Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Natural Products in Liver Fibrosis Management: A Five-year Review

Author(s): Tao Wang*, Zhuo Lu, Gui-Feng Sun, Kai-Yi He, Zhi-Ping Chen, Xin-Hui Qu and Xiao-Jian Han*

Volume 31, Issue 31, 2024

Published on: 14 February, 2024

Page: [5061 - 5082] Pages: 22

DOI: 10.2174/0109298673288458240203064112

Price: $65

Abstract

Liver fibrosis, characterized by the overproduction of extracellular matrix proteins within liver tissue, poses a rising global health concern. However, no approved antifibrotic drugs are currently available, highlighting the critical need for understanding the molecular mechanisms of liver fibrosis. This knowledge could not only aid in developing therapies but also enable early intervention, enhance disease prediction, and improve our understanding of the interaction between various underlying conditions and the liver. Notably, natural products used in traditional medicine systems worldwide and demonstrating diverse biochemical and pharmacological activities are increasingly recognized for their potential in treating liver fibrosis. This review aims to comprehensively understand liver fibrosis, emphasizing the molecular mechanisms and advancements in exploring natural products' antifibrotic potential over the past five years. It also acknowledges the challenges in their development and seeks to underscore their potency in enhancing patient prognosis and reducing the global burden of liver disease.

[1]
Berumen, J.; Baglieri, J.; Kisseleva, T.; Mekeel, K. Liver fibrosis: Pathophysiology and clinical implications. WIREs Mech. Dis., 2021, 13(1), e1499.
[http://dx.doi.org/10.1002/wsbm.1499] [PMID: 32713091]
[2]
Kim, D.; Li, A.A.; Perumpail, B.J.; Gadiparthi, C.; Kim, W.; Cholankeril, G.; Glenn, J.S.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Changing trends in etiology-based and ethnicity-based annual mortality rates of cirrhosis and hepatocellular carcinoma in the United States. Hepatology, 2019, 69(3), 1064-1074.
[http://dx.doi.org/10.1002/hep.30161] [PMID: 30014489]
[3]
Ciardullo, S.; Monti, T.; Perseghin, G. High prevalence of advanced liver fibrosis assessed by transient elastography among U.S. adults with type 2 diabetes. Diabetes Care, 2021, 44(2), 519-525.
[http://dx.doi.org/10.2337/dc20-1778] [PMID: 33303638]
[4]
Seki, E.; Brenner, D.A. Recent advancement of molecular mechanisms of liver fibrosis. J. Hepatobiliary Pancreat. Sci., 2015, 22(7), 512-518.
[http://dx.doi.org/10.1002/jhbp.245] [PMID: 25869468]
[5]
Demir, Y; Ceylan, H; Turkes, C; Beydemir, S Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[6]
Yamali, C; Gul, HI; Cakir, T; Demir, Y; Gulcin, I Aminoalkylated phenolic chalcones: Investigation of biological effects on acetylcholinesterase and carbonic anhydrase I and II as potential lead enzyme inhibitors. Lett. Drug Design Discov., 2020, 17(10), 1283-1292.
[7]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[8]
Zhang, H.W.; Lv, C.; Zhang, L.J.; Guo, X.; Shen, Y.W.; Nagle, D.G.; Zhou, Y.D.; Liu, S.H.; Zhang, W.D.; Luan, X. Application of omics- and multi-omics-based techniques for natural product target discovery. Biomed. Pharmacother., 2021, 141, 111833.
[http://dx.doi.org/10.1016/j.biopha.2021.111833] [PMID: 34175822]
[9]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[10]
Palabıyık, E.; Sulumer, A.N.; Uguz, H.; Avcı, B.; Askın, S.; Askın, H.; Demir, Y. Assessment of hypolipidemic and anti-inflammatory properties of walnut ( Juglans regia ) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-INDUCED hyperlipidemia in rat kidney, liver, and heart. J. Mol. Recognit., 2023, 36(3), e3004.
[http://dx.doi.org/10.1002/jmr.3004] [PMID: 36537558]
[11]
Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280.
[http://dx.doi.org/10.1002/cbdv.202200280] [PMID: 35796520]
[12]
Türkeş, C; Demir, Y; Beydemir, Ş. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as ar and sdh inhibitors. ChemistrySelect, 2022, 7(48), e202204050.
[13]
Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione-dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656.
[http://dx.doi.org/10.1002/cbdv.202200656] [PMID: 36538730]
[14]
Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987.
[http://dx.doi.org/10.1002/jmr.2987] [PMID: 36326002]
[15]
Malarkey, D.E.; Johnson, K.; Ryan, L.; Boorman, G.; Maronpot, R.R. New insights into functional aspects of liver morphology. Toxicol. Pathol., 2005, 33(1), 27-34.
[http://dx.doi.org/10.1080/01926230590881826] [PMID: 15805053]
[16]
Taslimi, P.; Kandemir, F.M.; Demir, Y.; İleritürk, M.; Temel, Y.; Caglayan, C.; Gulçin, İ. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J. Biochem. Mol. Toxicol., 2019, 33(6), e22313.
[http://dx.doi.org/10.1002/jbt.22313] [PMID: 30801880]
[17]
Çağlayan, C.; Taslimi, P.; Demir, Y.; Küçükler, S.; Kandemir, F.M.; Gulçin, İ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J. Biochem. Mol. Toxicol., 2019, 33(10), e22381.
[http://dx.doi.org/10.1002/jbt.22381] [PMID: 31454121]
[18]
Bouwens, L.; De Bleser, P.; Vanderkerken, K.; Geerts, B.; Wisse, E. Liver cell heterogeneity: Functions of non-parenchymal cells. Enzyme, 1992, 46(1-3), 155-168.
[http://dx.doi.org/10.1159/000468782] [PMID: 1289080]
[19]
Senoo, H. Structure and function of hepatic stellate cells. Med. Electron Microsc., 2004, 37(1), 3-15.
[http://dx.doi.org/10.1007/s00795-003-0230-3] [PMID: 15057600]
[20]
Dixon, L.J.; Barnes, M.; Tang, H.; Pritchard, M.T.; Nagy, L.E. Kupffer cells in the liver. Compr. Physiol., 2013, 3(2), 785-797.
[http://dx.doi.org/10.1002/cphy.c120026] [PMID: 23720329]
[21]
Elvevold, K.; Smedsrød, B.; Martinez, I. The liver sinusoidal endothelial cell: A cell type of controversial and confusing identity. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 294(2), G391-G400.
[http://dx.doi.org/10.1152/ajpgi.00167.2007] [PMID: 18063708]
[22]
Tabibian, J.H.; Masyuk, A.I.; Masyuk, T.V.; O’Hara, S.P.; LaRusso, N.F. Physiology of cholangiocytes. Compr. Physiol., 2013, 3(1), 541-565.
[http://dx.doi.org/10.1002/cphy.c120019] [PMID: 23720296]
[23]
Kumar, S.; Duan, Q.; Wu, R.; Harris, E.N.; Su, Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv. Drug Deliv. Rev., 2021, 176, 113869.
[http://dx.doi.org/10.1016/j.addr.2021.113869] [PMID: 34280515]
[24]
Wang, L.; Wang, Y.; Quan, J. Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis. Hum. Cell, 2020, 33(3), 582-589.
[http://dx.doi.org/10.1007/s13577-020-00371-5] [PMID: 32449114]
[25]
Zhou, W.; Luo, J.; Xie, X.; Yang, S.; Zhu, D.; Huang, H.; Yang, D.; Liu, J. Gut microbiota dysbiosis strengthens kupffer cell-mediated hepatitis B virus persistence through inducing endotoxemia in mice. J. Clin. Transl. Hepatol., 2022, 10(1), 17-25.
[http://dx.doi.org/10.14218/JCTH.2020.00161] [PMID: 35233369]
[26]
Matsumoto, M.; Zhang, J.; Zhang, X.; Liu, J.; Jiang, J.X.; Yamaguchi, K.; Taruno, A.; Katsuyama, M.; Iwata, K.; Ibi, M.; Cui, W.; Matsuno, K.; Marunaka, Y.; Itoh, Y.; Torok, N.J.; Yabe-Nishimura, C. The NOX1 isoform of NADPH oxidase is involved in dysfunction of liver sinusoids in nonalcoholic fatty liver disease. Free Radic. Biol. Med., 2018, 115, 412-420.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.019] [PMID: 29274380]
[27]
Lim, H.K.; Jeffrey, G.P.; Ramm, G.A.; Soekmadji, C. Pathogenesis of viral hepatitis-induced chronic liver disease: Role of extracellular vesicles. Front. Cell. Infect. Microbiol., 2020, 10, 587628.
[http://dx.doi.org/10.3389/fcimb.2020.587628] [PMID: 33240824]
[28]
Mao, X.; Cheung, K.S.; Peng, C.; Mak, L.Y.; Cheng, H.M.; Fung, J. Steatosis, HBV-related HCC, cirrhosis, and HBsAg seroclearance: A systematic review and meta-analysis. Hepatology, 2022.
[PMID: 36111362]
[29]
Wang, C.C.; Cheng, P.N.; Kao, J.H. Systematic review: Chronic viral hepatitis and metabolic derangement. Aliment. Pharmacol. Ther., 2020, 51(2), 216-230.
[http://dx.doi.org/10.1111/apt.15575] [PMID: 31746482]
[30]
Stockdale, A.J.; Kreuels, B.; Henrion, M.Y.R.; Giorgi, E.; Kyomuhangi, I.; de Martel, C.; Hutin, Y.; Geretti, A.M. The global prevalence of hepatitis D virus infection: Systematic review and meta-analysis. J. Hepatol., 2020, 73(3), 523-532.
[http://dx.doi.org/10.1016/j.jhep.2020.04.008] [PMID: 32335166]
[31]
Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wai-Sun Wong, V.; Peleg, N.; Shlomai, A.; Sebastiani, G.; Seko, Y.; Bhala, N.; Younossi, Z.M.; Anstee, Q.M.; McPherson, S.; Newsome, P.N. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Gastroenterology, 2020, 158(6), 1611-1625.e12.
[http://dx.doi.org/10.1053/j.gastro.2020.01.043] [PMID: 32027911]
[32]
Hyun, J.; Han, J.; Lee, C.; Yoon, M.; Jung, Y. Pathophysiological aspects of alcohol metabolism in the liver. Int. J. Mol. Sci., 2021, 22(11), 5717.
[http://dx.doi.org/10.3390/ijms22115717] [PMID: 34071962]
[33]
Nguyen-Khac, E.; Thiele, M.; Voican, C.; Nahon, P.; Moreno, C.; Boursier, J.; Mueller, S.; de Ledinghen, V.; Stärkel, P.; Gyune Kim, S.; Fernandez, M.; Madsen, B.; Naveau, S.; Krag, A.; Perlemuter, G.; Ziol, M.; Chatelain, D.; Diouf, M. Non-invasive diagnosis of liver fibrosis in patients with alcohol-related liver disease by transient elastography: An individual patient data meta-analysis. Lancet Gastroenterol. Hepatol., 2018, 3(9), 614-625.
[http://dx.doi.org/10.1016/S2468-1253(18)30124-9] [PMID: 29983372]
[34]
Hamesch, K.; Mandorfer, M.; Pereira, V.M.; Moeller, L.S.; Pons, M.; Dolman, G.E.; Reichert, M.C.; Schneider, C.V.; Woditsch, V.; Voss, J.; Lindhauer, C.; Fromme, M.; Spivak, I.; Guldiken, N.; Zhou, B.; Arslanow, A.; Schaefer, B.; Zoller, H.; Aigner, E.; Reiberger, T.; Wetzel, M.; Siegmund, B.; Simões, C.; Gaspar, R.; Maia, L.; Costa, D.; Bento-Miranda, M.; van Helden, J.; Yagmur, E.; Bzdok, D.; Stolk, J.; Gleiber, W.; Knipel, V.; Windisch, W.; Mahadeva, R.; Bals, R.; Koczulla, R.; Barrecheguren, M.; Miravitlles, M.; Janciauskiene, S.; Stickel, F.; Lammert, F.; Liberal, R.; Genesca, J.; Griffiths, W.J.; Trauner, M.; Krag, A.; Trautwein, C.; Strnad, P. Liver fibrosis and metabolic alterations in adults with alpha-1-antitrypsin deficiency caused by the Pi*ZZ mutation. Gastroenterology, 2019, 157(3), 705-719.e18.
[http://dx.doi.org/10.1053/j.gastro.2019.05.013] [PMID: 31121167]
[35]
Strnad, P.; Mandorfer, M.; Choudhury, G.; Griffiths, W.; Trautwein, C.; Loomba, R.; Schluep, T.; Chang, T.; Yi, M.; Given, B.D.; Hamilton, J.C.; San Martin, J.; Teckman, J.H. Fazirsiran for liver disease associated with alpha 1 -antitrypsin deficiency. N. Engl. J. Med., 2022, 387(6), 514-524.
[http://dx.doi.org/10.1056/NEJMoa2205416] [PMID: 35748699]
[36]
Powell, L.W.; Dixon, J.L.; Ramm, G.A.; Purdie, D.M.; Lincoln, D.J.; Anderson, G.J.; Subramaniam, V.N.; Hewett, D.G.; Searle, J.W.; Fletcher, L.M.; Crawford, D.H.; Rodgers, H.; Allen, K.J.; Cavanaugh, J.A.; Bassett, M.L. Screening for hemochromatosis in asymptomatic subjects with or without a family history. Arch. Intern. Med., 2006, 166(3), 294-301.
[http://dx.doi.org/10.1001/archinte.166.3.294] [PMID: 16476869]
[37]
Przybylkowski, A; Szeligowska, J; Januszewicz, M; Raszeja-Wyszomirska, J; Szczepankiewicz, B; Nehring, P Evaluation of liver fibrosis in patients with Wilson's disease. Eur. J. Gastroenterol. Hepatol., 2021, 33(4), 535-540.
[38]
Huang, S.P.; Chen, S.; Ma, Y.Z.; Zhou, A.; Jiang, H.; Wu, P. Evaluation of the mechanism of jiedu huazhuo quyu formula in treating wilson’s disease-associated liver fibrosis by network pharmacology analysis and molecular dynamics simulation. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/9363131] [PMID: 35707473]
[39]
Manns, M.P.; Czaja, A.J.; Gorham, J.D.; Krawitt, E.L.; Mieli-Vergani, G.; Vergani, D.; Vierling, J.M. Diagnosis and management of autoimmune hepatitis. Hepatology, 2010, 51(6), 2193-2213.
[http://dx.doi.org/10.1002/hep.23584] [PMID: 20513004]
[40]
Galina, P.; Alexopoulou, E.; Mentessidou, A.; Mirilas, P.; Zellos, A.; Lykopoulou, L.; Patereli, A.; Salpasaranis, K.; Kelekis, N.L.; Zarifi, M. Diagnostic accuracy of two-dimensional shear wave elastography in detecting hepatic fibrosis in children with autoimmune hepatitis, biliary atresia and other chronic liver diseases. Pediatr. Radiol., 2021, 51(8), 1358-1368.
[http://dx.doi.org/10.1007/s00247-020-04959-9] [PMID: 33755748]
[41]
Zhang, J.; Lyu, Z.; Li, B.; You, Z.; Cui, N.; Li, Y.; Li, Y.; Huang, B.; Chen, R.; Chen, Y.; Peng, Y.; Fang, J.; Wang, Q.; Miao, Q.; Tang, R.; Gershwin, M.E.; Lian, M.; Xiao, X.; Ma, X. P4HA2 induces hepatic ductular reaction and biliary fibrosis in chronic cholestatic liver diseases. Hepatology, 2023, 78(1), 10-25.
[http://dx.doi.org/10.1097/HEP.0000000000000317] [PMID: 36799463]
[42]
Biswas, A.; Santra, S.; Bishnu, D.; Dhali, G.K.; Chowdhury, A.; Santra, A. Isoniazid and rifampicin produce hepatic fibrosis through an oxidative stress-dependent mechanism. Int. J. Hepatol., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/6987295] [PMID: 32373368]
[43]
Huang, C.H.; Lai, Y.Y.; Kuo, Y.J.; Yang, S.C.; Chang, Y.J.; Chang, K.K.; Chen, W.K. Amiodarone and risk of liver cirrhosis: A nationwide, population-based study. Ther. Clin. Risk Manag., 2019, 15, 103-112.
[http://dx.doi.org/10.2147/TCRM.S174868] [PMID: 30666120]
[44]
Gelfand, J.M.; Wan, J.; Zhang, H.; Shin, D.B.; Ogdie, A.; Syed, M.N.; Egeberg, A. Risk of liver disease in patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis receiving methotrexate: A population-based study. J. Am. Acad. Dermatol., 2021, 84(6), 1636-1643.
[http://dx.doi.org/10.1016/j.jaad.2021.02.019] [PMID: 33607181]
[45]
Dewidar, B; Meyer, C; Dooley, S; Meindl-Beinker, AN TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells, 2019, 8(11), 1419.
[46]
Massague, J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol., 2012, 13, 616-630.
[47]
Armendáriz-Borunda, J.; Rincón, A.R.; Muñoz-Valle, J.F.; Bueno-Topete, M.; Oregón-Romero, E.; Islas-Carbajal, M.C.; Medina-Preciado, D.; González-García, I.; Bautista, C.A.; García-Rocha, S.; Godoy, J.; Vázquez-Del Mercado, M.; Troyo-SanRoman, R.; Arellano-Olivera, I.; Lucano, S.; Álvarez-Rodríguez, A.; Salazar, A. Fibrogenic polymorphisms (TGF-beta, PAI-1, AT) in Mexican patients with established liver fibrosis. Potential correlation with pirfenidone treatment. J. Investig. Med., 2008, 56(7), 944-953.
[http://dx.doi.org/10.2310/JIM.0b013e3181891512] [PMID: 18797412]
[48]
Tao, R.; Fan, X.X.; Yu, H.J.; Ai, G.; Zhang, H.Y.; Kong, H.Y.; Song, Q.Q.; Huang, Y.; Huang, J.Q.; Ning, Q. Retracted : MicroRNA-29b-3p prevents Schistosoma japonicum -induced liver fibrosis by targeting COL1A1 and COL3A1. J. Cell. Biochem., 2018, 119(4), 3199-3209.
[http://dx.doi.org/10.1002/jcb.26475] [PMID: 29091295]
[49]
Xiong, L.J.; Zhu, J.F.; Luo, D.D.; Zen, L.L.; Cai, S.Q. Effects of pentoxifylline on the hepatic content of TGF-β1 and collagen in Schistosomiasis japonica mice with liver fibrosis. World J. Gastroenterol., 2003, 9(1), 152-154.
[http://dx.doi.org/10.3748/wjg.v9.i1.152] [PMID: 12508372]
[50]
Yang, Y.; Sun, M.; Li, W.; Liu, C.; Jiang, Z.; Gu, P.; Li, J.; Wang, W.; You, R.; Ba, Q.; Li, X.; Wang, H. Rebalancing TGF-β/Smad7 signaling via Compound kushen injection in hepatic stellate cells protects against liver fibrosis and hepatocarcinogenesis. Clin. Transl. Med., 2021, 11(7), e410.
[http://dx.doi.org/10.1002/ctm2.410] [PMID: 34323416]
[51]
Schon, H.T.; Weiskirchen, R. Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surg. Nutr., 2014, 3(6), 386-406.
[PMID: 25568862]
[52]
Milani, S.; Herbst, H.; Schuppan, D.; Stein, H.; Surrenti, C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am. J. Pathol., 1991, 139(6), 1221-1229.
[PMID: 1750499]
[53]
Rosenfeld, M.; Keating, A.; Bowen-Pope, D.F.; Singer, J.W.; Ross, R. Responsiveness of the in vitro hematopoietic microenvironment to platelet-derived growth factor. Leuk. Res., 1985, 9(4), 427-434.
[http://dx.doi.org/10.1016/0145-2126(85)90001-3] [PMID: 2987621]
[54]
Niba, E.T.E.; Nagaya, H.; Kanno, T.; Tsuchiya, A.; Gotoh, A.; Tabata, C.; Kuribayashi, K.; Nakano, T.; Nishizaki, T. Crosstalk between PI3 kinase/PDK1/Akt/Rac1 and Ras/Raf/MEK/ERK pathways downstream PDGF receptor. Cell. Physiol. Biochem., 2013, 31(6), 905-913.
[http://dx.doi.org/10.1159/000350108] [PMID: 23817184]
[55]
Pan, T.L.; Wang, P.W.; Leu, Y.L.; Wu, T.H.; Wu, T.S. Inhibitory effects of Scutellaria baicalensis extract on hepatic stellate cells through inducing G2/M cell cycle arrest and activating ERK-dependent apoptosis via Bax and caspase pathway. J. Ethnopharmacol., 2012, 139(3), 829-837.
[http://dx.doi.org/10.1016/j.jep.2011.12.028] [PMID: 22210104]
[56]
Zvibel, I.; Bar-Zohar, D.; Kloog, Y.; Oren, R.; Reif, S. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. Dig. Dis. Sci., 2008, 53(4), 1048-1053.
[http://dx.doi.org/10.1007/s10620-007-9984-0] [PMID: 17934818]
[57]
Brady, L.M.; Fox, E.S.; Fimmel, C.J. Polyenylphosphatidylcholine inhibits PDGF-induced proliferation in rat hepatic stellate cells. Biochem. Biophys. Res. Commun., 1998, 248(1), 174-179.
[http://dx.doi.org/10.1006/bbrc.1998.8935] [PMID: 9675106]
[58]
Deng, W.; Meng, Z.; Sun, A.; Yang, Z. Pioglitazone suppresses inflammation and fibrosis in nonalcoholic fatty liver disease by down-regulating PDGF and TIMP-2: Evidence from in vitro study. Cancer Biomark., 2017, 20(4), 411-415.
[http://dx.doi.org/10.3233/CBM-170157] [PMID: 28946547]
[59]
Ying, H.Z.; Chen, Q.; Zhang, W.Y.; Zhang, H.H.; Ma, Y.; Zhang, S.Z.; Fang, J.; Yu, C.H. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics. Mol. Med. Rep., 2017, 16(6), 7879-7889.
[http://dx.doi.org/10.3892/mmr.2017.7641] [PMID: 28983598]
[60]
Sims, G.P.; Rowe, D.C.; Rietdijk, S.T.; Herbst, R.; Coyle, A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol., 2010, 28(1), 367-388.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132603] [PMID: 20192808]
[61]
Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002, 418(6894), 191-195.
[http://dx.doi.org/10.1038/nature00858] [PMID: 12110890]
[62]
Mencin, A.; Kluwe, J.; Schwabe, R.F. Toll-like receptors as targets in chronic liver diseases. Gut, 2009, 58(5), 704-720.
[http://dx.doi.org/10.1136/gut.2008.156307] [PMID: 19359436]
[63]
Yu, M.; Wang, H.; Ding, A.; Golenbock, D.T.; Latz, E.; Czura, C.J.; Fenton, M.J.; Tracey, K.J.; Yang, H. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock, 2006, 26(2), 174-179.
[http://dx.doi.org/10.1097/01.shk.0000225404.51320.82] [PMID: 16878026]
[64]
Luedde, T.; Schwabe, R.F. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(2), 108-118.
[http://dx.doi.org/10.1038/nrgastro.2010.213] [PMID: 21293511]
[65]
Rim, E.Y.; Clevers, H.; Nusse, R. The WnT pathway: From signaling mechanisms to synthetic modulators. Annu. Rev. Biochem., 2022, 91(1), 571-598.
[http://dx.doi.org/10.1146/annurev-biochem-040320-103615] [PMID: 35303793]
[66]
Ma, Z.G.; Lv, X.D.; Zhan, L.L.; Chen, L.; Zou, Q.Y.; Xiang, J.Q.; Qin, J.L.; Zhang, W.W.; Zeng, Z.J.; Jin, H.; Jiang, H.X.; Lv, X.P. Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway. World J. Gastroenterol., 2016, 22(6), 2092-2103.
[http://dx.doi.org/10.3748/wjg.v22.i6.2092] [PMID: 26877613]
[67]
Klein, D.; Demory, A.; Peyre, F.; Kroll, J.; Augustin, H.G.; Helfrich, W.; Kzhyshkowska, J.; Schledzewski, K.; Arnold, B.; Goerdt, S. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology, 2008, 47(3), 1018-1031.
[http://dx.doi.org/10.1002/hep.22084] [PMID: 18302287]
[68]
Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80, 106210.
[http://dx.doi.org/10.1016/j.intimp.2020.106210] [PMID: 31972425]
[69]
Xiang, D.M.; Sun, W.; Ning, B.F.; Zhou, T.F.; Li, X.F.; Zhong, W.; Cheng, Z.; Xia, M.Y.; Wang, X.; Deng, X.; Wang, W.; Li, H.Y.; Cui, X.L.; Li, S.C.; Wu, B.; Xie, W.F.; Wang, H.Y.; Ding, J. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut, 2018, 67(9), 1704-1715.
[http://dx.doi.org/10.1136/gutjnl-2016-313392] [PMID: 28754776]
[70]
Martí-Rodrigo, A.; Alegre, F.; Moragrega, Á.B.; García-García, F.; Martí-Rodrigo, P.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Apostolova, N.; Esplugues, J.V.; Blas-García, A. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut, 2020, 69(5), 920-932.
[http://dx.doi.org/10.1136/gutjnl-2019-318372] [PMID: 31530714]
[71]
Xuan, Y.; Chen, S.; Ding, X.; Wang, L.; Li, S.; Yang, G.; Lan, T. Tetrahydropalmatine attenuates liver fibrosis by suppressing endoplasmic reticulum stress in hepatic stellate cells. Chin. Med. J., 2022, 135(5), 628-630.
[http://dx.doi.org/10.1097/CM9.0000000000001883] [PMID: 34967794]
[72]
Shu, G.; Yusuf, A.; Dai, C.; Sun, H.; Deng, X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl 4 : Roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct., 2021, 12(22), 11686-11703.
[http://dx.doi.org/10.1039/D1FO02657G] [PMID: 34730139]
[73]
Abdelhamid, A.M.; Selim, A.; Zaafan, M.A. The hepatoprotective effect of piperine against thioacetamide-induced liver fibrosis in mice: The involvement of miR-17 and TGF-β/smads pathways. Front. Mol. Biosci., 2021, 8, 754098.
[http://dx.doi.org/10.3389/fmolb.2021.754098] [PMID: 34778375]
[74]
Vargas-Pozada, E.E.; Ramos-Tovar, E.; Rodriguez-Callejas, J.D.; Cardoso-Lezama, I.; Galindo-Gómez, S.; Talamás-Lara, D.; Vásquez-Garzón, V.R.; Arellanes-Robledo, J.; Tsutsumi, V.; Villa-Treviño, S.; Muriel, P. Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model. Int. J. Mol. Sci., 2022, 23(17), 9954.
[http://dx.doi.org/10.3390/ijms23179954] [PMID: 36077357]
[75]
Vargas-Pozada, E.E.; Ramos-Tovar, E.; Acero-Hernández, C.; Cardoso-Lezama, I.; Galindo-Gómez, S.; Tsutsumi, V.; Muriel, P. Caffeine mitigates experimental nonalcoholic steatohepatitis and the progression of thioacetamide-induced liver fibrosis by blocking the MAPK and TGF-β/Smad3 signaling pathways. Ann. Hepatol., 2022, 27(2), 100671.
[http://dx.doi.org/10.1016/j.aohep.2022.100671] [PMID: 35065262]
[76]
Alkreathy, H.M.; Esmat, A. Lycorine ameliorates thioacetamide-induced hepatic fibrosis in rats: Emphasis on antioxidant, anti-inflammatory, and STAT3 inhibition effects. Pharmaceuticals, 2022, 15(3), 369.
[http://dx.doi.org/10.3390/ph15030369] [PMID: 35337166]
[77]
Song, L.Y.; Ma, Y.T.; Fang, W.J.; He, Y.; Wu, J.L.; Zuo, S.R.; Deng, Z.Z.; Wang, S.F.; Liu, S.K. Inhibitory effects of oxymatrine on hepatic stellate cells activation through TGF-β/miR-195/Smad signaling pathway. BMC Complement. Altern. Med., 2019, 19(1), 138.
[http://dx.doi.org/10.1186/s12906-019-2560-2] [PMID: 31221141]
[78]
Yamaguchi, M.; Ohbayashi, S.; Ooka, A.; Yamashita, H.; Motohashi, N.; Kaneko, Y.K.; Kimura, T.; Saito, S.; Ishikawa, T. Harmine suppresses collagen production in hepatic stellate cells by inhibiting DYRK1B. Biochem. Biophys. Res. Commun., 2022, 600, 136-141.
[http://dx.doi.org/10.1016/j.bbrc.2022.02.054] [PMID: 35219102]
[79]
Hu, Z.; Su, H.; Zeng, Y.; Lin, C.; Guo, Z.; Zhong, F.; Jiang, K.; Yuan, G.; He, S. Tetramethylpyrazine ameliorates hepatic fibrosis through autophagy-mediated inflammation. Biochem. Cell Biol., 2020, 98(3), 327-337.
[http://dx.doi.org/10.1139/bcb-2019-0059] [PMID: 32383631]
[80]
Xiang, D.; Zou, J.; Zhu, X.; Chen, X.; Luo, J.; Kong, L.; Zhang, H. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine, 2020, 78, 153294.
[http://dx.doi.org/10.1016/j.phymed.2020.153294] [PMID: 32771890]
[81]
Zhu, X.; Ye, S.; Yu, D.; Zhang, Y.; Li, J.; Zhang, M.; Leng, Y.; Yang, T.; Luo, J.; Chen, X.; Zhang, H.; Kong, L. Physalin B attenuates liver fibrosis via suppressing LAP2α–HDAC1-mediated deacetylation of the transcription factor GLI1 and hepatic stellate cell activation. Br. J. Pharmacol., 2021, 178(17), 3428-3447.
[http://dx.doi.org/10.1111/bph.15490] [PMID: 33864382]
[82]
Tan, Y.; Li, C.; Zhou, J.; Deng, F.; Liu, Y. Berberine attenuates liver fibrosis by autophagy inhibition triggering apoptosis via the miR-30a-5p/ATG5 axis. Exp. Cell Res., 2023, 427(2), 113600.
[http://dx.doi.org/10.1016/j.yexcr.2023.113600] [PMID: 37062521]
[83]
Eissa, L.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; El-Mihi, K.A. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem. Biol. Interact., 2018, 294, 91-100.
[http://dx.doi.org/10.1016/j.cbi.2018.08.016] [PMID: 30138605]
[84]
Sheng, J.; Zhang, B.; Chen, Y.; Yu, F. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages. Immunopharmacol. Immunotoxicol., 2020, 42(6), 556-563.
[http://dx.doi.org/10.1080/08923973.2020.1811308] [PMID: 32811220]
[85]
Lv, X.T.; Wang, R.H.; Liu, X.T.; Ye, Y.J.; Liu, X.Y.; Qiao, J.D.; Wang, G.E. Theacrine ameliorates experimental liver fibrosis in rats by lowering cholesterol storage via activation of the Sirtuin 3-farnesoid X receptor signaling pathway. Chem. Biol. Interact., 2022, 364, 110051.
[http://dx.doi.org/10.1016/j.cbi.2022.110051] [PMID: 35872049]
[86]
Demir, Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev. Res., 2020, 81(5), 628-636.
[http://dx.doi.org/10.1002/ddr.21667] [PMID: 32232985]
[87]
Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol. Appl. Biochem., 2019, 66(5), 781-786.
[http://dx.doi.org/10.1002/bab.1781] [PMID: 31135076]
[88]
Aslan, H.E.; Demir, Y.; Özaslan, M.S.; Türkan, F.; Beydemir, Ş.; Küfrevioğlu, Ö.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem. Toxicol., 2019, 42(6), 634-640.
[http://dx.doi.org/10.1080/01480545.2018.1463242] [PMID: 29860891]
[89]
Mahfouz, M.M.; Abdelsalam, R.M.; Masoud, M.A.; Mansour, H.A.; Ahmed-Farid, O.A.; kenawy, S.A. The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice. J. Biochem. Mol. Toxicol., 2017, 31(9), e21936.
[http://dx.doi.org/10.1002/jbt.21936] [PMID: 28557239]
[90]
Özaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, Ş.; Küfrevioğlu, Ö.İ. Evaluation of chalcones as inhibitors of glutathione S-transferase. J. Biochem. Mol. Toxicol., 2018, 32(5), e22047.
[http://dx.doi.org/10.1002/jbt.22047] [PMID: 29473699]
[91]
Demir, Y.; Özaslan, M.S.; Duran, H.E.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ. Toxicol. Pharmacol., 2019, 70, 103195.
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[92]
Feng, J.; Wang, C.; Liu, T.; Li, J.; Wu, L.; Yu, Q.; Li, S.; Zhou, Y.; Zhang, J.; Chen, J.; Ji, J.; Chen, K.; Mao, Y.; Wang, F.; Dai, W.; Fan, X.; Wu, J.; Guo, C. Procyanidin B2 inhibits the activation of hepatic stellate cells and angiogenesis via the Hedgehog pathway during liver fibrosis. J. Cell. Mol. Med., 2019, 23(9), 6479-6493.
[http://dx.doi.org/10.1111/jcmm.14543] [PMID: 31328391]
[93]
Xu, Y.; Zhang, D.; Yang, H.; Liu, Y.; Zhang, L.; Zhang, C.; Chen, G.; Hu, Y.; Chen, J.; Zhang, H.; Mu, Y.; Liu, P.; Liu, W. Hepatoprotective effect of genistein against dimethylnitrosamine-induced liver fibrosis in rats by regulating macrophage functional properties and inhibiting the JAK2/STAT3/SOCS3 signaling pathway. Frontiers in Bioscience-Landmark, 2021, 26(12), 1572-1584.
[http://dx.doi.org/10.52586/5050] [PMID: 34994171]
[94]
Xu, T.; Huang, S.; Huang, Q.; Ming, Z.; Wang, M.; Li, R.; Zhao, Y. Kaempferol attenuates liver fibrosis by inhibiting activin receptor–like kinase 5. J. Cell. Mol. Med., 2019, 23(9), 6403-6410.
[http://dx.doi.org/10.1111/jcmm.14528] [PMID: 31273920]
[95]
Huang, S.; Wang, Y.; Xie, S.; Lai, Y.; Mo, C.; Zeng, T.; Kuang, S.; Zhou, C.; Zeng, Z.; Chen, Y.; Huang, S.; Gao, L.; Lv, Z. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. Phytomedicine, 2022, 101, 154117.
[http://dx.doi.org/10.1016/j.phymed.2022.154117] [PMID: 35489326]
[96]
Liu, N.; Feng, J.; Lu, X.; Yao, Z.; Liu, Q.; Lv, Y.; Han, Y.; Deng, J.; Zhou, Y. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF- β 1/Smad3 and TGF- β 1/p38 MAPK pathways. Mediators Inflamm., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/6175091] [PMID: 31467486]
[97]
Liu, G.; Wei, C.; Yuan, S.; Zhang, Z.; Li, J.; Zhang, L.; Wang, G.; Fang, L. Wogonoside attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis through SOCS1 / P53 / SLC7A11 pathway. Phytother. Res., 2022, 36(11), 4230-4243.
[http://dx.doi.org/10.1002/ptr.7558] [PMID: 35817562]
[98]
Wang, W.; Chen, Z.; Zheng, T.; Zhang, M. Xanthohumol alleviates T2DM-induced liver steatosis and fibrosis by mediating the NRF2/RAGE/NF-κB signaling pathway. Future Med. Chem., 2021, 13(23), 2069-2081.
[http://dx.doi.org/10.4155/fmc-2021-0241] [PMID: 34551612]
[99]
Li, S; Li, X; Chen, F; Liu, M; Ning, L; Yan, Y. Nobiletin mitigates hepatocytes death, liver inflammation, and fibrosis in a murine model of NASH through modulating hepatic oxidative stress and mitochondrial dysfunction. J. Nutr. Biochem., 2022, 100, 108888.
[100]
Amer, M.A.; Othman, A.I.; EL-Missiry, M.A.; Farag, A.A.; Amer, M.E. Proanthocyanidins attenuated liver damage and suppressed fibrosis in CCl4-treated rats. Environ. Sci. Pollut. Res. Int., 2022, 29(60), 91127-91138.
[http://dx.doi.org/10.1007/s11356-022-22051-7] [PMID: 35881285]
[101]
Lee, E.H.; Park, K.I.; Kim, K.Y.; Lee, J.H.; Jang, E.J.; Ku, S.K.; Kim, S.C.; Suk, H.Y.; Park, J.Y.; Baek, S.Y.; Kim, Y.W. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal. Phytomedicine, 2019, 62, 152780.
[http://dx.doi.org/10.1016/j.phymed.2018.12.003] [PMID: 31121384]
[102]
Du, X.S.; Li, H.D.; Yang, X.J.; Li, J.J.; Xu, J.J.; Chen, Y.; Xu, Q.Q.; Yang, L.; He, C.S.; Huang, C.; Meng, X.M.; Li, J. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol., 2019, 75, 105671.
[http://dx.doi.org/10.1016/j.intimp.2019.05.056] [PMID: 31377590]
[103]
Casas-Grajales, S.; Reyes-Gordillo, K.; Cerda-García-Rojas, C.M.; Tsutsumi, V.; Lakshman, M.R.; Muriel, P. Rebaudioside A administration prevents experimental liver fibrosis: An in vivo and in vitro study of the mechanisms of action involved. J. Appl. Toxicol., 2019, 39(8), 1118-1131.
[http://dx.doi.org/10.1002/jat.3797] [PMID: 30883860]
[104]
Liu, D.; Qin, H.; Yang, B.; Du, B.; Yun, X. Oridonin ameliorates carbon tetrachloride-induced liver fibrosis in mice through inhibition of the NLRP3 inflammasome. Drug Dev. Res., 2020, 81(4), 526-533.
[http://dx.doi.org/10.1002/ddr.21649] [PMID: 32219880]
[105]
Yan, H.; Huang, Z.; Bai, Q.; Sheng, Y.; Hao, Z.; Wang, Z.; Ji, L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology, 2018, 396-397, 1-12.
[http://dx.doi.org/10.1016/j.tox.2018.01.007] [PMID: 29355602]
[106]
Ji, D.; Zhao, Q.; Qin, Y.; Tong, H.; Wang, Q.; Yu, M.; Mao, C.; Lu, T.; Qiu, J.; Jiang, C. Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway. Cell Biol. Int., 2021, 45(9), 1866-1875.
[http://dx.doi.org/10.1002/cbin.11607] [PMID: 33835632]
[107]
Wan, S.; Luo, F.; Huang, C.; Liu, C.; Luo, Q.; Zhu, X. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging, 2020, 12(11), 10614-10632.
[http://dx.doi.org/10.18632/aging.103282] [PMID: 32496208]
[108]
Kim, J.K.; Han, N.R.; Park, S.M.; Jegal, K.H.; Jung, J.Y.; Jung, E.H.; Kim, E.O.; Kim, D.; Jung, D.H.; Lee, J.R.; Park, C.A.; Ku, S.K.; Cho, I.J.; Kim, S.C. Hemistepsin A alleviates liver fibrosis by inducing apoptosis of activated hepatic stellate cells via inhibition of nuclear factor-κB and Akt. Food Chem. Toxicol., 2020, 135, 111044.
[http://dx.doi.org/10.1016/j.fct.2019.111044] [PMID: 31830547]
[109]
Zhang, Y.; Cai, B.; Li, Y.; Xu, Y.; Wang, Y.; Zheng, L.; Zheng, X.; Yin, L.; Chen, G.; Wang, Y.; Liang, G.; Chen, L. Identification of linderalactone as a natural inhibitor of SHP2 to ameliorate CCl4-induced liver fibrosis. Front. Pharmacol., 2023, 14, 1098463.
[http://dx.doi.org/10.3389/fphar.2023.1098463] [PMID: 36843936]
[110]
Zhou, M.; Zhao, X.; Liao, L.; Deng, Y.; Liu, M.; Wang, J.; Xue, X.; Li, Y. Forsythiaside A regulates activation of hepatic stellate cells by inhibiting NOX4-dependent ROS. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/9938392] [PMID: 35035671]
[111]
Zhu, H.; He, C.; Zhao, H.; Jiang, W.; Xu, S.; Li, J.; Ma, T.; Huang, C. Sennoside A prevents liver fibrosis by binding DNMT1 and suppressing DNMT1-mediated PTEN hypermethylation in HSC activation and proliferation. FASEB J., 2020, 34(11), 14558-14571.
[http://dx.doi.org/10.1096/fj.202000494RR] [PMID: 32946656]
[112]
Li, R.; Li, J.; Huang, Y.; Li, H.; Yan, S.; Lin, J.; Chen, Y.; Wu, L.; Liu, B.; Wang, G.; Lan, T. Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. Int. J. Biol. Sci., 2018, 14(11), 1411-1425.
[http://dx.doi.org/10.7150/ijbs.26086] [PMID: 30262993]
[113]
Bao, X.; Li, J.; Ren, C.; Wei, J.; Lu, X.; Wang, X.; Du, W.; Jin, X.; Ma, B.; Zhang, Q.; Ma, B. Aucubin ameliorates liver fibrosis and hepatic stellate cells activation in diabetic mice via inhibiting ER stress-mediated IRE1α/TXNIP/NLRP3 inflammasome through NOX4/ROS pathway. Chem. Biol. Interact., 2022, 365, 110074.
[http://dx.doi.org/10.1016/j.cbi.2022.110074] [PMID: 35961541]
[114]
Lin, L.; Zhou, M.; Que, R.; Chen, Y.; Liu, X.; Zhang, K.; Shi, Z.; Li, Y. Saikosaponin-d protects against liver fibrosis by regulating the estrogen receptor-β/NLRP3 inflammasome pathway. Biochem. Cell Biol., 2021, 99(5), 666-674.
[http://dx.doi.org/10.1139/bcb-2020-0561] [PMID: 33974808]
[115]
Chen, Y.; Que, R.; Zhang, N.; Lin, L.; Zhou, M.; Li, Y. Saikosaponin-d alleviates hepatic fibrosis through regulating GPER1/autophagy signaling. Mol. Biol. Rep., 2021, 48(12), 7853-7863.
[http://dx.doi.org/10.1007/s11033-021-06807-x] [PMID: 34714484]
[116]
Xiao, Z.; Ji, Q.; Fu, Y.; Gao, S.; Hu, Y.; Liu, W.; Chen, G.; Mu, Y.; Chen, J.; Liu, P. Amygdalin ameliorates liver fibrosis through inhibiting activation of TGF-β/smad signaling. Chin. J. Integr. Med., 2023, 29(4), 316-324.
[http://dx.doi.org/10.1007/s11655-021-3304-y] [PMID: 34816365]
[117]
Liu, X.; Mi, X.; Wang, Z.; Zhang, M.; Hou, J.; Jiang, S.; Wang, Y.; Chen, C.; Li, W. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis., 2020, 11(6), 454.
[http://dx.doi.org/10.1038/s41419-020-2597-7] [PMID: 32532964]
[118]
Casas-Grajales, S.; Alvarez-Suarez, D.; Ramos-Tovar, E.; Dayana Buendía-Montaño, L.; Reyes-Gordillo, K.; Camacho, J.; Tsutsumi, V.; Lakshman, M.R.; Muriel, P. Stevioside inhibits experimental fibrosis by down-regulating profibrotic Smad pathways and blocking hepatic stellate cell activation. Basic Clin. Pharmacol. Toxicol., 2019, 124(6), 670-680.
[http://dx.doi.org/10.1111/bcpt.13194] [PMID: 30561898]
[119]
Zhang, Y.; Zhang, S.; Luo, X.; Zhao, H.; Xiang, X. Paeoniflorin mitigates PBC-induced liver fibrosis by repressing NLRP3 formation. Acta Cir. Bras., 2021, 36(11), e361106.
[http://dx.doi.org/10.1590/acb361106] [PMID: 35195182]
[120]
Ceylan, H.; Demir, Y.; Beydemir, Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: An in vitro study. Protein Pept. Lett., 2019, 26(5), 364-370.
[http://dx.doi.org/10.2174/0929866526666190301115122] [PMID: 30827223]
[121]
Oztaskin, N.; Goksu, S.; Demir, Y.; Maras, A.; Gulcin, İ. Synthesis of novel bromophenol with diaryl methanes-determination of their inhibition effects on carbonic anhydrase and acetylcholinesterase. Molecules, 2022, 27(21), 7426.
[http://dx.doi.org/10.3390/molecules27217426] [PMID: 36364255]
[122]
Saadati, S.; Sadeghi, A.; Mansour, A.; Yari, Z.; Poustchi, H.; Hedayati, M.; Hatami, B.; Hekmatdoost, A. Curcumin and inflammation in non-alcoholic fatty liver disease: A randomized, placebo controlled clinical trial. BMC Gastroenterol., 2019, 19(1), 133.
[http://dx.doi.org/10.1186/s12876-019-1055-4] [PMID: 31345163]
[123]
Yang, Y.; Qu, Y.; Lv, X.; Zhao, R.; Yu, J.; Hu, S.; Kang, J.; Zhang, Y.; Gong, Y.; Cui, T.; Zhang, X.; Yan, Y. Sesamol supplementation alleviates nonalcoholic steatohepatitis and atherosclerosis in high-fat, high carbohydrate and high-cholesterol diet-fed rats. Food Funct., 2021, 12(19), 9347-9359.
[http://dx.doi.org/10.1039/D1FO01517F] [PMID: 34606548]
[124]
Wu, J.; Xue, X.; Fan, G.; Gu, Y.; Zhou, F.; Zheng, Q.; Liu, R.; Li, Y.; Ma, B.; Li, S.; Huang, G.; Ma, L.; Li, X. Ferulic acid ameliorates hepatic inflammation and fibrotic liver injury by inhibiting PTP1B activity and subsequent promoting AMPK phosphorylation. Front. Pharmacol., 2021, 12, 754976.
[http://dx.doi.org/10.3389/fphar.2021.754976] [PMID: 34566665]
[125]
Li, L.; Wang, K.; Jia, R.; xie, J.; Ma, L.; Hao, Z.; Zhang, W.; Mo, J.; Ren, F. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol., 2022, 56, 102435.
[http://dx.doi.org/10.1016/j.redox.2022.102435] [PMID: 36029649]
[126]
El-Gendy, Z.A.; Ramadan, A.; El-Batran, S.A.; Ahmed, R.F.; El-Marasy, S.A.; Abd El-Rahman, S.S.; Youssef, S.A.H. Carvacrol hinders the progression of hepatic fibrosis via targeting autotaxin and thioredoxin in thioacetamide-induced liver fibrosis in rat. Hum. Exp. Toxicol., 2021, 40(12), 2188-2201.
[http://dx.doi.org/10.1177/09603271211026729] [PMID: 34155936]
[127]
Hu, M.; Zhang, D.; Xu, H.; Zhang, Y.; Shi, H.; Huang, X.; Wang, X.; Wu, Y.; Qi, Z. Salidroside activates the AMP-activated protein kinase pathway to suppress nonalcoholic steatohepatitis in mice. Hepatology, 2021, 74(6), 3056-3073.
[http://dx.doi.org/10.1002/hep.32066] [PMID: 34292604]
[128]
Liang, F.; Xu, X.; Tu, Y. Resveratrol inhibited hepatocyte apoptosis and alleviated liver fibrosis through miR-190a-5p /HGF axis. Bioorg. Med. Chem., 2022, 57, 116593.
[http://dx.doi.org/10.1016/j.bmc.2021.116593] [PMID: 35093804]
[129]
Wu, B.; Wang, R.; Li, S.; Wang, Y.; Song, F.; Gu, Y.; Yuan, Y. Antifibrotic effects of Fraxetin on carbon tetrachloride-induced liver fibrosis by targeting NF-κB/IκBα, MAPKs and Bcl-2/Bax pathways. Pharmacol. Rep., 2019, 71(3), 409-416.
[http://dx.doi.org/10.1016/j.pharep.2019.01.008] [PMID: 31003150]
[130]
Tong, Y.; Zhu, W.; Wen, T.; Mukhamejanova, Z.; Xu, F.; Xiang, Q.; Pang, J. Xyloketal B reverses nutritional hepatic steatosis, steatohepatitis, and liver fibrosis through activation of the PPARα/PGC1α signaling pathway. J. Nat. Prod., 2022, 85(7), 1738-1750.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00259] [PMID: 35749236]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy