Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

A Review of Minimally and Non-invasive Glucose Monitoring Techniques, Devices and Sensors

Author(s): Mohammad Nooshnab, Seyed Morteza Naghib*, Rouhollah Rahmanifard* and Elnaz Khakpour

Volume 20, Issue 4, 2024

Published on: 15 February, 2024

Page: [217 - 241] Pages: 25

DOI: 10.2174/0115734110290007240202154817

Price: $65

conference banner
Abstract

Glucose determination, without pain and aches, is essential for biomedical applications. Minimally invasive (MI) and non-invasive (NI) are the approaches that could address these challenges. MI approaches are based on body fluids such as saliva, urine, tears, and interstitial fluid that are exploited to determine glucose levels. NI methods utilize radiation forms to determine glucose concentration without needing body fluids. In this review, MI and NI technologies and their application in glucose measurement, along with current and future devices that use these technologies, are described and discussed. Also, the principles and requirements and operational and analytical performance will be reviewed and discussed.

Next »
Graphical Abstract

[1]
Cowie, C.C.; Rust, K.F.; Byrd-Holt, D.D.; Gregg, E.W.; Ford, E.S.; Geiss, L.S.; Bainbridge, K.E.; Fradkin, J.E. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988-2006. Diabetes Care, 2010, 33(3), 562-568.
[http://dx.doi.org/10.2337/dc09-1524] [PMID: 20067953]
[2]
Bonakdaran, S.; Milani, N.; Khorasani, Z.M.; Hosseinzadeh, M.; Kabiri, M. Is there a relation between hypothyroidism and polycystic ovary syndrome and its metabolic components? Curr. Diabetes Rev., 2019, 103-110.
[3]
Muzurović, E.; Polyzos, S.A.; Mikhailidis, D.P.; Borozan, S.; Novosel, D.; Cmiljanić, O.; Kadić, N.; Mantzoros, C.S. Non-alcoholic fatty liver disease in children. Curr. Vasc. Pharmacol., 2021, 4-25.
[4]
Al-Majali, M.A.; Burayzat, S.; Tayyem, R.F. Dietary management of type 1 diabetes mellitus with celiac disease. Curr. Diabetes Rev, 2013, 19(3), e010622205502.
[5]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[6]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[7]
Gupta, U.C.; Gupta, S.C.; Gupta, S.S. An evidence-based review of diabetes care: History, types, relationship to cancer and heart disease, co-morbid factors, and preventive measures. Curr. Nutr. Food Sci., 2019, 399-408.
[8]
Das, S.; Ramachandran, A.K.; Halder, D.; Akbar, S.; Ahmed, B.; Joseph, A. Mechanistic and etiological similarities in diabetes mellitus and alzheimer’s disease: antidiabetic drugs as optimistic therapeutics in alzheimer’s disease, CNS Neurol. Disord. Drug Targets, 2023, 22(7), 973-993.
[9]
Sharma, S.; Choudhary, M.; Budhwar, V. Role of bioactive phytoconstituents as modulators of hepatic carbohydrates metabolising enzymes: A target specific approach to treat diabetes mellitus. Curr. Diabetes Rev., 2018, 57-72.
[10]
Manolis, A.A.; Manolis, T.A.; Melita, H.; Manolis, A.S. Gut microbiota and cardiovascular disease: Symbiosis versus dysbiosis. Curr. Med. Chem., 2013, 29(23), 4050-4077.
[11]
Rahman, M.M.; Islam, M.R.; Rabbi, F.; Islam, M.T.; Sultana, S.; Ahmed, M.; Sehgal, A.; Singh, S.; Sharma, N.; Behl, T. Bioactive compounds and diabetes mellitus: Prospects and future challenges. Curr. Pharm. Des., 2022, 28(16), 1304-1320.
[12]
Poolsup, N.; Suksomboon, N.; Rattanasookchit, S. Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: An update. Diabetes Technol. Ther., 2009, 11(12), 775-784.
[http://dx.doi.org/10.1089/dia.2009.0091] [PMID: 20001678]
[13]
Skeie, S.; Kristensen, G.B.B.; Carlsen, S.; Sandberg, S. Selfmonitoring of blood glucose in type 1 diabetes patients with insufficient metabolic control: focused self-monitoring of blood glucose intervention can lower glycated hemoglobin A1C. J. Diabetes Sci. Technol., 2009, 3(1), 83-88.
[http://dx.doi.org/10.1177/193229680900300109] [PMID: 20046652]
[14]
Boutati, E.I.; Raptis, S.A. Self-monitoring of blood glucose as part of the integral care of type 2 diabetes. Diabetes Care, 2009, 32(Suppl. 2), S205-S210.
[http://dx.doi.org/10.2337/dc09-S312] [PMID: 19875553]
[15]
Lubin, S. Glucose control and diabetic complications: Is tight control of IDDM justified? Can. Fam. Physician, 1991, 37, 1409-1420.
[PMID: 21229036]
[16]
O’Kane, M.J.; Pickup, J. Self-monitoring of blood glucose in diabetes: Is it worth it? Ann. Clin. Biochem., 2009, 46(4), 273-282.
[http://dx.doi.org/10.1258/acb.2009.009011] [PMID: 19454538]
[17]
Introduction: Standards of medical care in diabetes—2020. Diabetes Care, 2020, 43(Suppl. 1), S1-S2.
[http://dx.doi.org/10.2337/dc20-Sint] [PMID: 31862741]
[18]
Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron., 2005, 20(12), 2435-2453.
[http://dx.doi.org/10.1016/j.bios.2004.11.012] [PMID: 15854818]
[19]
Naghib, S.M. Two-dimensional functionalised methacrylated graphene oxide nanosheets as simple and inexpensive electrodes for biosensing applications. Micro Nano Lett., 2019, 14(4), 462-465.
[http://dx.doi.org/10.1049/mnl.2018.5320]
[20]
Naghib, S.M.; Rabiee, M.; Omidinia, E.; Khoshkenar, P. Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on a polymer‐blend film for phenylketonuria diagnosis. Electroanalysis, 2012, 24(2), 407-417.
[http://dx.doi.org/10.1002/elan.201100391]
[21]
Naghib, S.M.; Parnian, E.; Keshvari, H.; Omidinia, E.; Eshghan-Malek, M. Synthesis, characterization and electrochemical evaluation of polyvinylalchol/graphene oxide/silver nanocomposites for glucose biosensing application. Int. J. Electrochem. Sci., 2018, 13(1), 1013-1026.
[http://dx.doi.org/10.20964/2018.01.74]
[22]
Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A high-performance electrochemical aptasensor based on graphene-decorated rhodium nanoparticles to detect HER2-ECD oncomarker in liquid biopsy. Sci. Rep., 2022, 12(1), 3299.
[http://dx.doi.org/10.1038/s41598-022-07230-3] [PMID: 35228597]
[23]
Naghib, S.M.; Zare, Y.; Rhee, K.Y. A facile and simple approach to synthesis and characterization of methacrylated graphene oxide nanostructured polyaniline nanocomposites. 2020, 9, 53-60.
[24]
Eswaran, M.; Dhanusuraman, R.; Chokkiah, B.; Tsai, P-C.; Wabaidur, S.M.; Alothman, Z.A.; Ponnusamy, V.K. Poly(diphenylamine) and its nanohybrids for chemicals and biomolecules analysis: A review. Curr. Anal. Chem, 2022, 18(5), 546-562.
[25]
Frias, I.A.M.; da Silva, A.G., Junior; Oliveira, M.D.L.; Andrade, C.A.S. Oligonucleotide-conjugated nanomaterials as biosensing platforms to potential bioterrorism tools. Curr. Anal. Chem., 2023, 19(1), 18-26.
[26]
Zhang, X.; Wang, J.; Yang, H.; Zhou, Y. A novel biosensor for detecting vitamin C in Milk Powder Based on Hg2+- Mediated DNA structural changes. Curr. Anal. Chem., 2018, 845-851.
[27]
Zhang, S.; Li, S.; Yan, R.; Zhou, Z.; Wu, Y.; Lu, Y. Recent advances of using personal glucose meter as a biosensor readout for Non-glucose Targets. Curr. Anal. Chem., 2022, 18(6), 705-722.
[28]
Pundir, C.S.; Lata, S.; Batra, B.; Ahlawat, J. An improved amperometric d-amino acid biosensor based on immobilization of DAmino acid oxidase on nanocomposite of chitosan/Fe3O4NPs/cMWCNT/GC electrode. Curr. Anal. Chem, 2022, 18(7), 621-631.
[29]
Yin, S.; Wang, J.; Zhu, Y.; Song, L.; Wu, T.; Zhang, Z.; Zhang, X.; Li, F.; Chen, G. A novel uric acid biosensor based on regular prussian blue nanocrystal/upright graphene oxide array nanocomposites. Curr. Anal. Chem, 2022, 18(7), 809-817.
[30]
Baghbaderani, S.S.; Mokarian, P.; Moazzam, P. A review on electrochemical sensing of cancer biomarkers based on nanomaterial - modified systems. Curr. Anal. Chem., 2018, 18(1), 63-78.
[31]
Singh, D. Nanotechnology-based assays for the detection of cancer through sputum. Curr. Anal. Chem, 2023, 19(9), 633-641.
[32]
Ramesh, M.; Rajeshkumar, L.; Balaji, D.; Bhuvaneswari, V. Sustainable and renewable nano-biocomposites for sensors and actuators: A review on preparation and performance. Curr. Anal. Chem., 2023, 19(1), 38-69.
[http://dx.doi.org/10.2174/1573411018666220421112916]
[33]
Buledi, J.A.; Shah, Z.H.; Mallah, A.; Solangi, A.R. Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis. Curr. Anal. Chem., 2022, 18(1), 102-115.
[http://dx.doi.org/10.2174/1573411016999201006122740]
[34]
Chen, C.; Zhao, X.L.; Li, Z.H.; Zhu, Z.G.; Qian, S.H.; Flewitt, A. Current and emerging technology for continuous glucose monitoring. Sensors, 2017, 17(12), 182.
[http://dx.doi.org/10.3390/s17010182] [PMID: 28106820]
[35]
Lin, T.; Gal, A.; Mayzel, Y.; Horman, K.; Bahartan, K. Noninvasive glucose monitoring: A review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci., 2017, 6(5), 1-8.
[http://dx.doi.org/10.19080/CTBEB.2017.06.555696]
[36]
van Enter, B.J.; von Hauff, E. Challenges and perspectives in continuous glucose monitoring. Chem. Commun., 2018, 54(40), 5032-5045.
[http://dx.doi.org/10.1039/C8CC01678J] [PMID: 29687110]
[37]
Villena Gonzales, W.; Mobashsher, A.; Abbosh, A. The progress of glucose monitoring—a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors, 2019, 19(4), 800.
[http://dx.doi.org/10.3390/s19040800] [PMID: 30781431]
[38]
Kim, J.; Campbell, A.S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta, 2018, 177, 163-170.
[http://dx.doi.org/10.1016/j.talanta.2017.08.077] [PMID: 29108571]
[39]
Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors, 2010, 10(5), 4558-4576.
[http://dx.doi.org/10.3390/s100504558] [PMID: 22399892]
[40]
Althobaiti, M. In silico investigation of SNR and dermis sensitivity for optimum dual-channel near-infrared glucose sensor designs for different skin colors. Biosensors, 2022, 12(10), 805.
[http://dx.doi.org/10.3390/bios12100805] [PMID: 36290941]
[41]
Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; Kim, J. Wearable sensors: Modalities, challenges, and prospects. Lab. Chip, 2018, 18(2), 217-248.
[http://dx.doi.org/10.1039/C7LC00914C] [PMID: 29182185]
[42]
Welsh, A.W. Non-invasive glucose sensing technologies and products. Sensors, 2023, 23(22), 9130.
[43]
Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 2016, 45(23), 6597-6626.
[http://dx.doi.org/10.1039/C6CS00271D] [PMID: 27722328]
[44]
Ahmad Tarar, A.; Mohammad, U.; K Srivastava, S. Wearable skin sensors and their challenges: A review of transdermal, optical, and mechanical sensors. Biosensors, 2020, 10(6), 56.
[http://dx.doi.org/10.3390/bios10060056] [PMID: 32481598]
[45]
Li, D.C.; Wu, J.W.; Wu, P.; Lin, Y.; Sun, Y.J.; Zhu, R.; Yang, J.; Xu, K.X. Glucose measurement using surface plasmon resonance sensor with affinity based surface modification by borate polymer Conf.Solid-State Sensors, Actuators Microsystems, 2015, pp. 1569-1572.
[http://dx.doi.org/10.1109/TRANSDUCERS.2015.7181238]
[46]
Srivastava, S.K.; Verma, R.; Gupta, B.D. Surface plasmon resonance based fiber optic glucose biosensor. In: Third Asia Pacific Opt. Sensors Conf., SPIE, 2012, pp. 451-456.
[http://dx.doi.org/10.1117/12.915978]
[47]
Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 2014, 43(10), 3426-3452.
[http://dx.doi.org/10.1039/c3cs60479a] [PMID: 24549396]
[48]
Li, D.; Su, J.; Yang, J.; Yu, S.; Zhang, J.; Xu, K.; Yu, H. Optical surface plasmon resonance sensor modified by mutant glucose/galactose-binding protein for affinity detection of glucose molecules. Biomed. Opt. Express, 2017, 8(11), 5206-5217.
[http://dx.doi.org/10.1364/BOE.8.005206] [PMID: 29188114]
[49]
Huang, F.; Liu, J.; Yu, H.; Zhang, Z.; Li, D.; Xu, K. Determination of glucose in interstitial fluid by surface plasmon resonance biosensor; Proc.SPIE, 2008, pp. 68630.
[http://dx.doi.org/10.1117/12.760894]
[50]
Bielecki, M.; Eggert, H.; Norrild, J.C. A fluorescent glucose sensor binding covalently to all five hydroxy groups of α-D-glucofuranose. A reinvestigation. J. Chem. Soc., Perkin Trans. 2, 1999, 2(3), 449-456.
[http://dx.doi.org/10.1039/a808896i]
[51]
Kawanishi, T.; Romey, M.A.; Zhu, P.C.; Holody, M.Z.; Shinkai, S. A study of boronic acid based fluorescent glucose sensors. J. Fluoresc., 2004, 14(5), 499-512.
[http://dx.doi.org/10.1023/B:JOFL.0000039338.16715.48] [PMID: 15617258]
[52]
Pickup, J.C.; Hussain, F.; Evans, N.D.; Rolinski, O.J.; Birch, D.J.S. Fluorescence-based glucose sensors. Biosens. Bioelectron., 2005, 20(12), 2555-2565.
[http://dx.doi.org/10.1016/j.bios.2004.10.002] [PMID: 15854825]
[53]
Szmacinski, H.; Lakowicz, J.R. Fluorescence lifetime-based sensing and imaging. Sens. Actuators B Chem., 1995, 29(1-3), 16-24.
[http://dx.doi.org/10.1016/0925-4005(95)01658-9] [PMID: 33867678]
[54]
Barone, P.W.; Parker, R.S.; Strano, M.S. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: Design, fluorophore properties, advantages, and disadvantages. Anal. Chem., 2005, 77(23), 7556-7562.
[http://dx.doi.org/10.1021/ac0511997] [PMID: 16316162]
[55]
Barone, P.W.; Strano, M.S. Single walled carbon nanotubes as reporters for the optical detection of glucose. J. Diabetes Sci. Technol., 2009, 3(2), 242-252.
[http://dx.doi.org/10.1177/193229680900300204] [PMID: 20144355]
[56]
Klonoff, D.C. Overview of fluorescence glucose sensing: A technology with a bright future. J. Diabetes Sci. Technol., 2012, 6(6), 1242-1250.
[http://dx.doi.org/10.1177/193229681200600602] [PMID: 23294768]
[57]
Chen, L.; Hwang, E.; Zhang, J. Fluorescent nanobiosensors for sensing glucose. Sensors, 2018, 18(5), 1440.
[http://dx.doi.org/10.3390/s18051440] [PMID: 29734744]
[58]
Jiang, H.; Xia, C.; Lin, J.; Garalleh, H.A.L.; Alalawi, A.; Pugazhendhi, A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. Environ. Res., 2023, 221, 115250.
[http://dx.doi.org/10.1016/j.envres.2023.115250] [PMID: 36646201]
[59]
Kumawat, M.; Srinivas, S.; Singh, R.; Daima, H. Nanozymes for glucose sensing and diabetes management.Nanozymes Med; , 2023, pp. 51-80.
[http://dx.doi.org/10.1007/978-3-031-20581-1_3]
[60]
Yang, C.; Aslan, H.; Zhang, P.; Zhu, S.; Xiao, Y.; Chen, L.; Khan, N.; Boesen, T.; Wang, Y.; Liu, Y.; Wang, L.; Sun, Y.; Feng, Y.; Besenbacher, F.; Zhao, F.; Yu, M. Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nat. Commun., 2020, 11(1), 1379.
[http://dx.doi.org/10.1038/s41467-020-14866-0] [PMID: 32170166]
[61]
Zhou, J.; Chizhik, A.I.; Chu, S.; Jin, D. Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579(7797), 41-50.
[http://dx.doi.org/10.1038/s41586-020-2048-8] [PMID: 32132689]
[62]
Liu, J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci., 2020, 6(12), 2179-2195.
[http://dx.doi.org/10.1021/acscentsci.0c01306] [PMID: 33376780]
[63]
Gil, M.; Price, T.W.; Chelani, K.; Bouillard, J.G.; Calaminus, S.D.J. NIR-quantum dots in biomedical imaging and their future. iScience, 2021, 24(3), 102189.
[http://dx.doi.org/10.1016/j.isci.2021.102189]
[64]
Himmelstoß, S.F.; Hirsch, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl. Fluoresc., 2019, 7(2), 022002.
[http://dx.doi.org/10.1088/2050-6120/ab0bfa] [PMID: 30822759]
[65]
Ðorđević, L.; Arcudi, F.; D’Urso, A.; Cacioppo, M.; Micali, N.; Bürgi, T.; Purrello, R.; Prato, M. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun., 2018, 9(1), 3442.
[http://dx.doi.org/10.1038/s41467-018-05561-2] [PMID: 30143608]
[66]
Zhong, Q.; Chen, Y.; Qin, X.; Wang, Y.; Yuan, C.; Xu, Y. Colorimetric enzymatic determination of glucose based on etching of gold nanorods by iodine and using carbon quantum dots as peroxidase mimics. Mikrochim. Acta, 2019, 186(3), 161.
[http://dx.doi.org/10.1007/s00604-019-3291-2] [PMID: 30721366]
[67]
Jiang, S.; Chen, Y.; Peng, Y. Ginkgo leaf inspired fabrication of micro/nanostructures and demonstration of flexible enzyme-free glucose sensors. Sensors, 2022, 22(19), 7507.
[http://dx.doi.org/10.3390/s22197507] [PMID: 36236606]
[68]
Coté, G.L.; Fox, M.D.; Northrop, R.B. Noninvasive optical polarimetric glucose sensing using a true phase measurement technique. IEEE Trans. Biomed. Eng., 1992, 39(7), 752-756.
[http://dx.doi.org/10.1109/10.142650] [PMID: 1516942]
[69]
Cameron, B.D.; Baba, J.S.; Cote, G.L. Optical polarimetry applied to the development of a noninvasive in vivo glucose monitor. Opt. Diagnostics Biol. Fluids, 2000, 3923, 66-77.
[http://dx.doi.org/10.1117/12.387126]
[70]
Purvinis, G.; Cameron, B.D.; Altrogge, D.M. Noninvasive polarimetric-based glucose monitoring: An in vivo study. J. Diabetes Sci. Technol., 2011, 5(2), 380-387.
[http://dx.doi.org/10.1177/193229681100500227] [PMID: 21527109]
[71]
Malik, B.H.; Coté, G.L. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring. J. Biomed. Opt., 2010, 15(1), 017002.
[http://dx.doi.org/10.1117/1.3290819] [PMID: 20210476]
[72]
Bloom, N.; Van, R.J. Human resource management and productivity.In Handbook of labor economics. Handb. Labor Econ., 2011, 4, 1697-1767. Available from: [https://www.nber.org/system/files/working_ papers/w16019/w16019.pdf]
[73]
Gabbay, R.A.; Sivarajah, S. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diabetes Technol. Ther., 2008, 10(3), 188-193.
[http://dx.doi.org/10.1089/dia.2007.0277] [PMID: 18473692]
[74]
Larin, K.V.; Eledrisi, M.S.; Motamedi, M.; Esenaliev, R.O. Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects. Diabetes Care, 2002, 25(12), 2263-2267.
[http://dx.doi.org/10.2337/diacare.25.12.2263] [PMID: 12453971]
[75]
Esenaliev, R.O.; Larin, K.V.; Larina, I.V.; Motamedi, M. Noninvasive monitoring of glucose concentration with optical coherence tomography. Opt. Lett., 2001, 26(13), 992-994.
[http://dx.doi.org/10.1364/OL.26.000992] [PMID: 18040511]
[76]
Lan, Y.T.; Kuang, Y.P.; Zhou, L.P.; Wu, G.Y.; Gu, P.C.; Wei, H.J.; Chen, K. Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Phys. Lett., 2017, 14(3), 035603.
[http://dx.doi.org/10.1088/1612-202X/aa58c0]
[77]
Hina, A.; Saadeh, W. Noninvasive blood glucose monitoring systems using near-infrared technology—a review. Sensors, 2022, 22(13), 4855.
[http://dx.doi.org/10.3390/s22134855] [PMID: 35808352]
[78]
Haque, C.A.; Hossain, S.; Kwon, T.H.; Kim, K.D. Noninvasive in vivo estimation of blood-glucose concentration by monte carlo simulation. Sensors, 2021, 21(14), 4918.
[http://dx.doi.org/10.3390/s21144918] [PMID: 34300657]
[79]
Islam, T.T.; Ahmed, M.S.; Hassanuzzaman, M.; Bin Amir, S.A.; Rahman, T. Blood glucose level regression for smartphone ppg signals using machine learning. Appl. Sci., 2021, 11(2), 618.
[http://dx.doi.org/10.3390/app11020618]
[80]
Susana, E.; Ramli, K.; Murfi, H.; Apriantoro, N.H. Non-invasive classification of blood glucose level for early detection diabetes based on photoplethysmography signal. Information, 2022, 13(2), 59.
[http://dx.doi.org/10.3390/info13020059]
[81]
Ghamari, M.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron., 2018, 4(4), 195-202.
[http://dx.doi.org/10.15406/ijbsbe.2018.04.00125] [PMID: 30906922]
[82]
Hammour, G.; Mandic, D.P. An In-Ear PPG-Based Blood Glucose Monitor: A Proof-of-Concept Study. Sensors (Basel), 2023, 23(6), 3319.
[http://dx.doi.org/10.3390/s23063319] [PMID: 36992029]
[83]
Yen, C.-T.; Chen, U.-H.; Wang, G.-C.; Chen, Z.-X. Non-invasive blood glucose estimation system based on a neural network with dual-wavelength photoplethysmography and bioelectrical impedance measuring. Sensors, 2022, 22(12), 4452.
[http://dx.doi.org/10.3390/s22124452]
[84]
Wei, Y.; Ling, B.W-K.; Liu, Q.; Liu, J. Multi-models with averaging in feature domain for non-invasive blood glucose estimation in: 2022 IEEE Int. Symp. Prod. Compliance Eng. Asia, 2022, pp. 1-6.
[http://dx.doi.org/10.1109/ISPCE-ASIA57917.2022.9971019]
[85]
Agelet, L.E.; Hurburgh, C.R., Jr. A tutorial on near infrared spectroscopy and its calibration. Crit. Rev. Anal. Chem., 2010, 40(4), 246-260.
[http://dx.doi.org/10.1080/10408347.2010.515468]
[86]
Schaare, P.N.; Fraser, D.G. Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis). Postharvest Biol. Technol., 2000, 20(2), 175-184.
[http://dx.doi.org/10.1016/S0925-5214(00)00130-7]
[87]
Oliver, N.S.; Toumazou, C.; Cass, A.E.G.; Johnston, D.G. Glucose sensors: A review of current and emerging technology. Diabet. Med., 2009, 26(3), 197-210.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02642.x] [PMID: 19317813]
[88]
Yum, K.; McNicholas, T.P.; Mu, B.; Strano, M.S. Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. J. Diabetes Sci. Technol., 2013, 7(1), 72-87.
[http://dx.doi.org/10.1177/193229681300700109] [PMID: 23439162]
[89]
Ben Mohammadi, L.; Klotzbuecher, T.; Sigloch, S.; Welzel, K.; Göddel, M.; Pieber, T.R.; Schaupp, L. In vivo evaluation of a chip based near infrared sensor for continuous glucose monitoring. Biosens. Bioelectron., 2014, 53, 99-104.
[http://dx.doi.org/10.1016/j.bios.2013.09.043] [PMID: 24125758]
[90]
Yadav, J.; Rani, A.; Singh, V.; Murari, B.M. Near-infrared LED based non-invasive blood glucose sensor 2014 Int. Conf. Signal Process. Integr. Networks, 2014, pp. 591-594.
[http://dx.doi.org/10.1109/SPIN.2014.6777023]
[91]
Ben Mohammadi, L.; Klotzbuecher, T.; Sigloch, S.; Welzel, K.; Goeddel, M.; Pieber, T.R.; Schaupp, L. Clinical performance of a low cost near infrared sensor for continuous glucose monitoring applied with subcutaneous microdialysis. Biomed. Microdevices, 2015, 17(4), 73.
[http://dx.doi.org/10.1007/s10544-015-9983-4] [PMID: 26141039]
[92]
Vezouviou, E.; Lowe, C.R. A near infrared holographic glucose sensor. Biosens. Bioelectron., 2015, 68, 371-381.
[http://dx.doi.org/10.1016/j.bios.2015.01.014] [PMID: 25613815]
[93]
Lai, J.-L.; Huang, S.-Y.; Lin, R.-S.; Tsai, S.-C. Design a noninvasive near-infrared LED blood glucose sensor. 2016 International Conference on Applied System Innovation (ICASI), 2016, pp. 1-4.
[http://dx.doi.org/10.1109/ICASI.2016.7539877]
[94]
Khalil, O.S. Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the new millennium. Diabetes Technol. Ther., 2004, 6(5), 660-697.
[http://dx.doi.org/10.1089/dia.2004.6.660] [PMID: 15628820]
[95]
Liakat, S.; Bors, K.A.; Xu, L.; Woods, C.M.; Doyle, J.; Gmachl, C.F. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed. Opt. Express, 2014, 5(7), 2397-2404.
[http://dx.doi.org/10.1364/BOE.5.002397] [PMID: 25071973]
[96]
Tura, A.; Maran, A.; Pacini, G. Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract., 2007, 77(1), 16-40.
[http://dx.doi.org/10.1016/j.diabres.2006.10.027] [PMID: 17141349]
[97]
Yu, S.; Li, D.; Chong, H.; Sun, C.; Yu, H.; Xu, K. In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor. Biomed. Opt. Express, 2014, 5(1), 275-286.
[http://dx.doi.org/10.1364/BOE.5.000275] [PMID: 24466493]
[98]
Herrmann, C.; Vrancic, C.; Fomichova, A.; Gretz, N.; Hoecker, S.; Pucci, A.; Petrich, W.; In vitro characteristics of a mid-infrared continuous glucose sensor; Proc. SPIE, 2010, pp. 75600.
[http://dx.doi.org/10.1117/12.841847]
[99]
Kawashima, N.; Adachi, S.; Kitazaki, T.; Kang, H.; Nishiyama, A.; Wada, K.; Ishimaru, I. Ultra-miniature (diameter: 6 mm, thickness: 5 mm) low-cost (price: 1,000 EUR) point-one-shot mid-infrared Fourier spectroscopic imager for ear clip type non-invasive blood glucose sensors.In: Proc. SPIE; , 2019, p. 110730.
[http://dx.doi.org/10.1117/12.2526371]
[100]
Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 185, 317-335.
[http://dx.doi.org/10.1016/j.saa.2017.05.045] [PMID: 28599236]
[101]
Coates, J. Vibrational spectroscopy: Instrumentation for infrared and Raman spectroscopy. Appl. Spectrosc. Rev., 1998, 33(4), 267-425.
[http://dx.doi.org/10.1080/05704929808002060]
[102]
Xu, Y.; Ford, J.F.; Mann, C.K.; Vickers, T.J.; Brackett, J.M.; Cousineau, K.L.; Robey, W.G. Raman measurement of glucose in bioreactor materials.Biomed. Opt, 1997.
[103]
Chaiken, J.; Deng, B.; Bussjager, R.J.; Shaheen, G.; Rice, D.; Stehlik, D.; Fayos, J. Instrument for near infrared emission spectroscopic probing of human fingertips in vivo. Rev. Sci. Instrum., 2010, 81(3), 034301.
[http://dx.doi.org/10.1063/1.3314290] [PMID: 20370200]
[104]
Lyandres, O.; Yuen, J.M.; Shah, N.C.; VanDuyne, R.P.; Walsh, J.T., Jr; Glucksberg, M.R. Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes Technol. Ther., 2008, 10(4), 257-265.
[http://dx.doi.org/10.1089/dia.2007.0288] [PMID: 18715199]
[105]
Bahrampour, A.R.; Jahangiri, N.; Taraz, M. Development of a noninvasive micron sized blood glucose sensor based on microsphere stimulated raman spectroscopy. Sensors and Transducers., 2012, 147, 129-142.
[106]
Yang, X.; Zhang, A.Y.; Wheeler, D.A.; Bond, T.C.; Gu, C.; Li, Y. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber. Anal. Bioanal. Chem., 2012, 402(2), 687-691.
[http://dx.doi.org/10.1007/s00216-011-5575-1] [PMID: 22120042]
[107]
Pandey, R.; Paidi, S.K.; Valdez, T.A.; Zhang, C.; Spegazzini, N.; Dasari, R.R.; Barman, I. Noninvasive monitoring of blood glucose with raman spectroscopy. Acc. Chem. Res., 2017, 50(2), 264-272.
[http://dx.doi.org/10.1021/acs.accounts.6b00472] [PMID: 28071894]
[108]
Alarousu, E.; Hast, J.T.; Kinnunen, M.T.; Kirillin, M.Y.; Myllyla, R.A.; Plucinski, J.; Popov, A.P.; Priezzhev, A.V.; Prykari, T.; Saarela, J. Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques.In: Saratov Fall Meet. 2003 Opt. Technol. Biophys. Med. V; SPIE, 2004, pp. 33-41.
[http://dx.doi.org/10.1117/12.578321]
[109]
Withayachumnankul, W.; Naftaly, M. Fundamentals of measurement in terahertz time-domain spectroscopy. J. Infrared Millim. Terahertz Waves, 2014, 35(8), 610-637.
[http://dx.doi.org/10.1007/s10762-013-0042-z]
[110]
Cherkasova, O.P.; Nazarov, M.M.; Shkurinov, A.P.; Fedorov, V.I. Terahertz spectroscopy of biological molecules. Radiophys. Quantum Electron., 2009, 52, 518-523.
[http://dx.doi.org/10.1007/s11141-009-9152-9]
[111]
Cherkasova, O.; Nazarov, M.; Shkurinov, A. Noninvasive blood glucose monitoring in the terahertz frequency range. Opt. Quantum Electron., 2016, 48(3), 217.
[http://dx.doi.org/10.1007/s11082-016-0490-5]
[112]
Gusev, S.I.; Guseva, V.A.; Simonova, A.A.; Demchenko, P.S.; Sedykh, E.A.; Cherkasova, O.P.; Khodzitsky, M.K. Application of terahertz pulsed spectroscopy for the development of non-invasive glucose measuring method 2017 Prog. Electromagn. Res. Symp., 2017, pp. 3229-3232.
[http://dx.doi.org/10.1109/PIERS.2017.8262313]
[113]
Torii, T.; Chiba, H.; Tanabe, T.; Oyama, Y. Measurements of glucose concentration in aqueous solutions using reflected THz radiation for applications to a novel sub-THz radiation non-invasive blood sugar measurement method. Digit. Health, 2017, 3.
[http://dx.doi.org/10.1177/2055207617729534] [PMID: 29942612]
[114]
Klonoff, D.C. Noninvasive blood glucose monitoring. Diabetes Care, 1997, 20(3), 433-437.
[http://dx.doi.org/10.2337/diacare.20.3.433] [PMID: 9051401]
[115]
Malchoff, C.D.; Shoukri, K.; Landau, J.I.; Buchert, J.M. A novel noninvasive blood glucose monitor. Diabetes Care, 2002, 25(12), 2268-2275.
[http://dx.doi.org/10.2337/diacare.25.12.2268] [PMID: 12453972]
[116]
Sundararajan, J.; Sandeep, M.; Palanisamy, V. Quantifying blood glucose in the non-invasive approach. Int. J. Med. Eng. Inform., 2010, 2(3), 219-246.
[http://dx.doi.org/10.1504/IJMEI.2010.035217]
[117]
Buchert, J.M. Thermal emission spectroscopy as a tool for noninvasive wood glucose measurements. Proc. SPIE, 2004, 5566, 100-111.
[http://dx.doi.org/10.1117/12.577219]
[118]
Kuwa, K. [Noninvasive blood glucose monitoring: New technology using metabolic heat conformation method. Rinsho Byori, 2006, 54(5), 519-525.
[PMID: 16789424]
[119]
Tang, F.; Wang, X.; Wang, D.; Li, J. Non-invasive glucose measurement by use of metabolic heat conformation method. Sensors,, 2008, 8(5), 3335-3344.
[http://dx.doi.org/10.3390/s8053335] [PMID: 27879881]
[120]
Cho, O.K.; Kim, Y.O.; Mitsumaki, H.; Kuwa, K. Noninvasive measurement of glucose by metabolic heat conformation method. Clin. Chem., 2004, 50(10), 1894-1898.
[http://dx.doi.org/10.1373/clinchem.2004.036954] [PMID: 15308597]
[121]
Kit, Y.H.S.; Mohd Kassim, N. Non-invasive blood glucose measurement using temperature-based approach. J. Teknol., 2013, 64(3), 105-110.
[http://dx.doi.org/10.11113/jt.v64.2087]
[122]
Pleitez, M.A.; Lieblein, T.; Bauer, A.; Hertzberg, O.; von Lilienfeld-Toal, H.; Mäntele, W. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid. Rev. Sci. Instrum., 2013, 84(8), 84901.
[http://dx.doi.org/10.1063/1.4816723] [PMID: 24007090]
[123]
Kottmann, J.; Rey, J.; Sigrist, M. Mid-infrared photoacoustic detection of glucose in human skin: Towards non-invasive diagnostics. Sensors, 2016, 16(10), 1663.
[http://dx.doi.org/10.3390/s16101663] [PMID: 27735878]
[124]
Sim, J.Y.; Ahn, C.G.; Jeong, E.J.; Kim, B.K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep., 2018, 8(1), 1059.
[http://dx.doi.org/10.1038/s41598-018-19340-y] [PMID: 29348411]
[125]
Tanaka, Y.; Tajima, T.; Seyama, M.; Waki, K. Differential continuous wave photoacoustic spectroscopy for non-invasive glucose monitoring. IEEE Sens. J., 2020, 20(8), 4453-4458.
[http://dx.doi.org/10.1109/JSEN.2019.2962251]
[126]
Nakamura, M.; Tajima, T.; Ajito, K.; Koizumi, H. Selectivityenhanced glucose measurement in multicomponent aqueous solution by broadband dielectric spectroscopy. 2016 IEEE MTT-S Int. Microw. Symp., 2016, pp. 1-3.
[http://dx.doi.org/10.1109/MWSYM.2016.7540257]
[127]
Shaker, G.; Smith, K.; Omer, A.E.; Liu, S.; Csech, C.; Wadhwa, U.; Safavi-Naeini, S.; Hughson, R. Non-invasive monitoring of glucose level changes utilizing a mm-wave radar system. Int. J. Mobile Hum. Comput. Interact., 2018, 10(3), 10-29.
[http://dx.doi.org/10.4018/IJMHCI.2018070102]
[128]
Bahar, A.A.M.; Zakaria, Z.; Isa, A.A.M.; Alahnomi, R.A.; Abd Rahman, N. Complex permittivity measurement based on planar microfluidic resonator sensor In: 2018 18th Int. Symp. Antenna Technol. Appl. Electromagn., IEEE, 2018, pp. 1-5.
[http://dx.doi.org/10.1109/ANTEM.2018.8572934]
[129]
Kim, J.; Babajanyan, A.; Hovsepyan, A.; Lee, K.; Friedman, B. Microwave dielectric resonator biosensor for aqueous glucose solution. Rev. Sci. Instrum., 2008, 79(8), 086107.
[http://dx.doi.org/10.1063/1.2968115] [PMID: 19044388]
[130]
Choi, H.; Naylon, J.; Luzio, S.; Beutler, J.; Birchall, J.; Martin, C.; Porch, A. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Trans. Microw. Theory Tech., 2015, 63(10), 3016-3025.
[http://dx.doi.org/10.1109/TMTT.2015.2472019] [PMID: 26568639]
[131]
Zhang, R.; Qu, Z.; Jin, H.; Liu, S.; Luo, Y.; Zheng, Y. Noninvasive glucose measurement by microwave biosensor with accuracy enhancement 2018 IEEE Int. Symp. Circuits Syst, 2018, pp. 1-4.
[http://dx.doi.org/10.1109/ISCAS.2018.8351711]
[132]
Siegel, P.H.; Tang, A.; Virbila, G.; Kim, Y.; Chang, M.C.F.; Pikov, V. Compact non-invasive millimeter-wave glucose sensor Conf.Infrared, Millimeter, Terahertz Waves; , 2015, pp. 1-3.
[133]
Saha, S.; Cano-Garcia, H.; Sotiriou, I.; Lipscombe, O.; Gouzouasis, I.; Koutsoupidou, M.; Palikaras, G.; Mackenzie, R.; Reeve, T.; Kosmas, P.; Kallos, E. A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas. Sci. Rep., 2017, 7(1), 6855.
[http://dx.doi.org/10.1038/s41598-017-06926-1] [PMID: 28761121]
[134]
Hofmann, M.; Fersch, T.; Weigel, R.; Fischer, G.; Kissinger, D. A novel approach to non-invasive blood glucose measurement based on RF transmission in: 2018 18th Int. Symp. Antenna Technol. Appl. Electromagn. IEEE, 2011, pp. 39-42.
[http://dx.doi.org/10.1109/MeMeA.2011.5966704]
[135]
Melikyan, H.; Danielyan, E.; Kim, S.; Kim, J.; Babajanyan, A.; Lee, J.; Friedman, B.; Lee, K. Non-invasive in vitro sensing of d-glucose in pig blood. Med. Eng. Phys., 2012, 34(3), 299-304.
[http://dx.doi.org/10.1016/j.medengphy.2011.07.020] [PMID: 21831689]
[136]
Turgul, V.; Kale, I. A novel pressure sensing circuit for noninvasive RF/microwave blood glucose sensors., 2016, pp. 1-4.
[http://dx.doi.org/10.1109/MMS.2016.7803818]
[137]
Ocvirk, G.; Buck, H.; DuVall, S. Electrochemical glucose biosensors for diabetes care.In: Trends in Bioelectroanalysis; , 2016, pp. 1-101.
[http://dx.doi.org/10.1007/11663_2016_3]
[138]
Zhang, Y.; Wang, Y.; Jia, J.; Wang, J. Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens. Actuators B Chem., 2012, 171-172, 580-587.
[http://dx.doi.org/10.1016/j.snb.2012.05.037]
[139]
Harman-Boehm, I.; Gal, A.; Raykhman, A.M.; Zahn, J.D.; Naidis, E.; Mayzel, Y. Noninvasive glucose monitoring: A novel approach. J. Diabetes Sci. Technol., 2009, 3(2), 253-260.
[http://dx.doi.org/10.1177/193229680900300205] [PMID: 20144356]
[140]
Mitragotri, S.; Kost, J. Low-frequency sonophoresis: A noninvasive method of drug delivery and diagnostics. Biotechnol. Prog., 2000, 16(3), 488-492.
[http://dx.doi.org/10.1021/bp000024+] [PMID: 10835253]
[141]
Ogura, M.; Paliwal, S.; Mitragotri, S. Low-frequency sonophoresis: Current status and future prospects. Adv. Drug Deliv. Rev., 2008, 60(10), 1218-1223.
[http://dx.doi.org/10.1016/j.addr.2008.03.006] [PMID: 18450318]
[142]
Segman, Y.J. Device and method for noninvasive glucose assessment. J. Diabetes Sci. Technol., 2018, 12(6), 1159-1168.
[http://dx.doi.org/10.1177/1932296818763457] [PMID: 29575926]
[143]
Pfützner, A.; Strobl, S.; Demircik, F.; Redert, L.; Pfützner, J.; Pfützner, A.H.; Lier, A. Evaluation of a new noninvasive glucose monitoring device by means of standardized meal experiments. J. Diabetes Sci. Technol., 2018, 12(6), 1178-1183.
[http://dx.doi.org/10.1177/1932296818758769] [PMID: 29451016]
[144]
Amir, O.; Weinstein, D.; Zilberman, S.; Less, M.; Perl-Treves, D.; Primack, H.; Weinstein, A.; Gabis, E.; Fikhte, B.; Karasik, A. Continuous noninvasive glucose monitoring technology based on “occlusion spectroscopy”. J. Diabetes Sci. Technol., 2007, 1(4), 463-469.
[http://dx.doi.org/10.1177/193229680700100403] [PMID: 19885108]
[145]
Harman-Boehm, I.; Gal, A.; Raykhman, A.M.; Naidis, E.; Mayzel, Y. Noninvasive glucose monitoring: Increasing accuracy by combination of multi-technology and multi-sensors. J. Diabetes Sci. Technol., 2010, 4(3), 583-595.
[http://dx.doi.org/10.1177/193229681000400312] [PMID: 20513324]
[146]
Saur, N.M.; England, M.R.; Menzie, W.; Melanson, A.M.; Trieu, M.Q.; Berlin, J.; Hurley, J.; Krystyniak, K.; Kongable, G.L.; Nasraway, S.A., Jr. Accuracy of a novel noninvasive transdermal continuous glucose monitor in critically ill patients. J. Diabetes Sci. Technol., 2014, 8(5), 945-950.
[http://dx.doi.org/10.1177/1932296814536138] [PMID: 24876448]
[147]
Hadar, E.; Chen, R.; Toledano, Y.; Tenenbaum-Gavish, K.; Atzmon, Y.; Hod, M. Noninvasive, continuous, real-time glucose measurements compared to reference laboratory venous plasma glucose values. J. Matern. Fetal Neonatal Med., 2019, 32(20), 3393-3400.
[http://dx.doi.org/10.1080/14767058.2018.1463987] [PMID: 29635953]
[148]
Jafri, R.Z.; Balliro, C.A.; El-Khatib, F.; Maheno, M.M.; Hillard, M.A.; O’Donovan, A.; Selagamsetty, R.; Zheng, H.; Damiano, E.R.; Russell, S.J. A three-way accuracy comparison of the dexcom g5, abbott freestyle libre pro, and senseonics eversense continuous glucose monitoring devices in a home-use study of subjects with type 1 diabetes. Diabetes Technol. Ther., 2020, 22(11), 846-852.
[http://dx.doi.org/10.1089/dia.2019.0449] [PMID: 32453604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy