Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Thermal and Mechanical Investigation of Friction Stir Welding with Disparate Materials AA6061 and AA7075

Author(s): Sabari K* and Muniappan A

Volume 17, Issue 3, 2024

Published on: 19 February, 2024

Page: [181 - 195] Pages: 15

DOI: 10.2174/0122127976284835240116085109

Price: $65

conference banner
Abstract

Background: The primary objective of this study is to assess the impact of welding conditions on the mechanical properties of friction stir-welded butt joints created from two distinct aluminium alloys, namely, AA6061 and AA7075. Friction stir welding (FSW), known for its innovation and low-energy solid-state bonding technique, was employed in this research.

Methods: FSW experiments were carried out on both AA6061 and AA7075 alloys using a computer numerical control (CNC) machine. The selection and design of the tool geometry were meticulous, with an emphasis on new pin profiles that are nearly flat at the weld contact point. Precisely, four distinct tool geometries were machined from HC-HCr (High carbon, high chromium steel): Circular, Square, Tapered third, and Triangular. Critical process variables that significantly influence weld quality include rotation speed (800 rpm-1400 rpm) and traverse speed (12 to 25 mm/min). These variables were carefully optimized to achieve flawless welds. During the friction stir welding process, the nugget zone undergoes significant deformation, leading to the formation of a new microstructure that substantially impacts the mechanical properties of the joint.

Results: This study comprehensively investigates the thermal and mechanical properties of friction stir welding using aluminium alloys AA6061 and AA7075, considering various tool shapes. Among the four tool shapes employed, two were found to yield higher hardness values (referred to as BH). Notably, the square-shaped tool produced the highest temperature, reaching up to 690ºC, as determined by thermocouple readings. Based on the findings, the optimal FSW parameters for enhancing hardness involve an axial feed and spindle speed of 800 rpm combined with a feed rate of 15 mm/min. These parameters were identified as crucial for achieving the desired mechanical properties in the friction stir-welded joints.

Conclusion: This study presents new developments in FSW technology, which may have patent implications.

[1]
Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng Rep 2005; 50(1-2): 1-78.
[http://dx.doi.org/10.1016/j.mser.2005.07.001]
[2]
Amuthan T, Nagaprasad N, Krishnaraj R, Narasimharaj V, Stalin B, Vignesh V. Experimental study of mechanical properties of AA6061 and AA7075 alloy joints using friction stir welding. Mater Today Proc 2021; 47: 4330-5.
[http://dx.doi.org/10.1016/j.matpr.2021.04.628]
[3]
Ma ZY, Feng AH, Chen DL, Shen J. Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties. Crit Rev Solid State Mater Sci 2018; 43(4): 269-333.
[http://dx.doi.org/10.1080/10408436.2017.1358145]
[4]
Sundaraselvan S, Senthilkumar N, Balamurugan T, Kaviarasu C, Sathishkumar GB, Rajesh M. Optimization of friction welding process parameters for Joining Al6082 and mild steel using RSM. Mater Today Proc 2023; 74: 91-6.
[http://dx.doi.org/10.1016/j.matpr.2022.11.401]
[5]
Kurt A, Uygur I, Cete E. Surface modification of aluminium by friction stir processing. J Mater Process Technol 2011; 211(3): 313-7.
[http://dx.doi.org/10.1016/j.jmatprotec.2010.09.020]
[6]
Vasanthkumar P, Balasundaram R, Senthilkumar N. Sliding-friction wear of a seashell particulate reinforced polymer matrix composite: modeling and optimization through RSM and Grey Wolf optimizer. Trans Can Soc Mech Eng 2022; 46(2): 329-45.
[http://dx.doi.org/10.1139/tcsme-2021-0139]
[7]
Kalaiselvan K, Murugan N, Parameswaran S. Production and characterization of AA6061-B4C stir cast composite. Mater Des 2011; 32(7): 4004-9.
[http://dx.doi.org/10.1016/j.matdes.2011.03.018]
[8]
Ramamurthy M, Balasubramanian P, Senthilkumar N, Anbuchezhiyan G. Influence of process parameters on the microstructure and mechanical properties of friction stir welds of AA2014 and AA6063 aluminium alloys using response surface methodology. Mater Res Express 2022; 9(2): 026528.
[http://dx.doi.org/10.1088/2053-1591/ac5777]
[9]
Rai R, De A, Bhadeshia HKDH, DebRoy T. Review: Friction stir welding tools. Sci Technol Weld Join 2011; 16(4): 325-42.
[http://dx.doi.org/10.1179/1362171811Y.0000000023]
[10]
Barmouz M, Asadi P, Besharati Givi MK, Taherishargh M. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction. Mater Sci Eng A 2011; 528(3): 1740-9.
[http://dx.doi.org/10.1016/j.msea.2010.11.006]
[11]
Zohoor M, Besharati Givi MK, Salami P. Effect of processing parameters on fabrication of Al-Mg/Cu composites via friction stir processing. Mater Des 2012; 39: 358-65.
[http://dx.doi.org/10.1016/j.matdes.2012.02.042]
[12]
Kumar RS, Elango V, Giridharan K, Jothiprakash VM, Stalin B. Optimization and enhancement of friction stir welding strength on high yield strength deformed steel. Mater Today Proc 2021; 45: 1904-7.
[http://dx.doi.org/10.1016/j.matpr.2020.09.149]
[13]
Vetrivel Sezhian M, Ramadoss R, Giridharan K, Chakravarthi G, Stalin B. Comparative study of friction stir welding process and its variables. Mater Today Proc 2020; 33: 4842-7.
[http://dx.doi.org/10.1016/j.matpr.2020.08.394]
[14]
Balasubramanian M, Stalin B, Marichamy S, Anandan K, Subbiah R. Assessment of weld joint strengths on dissimilar alloys of Inconel 625 and aluminium 7068 using FSW process. Mater Today Proc 2020; 33: 4677-80.
[http://dx.doi.org/10.1016/j.matpr.2020.08.315]
[15]
Vairamuthu J, Kumar AS, Stalin B, Ravichandran M. Synthesis and electrochemical behaviour of TiC- and B 4 C-reinforced Al-based metal matrix composite. Emerg Mater Res 2021; 10(1): 24-32.
[http://dx.doi.org/10.1680/jemmr.19.00128]
[16]
Stalin B, Ravichandran M, Sudha GT, et al. Effect of titanium diboride ceramic particles on mechanical and wear behaviour of Cu-10 wt% W alloy composites processed by P/M route. Vacuum 2021; 184: 109895.
[http://dx.doi.org/10.1016/j.vacuum.2020.109895]
[17]
Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J. Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater Des 2014; 56: 185-92.
[http://dx.doi.org/10.1016/j.matdes.2013.10.082]
[18]
Cole EG, Fehrenbacher A, Duffie NA, Zinn MR, Pfefferkorn FE, Ferrier NJ. Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-t6 and 7075-t6. Int J Adv Manuf Technol 2014; 71(1-4): 643-52.
[http://dx.doi.org/10.1007/s00170-013-5485-9]
[19]
Bahemmat P, Haghpanahi M, Besharati MK, Ahsanizadeh S, Rezaei H. Study on mechanical, micro-, and macrostructural characteristics of dissimilar friction stir welding of AA6061-T6 and AA7075-T6. Proc Inst Mech Eng, B J Eng Manuf 2010; 224(12): 1854-64.
[http://dx.doi.org/10.1243/09544054JEM1959]
[20]
Ghiasvand A, Suksatan W, Tomków J, Rogalski G, Derazkola HA. Investigation of the effects of tool positioning factors on peak temperature in dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. Materials 2022; 15(3): 702.
[http://dx.doi.org/10.3390/ma15030702] [PMID: 35160648]
[21]
Raturi M, Garg A, Bhattacharya A. Joint strength and failure studies of dissimilar AA6061-AA7075 friction stir welds: Effects of tool pin, process parameters and preheating. Eng Fail Anal 2019; 96: 570-88.
[http://dx.doi.org/10.1016/j.engfailanal.2018.12.003]
[22]
Heidarzadeh A, Javidani M, Mofarrehi M, Farzaneh A, Chen XG. Submerged dissimilar friction stir welding of AA6061 and AA7075 aluminum alloys: Microstructure characterization and mechanical property. Metals 2021; 11(10): 1592.
[http://dx.doi.org/10.3390/met11101592]
[23]
Saravanan V, Rajakumar S, Muruganandam A. Effect of friction stir welding process parameters on microstructure and mechanical properties of dissimilar AA6061-T6 and AA7075-T6 aluminum alloy joints. Metallogr Microstruct Anal 2016; 5(6): 476-85.
[http://dx.doi.org/10.1007/s13632-016-0315-8]
[24]
Ahmed MMZ, Ataya S, El-Sayed Seleman MM, Ammar HR, Ahmed E. Friction stir welding of similar and dissimilar AA7075 and AA5083. J Mater Process Technol 2017; 242: 77-91.
[http://dx.doi.org/10.1016/j.jmatprotec.2016.11.024]
[25]
Suthar H, Bhattacharya A, Paul SK. Local deformation response and failure behavior of AA6061-AA6061 and AA6061-AA7075 friction stir welds. CIRO J Manuf Sci Technol 2020; 30: 12-24.
[http://dx.doi.org/10.1016/j.cirpj.2020.03.006]
[26]
Rodriguez RI, Jordon JB, Allison PG, Rushing T, Garcia L. Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Mater Des 2015; 83: 60-5.
[http://dx.doi.org/10.1016/j.matdes.2015.05.074]
[27]
Sathari NAA, Razali AR, Ishak M, Shah LH. Mechanical strength of dissimilar AA7075 and AA6061 aluminum alloys using friction stir welding. Int J Automot Mech Eng 2015; 11: 2713-21.
[http://dx.doi.org/10.15282/ijame.11.2015.47.0228]
[28]
Jamshidi Aval H. Microstructure and residual stress distributions in friction stir welding of dissimilar aluminium alloys. Mater Des 2015; 87: 405-13.
[http://dx.doi.org/10.1016/j.matdes.2015.08.050]
[29]
Ravikumar S, Rao VS, Pranesh RV. Effect of process parameters on mechanical properties of friction stir welded dissimilar materials between AA6061-T651 and AA7075-T651 alloys. Int J Adv Mech Eng 2014; 4(1): 101-14.
[30]
Chen Y, Cai Z, Ding H, Zhang F. The evolution of the nugget zone for dissimilar AA6061/AA7075 joints fabricated via multiple-pass friction stir welding. Metals 2021; 11(10): 1506.
[http://dx.doi.org/10.3390/met11101506]
[31]
Kumar SR, Rao VS, Pranesh RV. Effect of welding parameters on macro and microstructure of friction stir welded dissimilar butt joints between AA7075-T651 and AA6061-T651 alloys. Procedia Manuf Procedia 2014; 5: 1726-35.
[http://dx.doi.org/10.1016/j.mspro.2014.07.362]
[32]
Daniolos NM, Pantelis DI. Microstructural and mechanical properties of dissimilar friction stir welds between AA6082-T6 and AA7075-T651. Int J Adv Manuf Technol 2017; 88(9-12): 2497-505.
[http://dx.doi.org/10.1007/s00170-016-8965-x]
[33]
Dimov N, Weisz-Patrault D, Tanguy A, et al. Strain and damage analysis using high resolution digital image correlation in the stir zone of an AA6061-AA7075 dissimilar friction stir weld. Mater Today Commun 2023; 34: 105359.
[http://dx.doi.org/10.1016/j.mtcomm.2023.105359]
[34]
Jafari H, Mansouri H, Honarpisheh M. Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles. J Manuf Process 2019; 43: 145-53.
[http://dx.doi.org/10.1016/j.jmapro.2019.05.023]
[35]
Tamjidy M, Baharudin B, Paslar S, Matori K, Sulaiman S, Fadaeifard F. Multi-objective optimization of friction stir welding process parameters of AA6061-T6 and AA7075-T6 using a biogeography based optimization algorithm. Materials 2017; 10(5): 533.
[http://dx.doi.org/10.3390/ma10050533] [PMID: 28772893]
[36]
Khan NZ, Siddiquee AN, Khan ZA, Mukhopadhyay AK. Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys. J Alloys Compd 2017; 695: 2902-8.
[http://dx.doi.org/10.1016/j.jallcom.2016.11.389]
[37]
Yuvaraj KP, Varthanan PA, Rajendran C. Effect of friction stir welding parameters on mechanical and micro structural behaviour of AA7075-T651 and AA6061 dissimilar alloy joint. Int J Comput Mater Sci Surf Eng 2018; 7(2): 130-49.
[http://dx.doi.org/10.1504/IJCMSSE.2018.092553]
[38]
Abd Elnabi MM, Elshalakany AB, Abdel-Mottaleb MM, Osman TA, El Mokadem A. Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar AA5454-AA7075 aluminum alloys. J Mater Res Technol 2019; 8(2): 1684-93.
[http://dx.doi.org/10.1016/j.jmrt.2018.10.015]
[39]
İpekoğlu G, Çam G. Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stirwelded joints between AA7075 and AA6061 aluminum alloys. Metall Mater Trans, A Phys Metall Mater Sci 2014; 45(7): 3074-87.
[http://dx.doi.org/10.1007/s11661-014-2248-7]
[40]
Zhang C, Huang G, Cao Y, Zhu Y, Liu Q. On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: Effect of rotational speed. J Manuf Process 2019; 37: 470-87.
[http://dx.doi.org/10.1016/j.jmapro.2018.12.014]
[41]
Yunus MOHAMMED, Alsoufi MS. A statistical analysis of joint strength of dissimilar aluminium alloys formed by friction stir welding using taguchi design approach, anova for the optimization of process parameters. IMPACT: Int Res J Eng Technol 2015; 3(7): 63-70.
[42]
Kaewkham P, Nakkiew W, Baisukhan A. Mechanical properties enhancement of dissimilar AA6061-T6 and AA7075-T651 friction stir welds coupled with deep rolling process. Materials 2022; 15(18): 6275.
[http://dx.doi.org/10.3390/ma15186275] [PMID: 36143593]
[43]
Boşneag A, Constantin MA, Niţu E, Iordache M. Friction Stir Welding of three dissimilar aluminium alloy used in aeronautics industry. IOP Conf Ser Mater Sci Eng 2017; 252(1): 012041.
[44]
Haribalaji V, Boopathi S, Mohammed Asif M. Optimization of friction stir welding process to join dissimilar AA2014 and AA7075 aluminum alloys. Mater Today Proc 2022; 50: 2227-34.
[http://dx.doi.org/10.1016/j.matpr.2021.09.499]
[45]
Kunnathur Periyasamy Y, Perumal AV, Kunnathur Periyasamy B. Optimization of process parameters on friction stir welding of AA7075-T651 and AA6061 joint using response surface methodology. Mater Res Express 2019; 6(9): 096558.
[http://dx.doi.org/10.1088/2053-1591/ab302e]
[46]
Hasan MM, Ishak M, Rejab MRM. A simplified design of clamping system and fixtures for friction stir welding of aluminium alloys. J Mech Eng Sci 2015; 9: 1628-39.
[http://dx.doi.org/10.15282/jmes.9.2015.10.0158]
[47]
Raturi M, Bhattacharya A. Microstructure and texture correlation of secondary heating assisted dissimilar friction stir welds of aluminum alloys. Mater Sci Eng A 2021; 825: 141891.
[http://dx.doi.org/10.1016/j.msea.2021.141891]
[48]
Patel V, Li W, Wang G, Wang F, Vairis A, Niu P. Friction stir welding of dissimilar aluminum alloy combinations: State-of-the-art. Metals 2019; 9(3): 270.
[http://dx.doi.org/10.3390/met9030270]
[49]
Anbunathan PE, Perumal G, Senthilkumar N. Characterization and wear studies on non-asbestos organic fiber reinforced low metallic friction composites. IJMPERD 2019; 9: 133-43.
[50]
Bosneag A, Constantin MA, Nitu E, Iordache M. Friction stir welding of three dissimilar aluminium alloy: AA2024, AA6061 and AA7075. IOP Conf Ser: Mater Sci Eng 2018; 400(2): 022013.
[51]
Bhojan A, Senthilkumar N, Deepanraj B. Parametric influence of friction stir welding on cast Al6061/20% SiC/2% MoS2 MMC mechanical properties. Appl Mech Mater 2016; 852: 297-303.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.852.297]
[52]
Sivashanmugam M, Ravikumar S, Kumar T, Rao VS, Muruganandam D. A review on friction stir welding for aluminium alloys. Front Mech Eng 2010; 2010: 216-21.
[http://dx.doi.org/10.1109/FAME.2010.5714839]
[53]
Delouei AA, Emamian A, Karimnejad S, Sajjadi H, Jing D. Asymmetric conduction in an infinite functionally graded cylinder: Two-dimensional exact analytical solution under general boundary conditions. J Heat Transfer 2020; 142(4): 044505.
[http://dx.doi.org/10.1115/1.4046306]
[54]
Amiri Delouei A, Emamian A, Sajjadi H, et al. A comprehensive review on multi-dimensional heat conduction of multi-layer and composite structures: Analytical solutions. J Therm Sci 2021; 30(6): 1875-907.
[http://dx.doi.org/10.1007/s11630-021-1517-1]
[55]
Kalil Rahiman M, Santhoshkumar S, Mathan Kumar P. Experimental analysis on friction stir welded AA 7075/AA 6061 using Taguchi grey relational analysis. Mater Today Proc 2021; 45: 3290-5.
[http://dx.doi.org/10.1016/j.matpr.2020.12.519]
[56]
Emamian A, Amiri Delouei A, Karimnejad S, Jing D. Analytical solution for temperature distribution in functionally graded cylindrical shells under convective cooling. Math Methods Appl Sci 2023; 46(10): 11442-61.
[http://dx.doi.org/10.1002/mma.7819]
[57]
He F, Amiri Delouei A, Ellahi R, Alamri SZ, Emamian A, Ghorbani S. Unsteady temperature distribution in a cylinder made of functionally graded materials under circumferentially-varying convective heat transfer boundary conditions. Z Naturforsch A 2023; 78(10): 893-906.
[http://dx.doi.org/10.1515/zna-2023-0039]
[58]
Amiri Delouei A, Emamian A, Karimnejad S, Sajjadi H, Jing D. Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions. J Therm Anal Calorim 2021; 144(3): 611-21.
[http://dx.doi.org/10.1007/s10973-020-09482-5]
[59]
Marzavan S, Nastasescu V. Free vibration analysis of a functionally graded plate by finite element method. Ain Shams Eng J 2023; 14(8): 102024.
[http://dx.doi.org/10.1016/j.asej.2022.102024]
[60]
Mesbah A, Belabed Z, Amara K, Tounsi A, Bousahla AA, Bourada F. Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams. Struct Eng Mech 2023; 86(3): 291.
[61]
Xia L, Wang R, Chen G, Asemi K, Tounsi A. The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity. Adv Nano Res 2023; 14(4): 375-89.
[62]
Katiyar V, Gupta A, Tounsi A. Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D FGPs) with partial supports by using FEM. Steel Compos Struct 2022; 45(5): 621-40.
[63]
Van Vinh P, Van Chinh N, Tounsi A. Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur J Mech A, Solids 2022; 96: 104743.
[http://dx.doi.org/10.1016/j.euromechsol.2022.104743]
[64]
Cuong-Le T, Nguyen KD, Le-Minh H, Phan-Vu P, Nguyen-Trong P, Tounsi A. Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv Nano Res 2022; 12(5): 441.
[65]
Kumar Y, Gupta A, Tounsi A. Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model. Adv Nano Res 2021; 11(1): 01-17.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy