Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

HPLC-MS/MS Method for the Quantitative Determination of Metformin in Rat Plasma and Its Application to Comparative Bioavailability Assessment

Author(s): Di-Di Zhang, Young-Heun Jung, Mi-Ji Seol, Siyu Zhou, Dinesh Chaudhary, Jee-Heon Jeong and Ju-Hyun Kim*

Volume 20, Issue 4, 2024

Published on: 15 February, 2024

Page: [255 - 263] Pages: 9

DOI: 10.2174/0115734110288849240116045045

Price: $65

Abstract

Background: Metformin is a biguanide derivative utilized as a first-line treatment for type 2 diabetes for people over 60 years. However, it faces certain limitations due to its incomplete absorption, resulting in a 50-60% bioavailability. In addition to its blood glucose-lowering effect, the antiproliferative effect of metformin has been demonstrated in vitro. Therefore, it is necessary to consider alternative administration routes that can enhance the bioavailability of metformin, expanding its clinical use beyond its role as an antidiabetic agent.

Objective: The aim of the study was to develop a reliable bioanalytical method for the quantitation of metformin in male Sprague-Dawley rat plasma and explore the promising alternative administration route for metformin use.

Methods: A robust, high-performance liquid chromatography-tandem mass spectrometry method for the quantification of metformin in rat plasma was developed and validated according to the latest regulatory guidance for bioanalysis.

Results: Based on the area under the curves obtained from the rat pharmacokinetic study, subcutaneous injection increased the systemic exposure of metformin by 1.79-fold compared to oral administration in rats.

Conclusion: Subcutaneous administration of metformin enhances its bioavailability compared to oral administration, leading to increased antidiabetic effects and potential antitumor activity.

Graphical Abstract

[1]
Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes, 2016, 7(17), 354-395.
[http://dx.doi.org/10.4239/wjd.v7.i17.354] [PMID: 27660695]
[2]
Zimmet, P.Z.; Magliano, D.J.; Herman, W.H.; Shaw, J.E. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol., 2014, 2(1), 56-64.
[http://dx.doi.org/10.1016/S2213-8587(13)70112-8] [PMID: 24622669]
[3]
9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2019. Diabetes Care, 2019, 42(S1), S90-S102.
[http://dx.doi.org/10.2337/dc19-S009] [PMID: 30559235]
[4]
Flory, J.; Lipska, K. Metformin in 2019. JAMA, 2019, 321(19), 1926-1927.
[http://dx.doi.org/10.1001/jama.2019.3805] [PMID: 31009043]
[5]
Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes. Ann. Intern. Med., 2016, 164(11), 740-751.
[http://dx.doi.org/10.7326/M15-2650] [PMID: 27088241]
[6]
Shurrab, N.T.; Arafa, E.S.A. Metformin: A review of its therapeutic efficacy and adverse effects. Obes. Med., 2020, 17, 100186.
[http://dx.doi.org/10.1016/j.obmed.2020.100186]
[7]
Markowicz-Piasecka, M.; Huttunen, K.M.; Mateusiak, L.; Mikiciuk-Olasik, E.; Sikora, J. Is metformin a perfect drug? updates in pharmacokinetics and pharmacodynamics. Curr. Pharm. Des., 2017, 23(17), 2532-2550.
[PMID: 27908266]
[8]
Choi, Y.H.; Kim, S.G.; Lee, M.G. Dose-independent pharmacokinetics of metformin in rats: Hepatic and gastrointestinal first-pass effects. J. Pharm. Sci., 2006, 95(11), 2543-2552.
[http://dx.doi.org/10.1002/jps.20744] [PMID: 16937336]
[9]
Szymczak-Pajor, I.; Wenclewska, S.; Ś liwińska, A. Metabolic action of metformin. Pharmaceuticals, 2022, 15(7), 810.
[http://dx.doi.org/10.3390/ph15070810] [PMID: 35890109]
[10]
Martinez, M.N.; Amidon, G.L. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J. Clin. Pharmacol., 2002, 42(6), 620-643.
[http://dx.doi.org/10.1177/00970002042006005] [PMID: 12043951]
[11]
Liang, X.; Giacomini, K.M. Transporters involved in metformin pharmacokinetics and treatment response. J. Pharm. Sci., 2017, 106(9), 2245-2250.
[http://dx.doi.org/10.1016/j.xphs.2017.04.078] [PMID: 28495567]
[12]
Jeong, Y.S.; Jusko, W.J. Meta-assessment of metformin absorption and disposition pharmacokinetics in nine species. Pharmaceuticals, 2021, 14(6), 545.
[http://dx.doi.org/10.3390/ph14060545] [PMID: 34200427]
[13]
Masoomzadeh, S.; Maghsoodi, M. Different ways to enhance the permeability, lipophilicity and bioavailability of antidiabetic drug, Metformin. Trends Pharmacol. Sci., 2022, 8(2), 69-74.
[14]
McLennan, D.N.; Porter, C.J.H.; Charman, S.A. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov. Today. Technol., 2005, 2(1), 89-96.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.006] [PMID: 24981760]
[15]
Meesters, R.J.W.; Voswinkel, S. Bioanalytical method development and validation: From the USFDA 2001 to the USFDA 2018 guidance for industry. J. Appl. Bioanal., 2018, 4(3), 67-73.
[http://dx.doi.org/10.17145/jab.18.010]
[16]
Yüksel, B. Quantitative GC-FID analysis of heroin for seized drugs. ACAM, 2020, 11(1), 38-42.
[http://dx.doi.org/10.4328/ACAM.6139]
[17]
Yüksel, B.; Öncü, T.; Şen, N. Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology. Toxicol. Anal. Clin., 2023, 35(1), 33-43.
[http://dx.doi.org/10.1016/j.toxac.2022.08.004]
[18]
Yuksel, B.; Sen, N. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples. Marmara Pharm. J., 2018, 22(4), 511-518.
[http://dx.doi.org/10.12991/jrp.2018.92]
[19]
Jung, Y.H.; Heo, D.G.; Lee, D.C.; Kwon, Y.M.; Seol, M.J.; Zhang, D.; Jeong, T.C.; Kim, J.H. Effect of concomitant oral administration of ethanol on the pharmacokinetics of nicardipine in rats. Biomed. Chromatogr., 2022, 36(9), e5425.
[http://dx.doi.org/10.1002/bmc.5425] [PMID: 35696664]
[20]
Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed., 2010, 99(3), 306-314.
[http://dx.doi.org/10.1016/j.cmpb.2010.01.007] [PMID: 20176408]
[21]
Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways. Pharmacogenet. Genomics, 2012, 22(11), 820-827.
[http://dx.doi.org/10.1097/FPC.0b013e3283559b22] [PMID: 22722338]
[22]
Faber, K.N.; Müller, M.; Jansen, P.L.M. Drug transport proteins in the liver. Adv. Drug Deliv. Rev., 2003, 55(1), 107-124.
[http://dx.doi.org/10.1016/S0169-409X(02)00173-4] [PMID: 12535576]
[23]
König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Pharmacol. Rev., 2013, 65(3), 944-966.
[http://dx.doi.org/10.1124/pr.113.007518] [PMID: 23686349]
[24]
Chu, X.; Bleasby, K.; Evers, R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin. Drug Metab. Toxicol., 2013, 9(3), 237-252.
[http://dx.doi.org/10.1517/17425255.2013.741589] [PMID: 23256482]
[25]
Chen, Y.; Shan, X.; Luo, C.; He, Z. Emerging nanoparticulate drug delivery systems of metformin. J. Pharm. Investig., 2020, 50(3), 219-230.
[http://dx.doi.org/10.1007/s40005-020-00480-1]
[26]
Shariatinia, Z.; Zahraee, Z. Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J. Colloid Interface Sci., 2017, 501, 60-76.
[http://dx.doi.org/10.1016/j.jcis.2017.04.036] [PMID: 28433886]
[27]
Cetin, M.; Sahin, S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv., 2016, 23(8), 2796-2805.
[http://dx.doi.org/10.3109/10717544.2015.1089957] [PMID: 26394019]
[28]
Abbasi, M.; Fan, Z.; Dawson, J.A.; Wang, S. Transdermal delivery of metformin using dissolving microneedles and iontophoresis patches for browning subcutaneous adipose tissue. Pharmaceutics, 2022, 14(4), 879.
[http://dx.doi.org/10.3390/pharmaceutics14040879] [PMID: 35456713]
[29]
Baldassari, S.; Solari, A.; Zuccari, G.; Drava, G.; Pastorino, S.; Fucile, C.; Marini, V.; Daga, A.; Pattarozzi, A.; Ratto, A.; Ferrari, A.; Mattioli, F.; Barbieri, F.; Caviglioli, G.; Florio, T. Development of an injectable slow-release metformin formulation and evaluation of its potential antitumor effects. Sci. Rep., 2018, 8(1), 3929.
[http://dx.doi.org/10.1038/s41598-018-22054-w] [PMID: 29500390]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy