00407-1] [PMID: 32862203]
[3]
Rodríguez-Iturbe, B.; Franco, M.; Tapia, E.; Quiroz, Y.; Johnson, R.J. Renal inflammation, autoimmunity and salt‐sensitive hypertension. Clin. Exp. Pharmacol. Physiol., 2012, 39(1), 96-103.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05482.x] [PMID: 21251049]
[4]
Franco, V.; Oparil, S. Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J. Am. Coll. Nutr., 2006, 25(sup3)(Suppl.), 247S-255S.
[http://dx.doi.org/10.1080/07315724.2006.10719574] [PMID: 16772636]
[5]
Iatrino, R.; Manunta, P.; Zagato, L. Salt sensitivity: Challenging and controversial phenotype of primary hypertension. Curr. Hypertens. Rep., 2016, 18(9), 70.
[http://dx.doi.org/10.1007/s11906-016-0677-y] [PMID: 27614755]
[6]
Luzardo, L.; Noboa, O.; Boggia, J. Mechanisms of salt-sensitive hypertension. Curr. Hypertens. Rev., 2015, 11(1), 14-21.
[http://dx.doi.org/10.2174/1573402111666150530204136] [PMID: 26028243]
[7]
Afolayan, A.J.; Wintola, O.A. Dietary supplements in the management of hypertension and diabetes - A review. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(3), 248-258.
[http://dx.doi.org/10.4314/ajtcam.v11i3.35] [PMID: 25371590]
[8]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[9]
Tsai, C.F.; Chen, G.W.; Chen, Y.C.; Shen, C.K.; Lu, D.Y.; Yang, L.Y.; Chen, J.H.; Yeh, W.L. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients, 2021, 14(1), 67.
[http://dx.doi.org/10.3390/nu14010067] [PMID: 35010945]
[10]
Costa, A.C.F.; de Sousa, L.M.; dos Santos Alves, J.M.; Goes, P.; Pereira, K.M.A.; Alves, A.P.N.N.; Vale, M.L.; Gondim, D.V. Anti-inflammatory and hepatoprotective effects of quercetin in an experimental model of rheumatoid arthritis. Inflammation, 2021, 44(5), 2033-2043.
[http://dx.doi.org/10.1007/s10753-021-01479-y] [PMID: 34080090]
[11]
da Silva, S.V.S.; Barboza, O.M.; Souza, J.T.; Soares, É.N.; dos Santos, C.C.; Pacheco, L.V.; Santos, I.P.; Magalhães, T.B.S.; Soares, M.B.P.; Guimarães, E.T.; Meira, C.S.; Costa, S.L.; da Silva, V.D.A.; de Santana, L.L.B.; de Freitas Santos Júnior, A. Structural design, synthesis and antioxidant, antileishmania, anti-inflammatory and anticancer activities of a novel quercetin acetylated derivative. Molecules, 2021, 26(22), 6923.
[http://dx.doi.org/10.3390/molecules26226923] [PMID: 34834016]
[12]
Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull., 2022, 1-22.
[13]
Al Attar, A.A.; Fahed, G.I.; Hoballah, M.M.; Pedersen, S.; El-Yazbi, A.F.; Nasser, S.A.; Bitto, A.; Orekhov, A.N.; Eid, A.H. Mechanisms underlying the effects of caloric restriction on hypertension. Biochem. Pharmacol., 2022, 200, 115035.
[http://dx.doi.org/10.1016/j.bcp.2022.115035] [PMID: 35427570]
[14]
Galleano, M.; Pechanova, O.; Fraga, C.G. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol., 2010, 11(8), 837-848.
[http://dx.doi.org/10.2174/138920110793262114] [PMID: 20874688]
[15]
Chen, S.; Wang, J.; Jia, F.; Shen, Z.; Zhang, W.; Wang, Y.; Ren, K.; Fu, G.; Ji, J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(14), 2454-2462.
[http://dx.doi.org/10.1039/D1TB01828K] [PMID: 34698745]
[16]
Mount, P.F.; Kemp, B.E.; Power, D.A. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J. Mol. Cell. Cardiol., 2007, 42(2), 271-279.
[http://dx.doi.org/10.1016/j.yjmcc.2006.05.023] [PMID: 16839566]
[17]
Chen, J.; Zhang, J.; Shaik, N.F.; Yi, B.; Wei, X.; Yang, X.F.; Naik, U.P.; Summer, R.; Yan, G.; Xu, X.; Sun, J. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J. Biol. Chem., 2019, 294(51), 19565-19576.
[http://dx.doi.org/10.1074/jbc.RA119.011317] [PMID: 31719145]
[18]
Mattagajasingh, I.; Kim, C.S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14855-14860.
[http://dx.doi.org/10.1073/pnas.0704329104] [PMID: 17785417]
[19]
López-Fernández-Sobrino, R.; Soliz-Rueda, J.R.; Ávila-Román, J.; Arola-Arnal, A.; Suárez, M.; Muguerza, B.; Bravo, F.I. Blood pressure-lowering effect of wine lees phenolic compounds is mediated by endothelial-derived factors: Role of sirtuin 1. Antioxidants, 2021, 10(7), 1073.
[http://dx.doi.org/10.3390/antiox10071073] [PMID: 34356306]
[20]
Man, A.W.C.; Li, H.; Xia, N. The role of sirtuin1 in regulating endothelial function, arterial remodeling and vascular aging. Front. Physiol., 2019, 10, 1173.
[http://dx.doi.org/10.3389/fphys.2019.01173] [PMID: 31572218]
[21]
Endres, B.T.; Sandoval, R.M.; Rhodes, G.J.; Campos-Bilderback, S.B.; Kamocka, M.M.; McDermott-Roe, C.; Staruschenko, A.; Molitoris, B.A.; Geurts, A.M.; Palygin, O. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am. J. Physiol. Renal Physiol., 2017, 313(2), F163-F173.
[http://dx.doi.org/10.1152/ajprenal.00466.2016] [PMID: 28404591]
[22]
Peng, J.; Li, Q.; Li, K.; Zhu, L.; Lin, X.; Lin, X.; Shen, Q.; Li, G.; Xie, X. Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of akt signaling and SIRT1. J. Diabetes Res., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/3417306] [PMID: 29379801]
[23]
Pereira, S.C.; Parente, J.M.; Belo, V.A.; Mendes, A.S.; Gonzaga, N.A.; do Vale, G.T.; Ceron, C.S.; Tanus-Santos, J.E.; Tirapelli, C.R.; Castro, M.M. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis, 2018, 270, 146-153.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.031] [PMID: 29425960]
[24]
Machha, A.; Mustafa, M.R. Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J. Cardiovasc. Pharmacol., 2005, 46(1), 36-40.
[http://dx.doi.org/10.1097/01.fjc.0000162769.83324.c1] [PMID: 15965352]
[25]
Li, Y.; Wang, W.; Chao, Y.; Zhang, F.; Wang, C. CTRP13 attenuates vascular calcification by regulating Runx2. FASEB J., 2019, 33(8), 9627-9637.
[http://dx.doi.org/10.1096/fj.201900293RRR] [PMID: 31145871]
[26]
Zhang, X.F.; Zhang, W.J.; Dong, C.; Hu, W.L.; Sun, Y.Y.; Bao, Y.; Zhang, C.F.; Guo, C.R.; Wang, C.Z.; Yuan, C.S. Analgesia effect of baicalein against NTG-induced migraine in rats. Biomed. Pharmacother., 2017, 90, 116-121.
[http://dx.doi.org/10.1016/j.biopha.2017.03.052] [PMID: 28343071]
[27]
Perry, C.A.; Gadde, K.M. The role of calorie restriction in the prevention of cardiovascular disease. Curr. Atheroscler. Rep., 2022, 24(4), 235-242.
[http://dx.doi.org/10.1007/s11883-022-00999-8] [PMID: 35107761]
[28]
Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol., 2021, 18(11), 785-802.
[http://dx.doi.org/10.1038/s41569-021-00559-8] [PMID: 34050340]
[29]
Kurtz, T.W.; Pravenec, M.; DiCarlo, S.E. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin. Sci., 2022, 136(8), 599-620.
[http://dx.doi.org/10.1042/CS20210566] [PMID: 35452099]
[30]
Popiolek-Kalisz, J.; Fornal, E. The effects of quercetin supplementation on blood pressure - meta-analysis. Curr. Probl. Cardiol., 2022, 47(11), 101350.
[http://dx.doi.org/10.1016/j.cpcardiol.2022.101350] [PMID: 35948195]
[31]
Wang, Y.; Liu, X.; Zhang, C.; Wang, Z. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J. Nutr. Biochem., 2018, 56, 133-141.
[http://dx.doi.org/10.1016/j.jnutbio.2018.01.007] [PMID: 29567533]
[32]
Feng, X.; Bu, F.; Huang, L.; Xu, W.; Wang, W.; Wu, Q. Preclinical evidence of the effect of quercetin on diabetic nephropathy: A meta-analysis of animal studies. Eur. J. Pharmacol., 2022, 921, 174868.
[http://dx.doi.org/10.1016/j.ejphar.2022.174868] [PMID: 35248552]
[33]
Oyagbemi, A.A.; Omobowale, T.O.; Ola-Davies, O.E.; Asenuga, E.R.; Ajibade, T.O.; Adejumobi, O.A.; Arojojoye, O.A.; Afolabi, J.M.; Ogunpolu, B.S.; Falayi, O.O.; Hassan, F.O.; Ochigbo, G.O.; Saba, A.B.; Adedapo, A.A.; Yakubu, M.A. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. Biofactors, 2018, 44(5), 465-479.
[http://dx.doi.org/10.1002/biof.1445] [PMID: 30171731]
[34]
Tomeleri, C.M.; Marcori, A.J.; Ribeiro, A.S.; Gerage, A.M.; Padilha, C.; Schiavoni, D.; Souza, M.F.; Mayhew, J.L.; do Nascimento, M.A.; Venturini, D.; Barbosa, D.S.; Cyrino, E.S. Chronic blood pressure reductions and increments in plasma nitric oxide bioavailability. Int. J. Sports Med., 2017, 38(4), 290-299.
[http://dx.doi.org/10.1055/s-0042-121896] [PMID: 28219107]
[35]
Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother., 2017, 85, 182-201.
[http://dx.doi.org/10.1016/j.biopha.2016.11.125] [PMID: 27940398]
[36]
Tajbakhsh, S.; Aliakbari, K.; Hussey, D.J.; Lower, K.M.; Donato, A.J.; Sokoya, E.M. Differential telomere shortening in blood versus arteries in an animal model of type 2 diabetes. J. Diabetes Res., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/153829] [PMID: 26346823]
[37]
Gadkari, T.V.; Cortes, N.; Madrasi, K.; Tsoukias, N.M.; Joshi, M.S. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide, 2013, 35, 65-71.
[http://dx.doi.org/10.1016/j.niox.2013.08.005] [PMID: 23994446]
[38]
Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I.C.; Zarzuelo, A.; Tamargo, J.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens., 2006, 24(1), 75-84.
[http://dx.doi.org/10.1097/01.hjh.0000198029.22472.d9] [PMID: 16331104]
[39]
Yeganeh-Hajahmadi, M.; Najafipour, H.; Rostamzadeh, F.; Masoumi-Ardakani, Y. SIRT1 and Klotho expression in the heart and kidneys of rats with acute and chronic renovascular hypertension. Croat. Med. J., 2021, 62(5), 504-512.
[http://dx.doi.org/10.3325/cmj.2021.62.504] [PMID: 34730891]
[40]
Liu, Z.; Wang, C.; Pei, J.; Li, M.; Gu, W. SIRT1: A novel protective molecule in pre-eclampsia. Int. J. Med. Sci., 2022, 19(6), 993-1002.
[http://dx.doi.org/10.7150/ijms.73012] [PMID: 35813294]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy