Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Antimicrobial Evaluation, and Interaction of Emodin Alkyl Azoles with DNA and HSA

Author(s): Yu-Hang Zhou, Ying Wang and Hui-Zhen Zhang*

Volume 20, Issue 4, 2024

Published on: 13 February, 2024

Page: [422 - 433] Pages: 12

DOI: 10.2174/0115734064283049240124115544

Price: $65

Abstract

Objective: This study aimed to overcome the growing antibiotic resistance. Moreover, the new series of emodin alkyl azoles were synthesized.

Method: The novel emodin alkyl azoles were synthesized using commercial emodin and azoles by alkylation. The NMR and HRMS spectra were employed to confirm the structures of novel prepared compounds. The in vitro antibacterial and antifungal activities of the prepared emodin compounds were studied by the 96-well plate method. The binding behavior between emodin 4-nitro imidazole compound 3c and S. aureus DNA was researched using an ultraviolet-visible spectrophotometer. Furthermore, fluorescence spectrometry was used to explore the interaction with human serum albumin (HSA).

Results: The in vitro antimicrobial results displayed that compound 3c gave relatively strong activities with MIC values of 4−16 μg/mL. Notably, this compound exhibited 2-fold more potent activity against S. aureus (MIC = 4 μg/mL) and E. coli (MIC = 8 μg/mL) strains than clinical drug Chloromycin (MIC = 8 and 16 μg/mL). The UV-vis absorption spectroscopy showed that 4-nitro imidazole emodin 3c could form the 3c-DNA complex by intercalating into S. aureus DNA, inhibiting antimicrobial activities. The simulation results displayed that the emodin 3c and DNA complex were formed by hydrogen bonds. The spectral experiment demonstrated that compound 3c could be transported by human serum albumin (HSA) via hydrogen bonds. The molecular simulation found that the hydroxyl group and the nitroimidazole ring of the emodin compound showed an important role in transportation behavior.

Conclusion: This work may supply useful directions for the exploration of novel antimicrobial agents.

Graphical Abstract

[1]
a) Shanbhag, C.; Saraogi, I. Bacterial GTPases as druggable targets to tackle antimicrobial resistance. Bioorg. Med. Chem. Lett., 2023, 87, 129276.
[http://dx.doi.org/10.1016/j.bmcl.2023.129276] [PMID: 37030567];
b) Chellat, M.F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. Ed., 2016, 55(23), 6600-6626.
[http://dx.doi.org/10.1002/anie.201506818] [PMID: 27000559]
[2]
a) Wang, Y.; Zhu, G.; Wang, W.; Zhang, Y.; Zhu, Y.; Wang, J.; Geng, M.; Lu, H.; Chen, Y.; Zhou, M.; Chen, J.; Zhang, F.; Yang, J.; Cheng, X. Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorg. Med. Chem. Lett., 2023, 83, 129176.
[http://dx.doi.org/10.1016/j.bmcl.2023.129176] [PMID: 36764469];
b) Ameryckx, A.; Pochet, L.; Wang, G.; Yildiz, E.; Saadi, B.E.; Wouters, J.; Van Bambeke, F.; Frédérick, R. Pharmacomodulations of the benzoyl-thiosemicarbazide scaffold reveal antimicrobial agents targeting d-alanyl-d-alanine ligase in bacterio. Eur. J. Med. Chem., 2020, 200, 112444.
[http://dx.doi.org/10.1016/j.ejmech.2020.112444] [PMID: 32497961];
c) Das, P.; Delost, M.D.; Qureshi, M.H.; Smith, D.T.; Njardarson, J.T. A survey of the structures of US FDA approved combination drugs. J. Med. Chem., 2019, 62(9), 4265-4311.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01610] [PMID: 30444362];
d) Gong, H.H.; Addla, D.; Lv, J.S.; Zhou, C.H. Heterocyclic naphthalimides as new skeleton structure of compounds with increasingly expanding relational medicinal applications. Curr. Top. Med. Chem., 2016, 16(28), 3303-3364.
[http://dx.doi.org/10.2174/1568026616666160506145943] [PMID: 27150364]
[3]
Chalothorn, T.; Rukachaisirikul, V.; Phongpaichit, S.; Pannara, S.; Tansakul, C. Synthesis and antibacterial activity of emodin and its derivatives against methicillin-resistant Staphylococcus aureus. Tetrahedron Lett., 2019, 60(35), 151004.
[http://dx.doi.org/10.1016/j.tetlet.2019.151004]
[4]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. Phytochemistry, 2021, 190, 112854.
[http://dx.doi.org/10.1016/j.phytochem.2021.112854] [PMID: 34311280]
[5]
Dighe, S.N.; Collet, T.A. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur. J. Med. Chem., 2020, 199, 112326.
[http://dx.doi.org/10.1016/j.ejmech.2020.112326] [PMID: 32460040]
[6]
Zhang, H-Z.; Wang, H-G. Emodin alcohols: Design, synthesis, biological evaluation and multitargeting studies with DNA, RNA, and HSA. Curr. Med. Chem., 2023, 30, 0929867330666230512161856.
[http://dx.doi.org/10.2174/0929867330666230512161856] [PMID: 37183459]
[7]
a) Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2016, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625];
b) Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[8]
a) Zhang, H-Z.; Ning, Z-W.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole incorporated naphthalimide derivatives as Salmonella typhimurium DNA intercalators, and combination researches. Med. Chem., 2022, 18(5), 544-557.
[http://dx.doi.org/10.2174/1573406417666210712105922] [PMID: 34254924];
b) Damu, G.L.V.; Cui, S.F.; Peng, X.M.; Wen, Q.M.; Cai, G.X.; Zhou, C.H. Synthesis and bioactive evaluation of a novel series of coumarinazoles. Bioorg. Med. Chem. Lett., 2014, 24(15), 3605-3608.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.029] [PMID: 24930836];
c) Zhang, H.Z.; Damu, G.L.V.; Cai, G.X.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur. J. Med. Chem., 2013, 64, 329-344.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.049] [PMID: 23644216];
d) Dokla, E.M.E.; Abutaleb, N.S.; Milik, S.N.; Li, D.; El-Baz, K.; Shalaby, M.A.W.; Al-Karaki, R.; Nasr, M.; Klein, C.D.; Abouzid, K.A.M.; Seleem, M.N. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. Eur. J. Med. Chem., 2020, 186, 111850.
[http://dx.doi.org/10.1016/j.ejmech.2019.111850] [PMID: 31735572];
e) Chen, Y.Y.; Gopala, L.; Bheemanaboina, R.R.Y.; Liu, H.B.; Cheng, Y.; Geng, R.X.; Zhou, C.H. Novel naphthalimide aminothiazoles as potential multitargeting antimicrobial agents. ACS Med. Chem. Lett., 2017, 8(12), 1331-1335.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00452] [PMID: 29259757]
[9]
a) He, S.C.; Zhang, H.Z.; Zhang, H.J.; Sun, Q.; Zhou, C.H. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity exploration. Med. Chem., 2020, 16(1), 104-118.
[http://dx.doi.org/10.2174/1573406414666181106124852] [PMID: 30398118];
b) Zhang, H.; Lin, J.; Rasheed, S.; Zhou, C. Design, synthesis, and biological evaluation of novel benzimidazole derivatives and their interaction with calf thymus DNA and synergistic effects with clinical drugs. Sci. China Chem., 2014, 57(6), 807-822.
[http://dx.doi.org/10.1007/s11426-014-5087-x];
c) Popov, A.B.; Krstulović, L.; Koštrun, S.; Jelić, D.; Bokulić, A.; Stojković, M.R.; Zonjić, I.; Taylor, M.C.; Kelly, J.M.; Bajić, M.; Raić-Malić, S. Design, synthesis, antitrypanosomal activity, DNA/RNA binding and in vitro ADME profiling of novel imidazoline-substituted 2-arylbenzimidazoles. Eur. J. Med. Chem., 2020, 207, 112802.
[http://dx.doi.org/10.1016/j.ejmech.2020.112802] [PMID: 32927230]
[10]
a) Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254];
b) Pontremoli, C.; Barbero, N.; Viscardi, G.; Visentin, S. Insight into the interaction of inhaled corticosteroids with human serum albumin: A spectroscopic-based study. J. Pharm. Anal., 2018, 8(1), 37-44.
[http://dx.doi.org/10.1016/j.jpha.2017.07.003] [PMID: 29568666]
[11]
National Committee for Clinical Laboratory Standards Approved standard Document; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, National Committee for Clinical Laboratory Standards: Wayne, PA, 2002, p. M27-A2.
[12]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Chen, J.P.; Xie, Y.P.; Cai, G.X.; Zhang, S.L.; Zhou, C.H. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur. J. Med. Chem., 2019, 179, 166-181.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.046] [PMID: 31254919]
[13]
a) Cui, S.F.; Peng, L.P.; Zhang, H.Z.; Rasheed, S.; Vijaya Kumar, K.; Zhou, C.H. Novel hybrids of metronidazole and quinolones: Synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem., 2014, 86, 318-334.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.063] [PMID: 25173851];
b) Zhang, Y.; Damu, G.L.V.; Cui, S.F.; Mi, J.L.; Tangadanchu, V.K.R.; Zhou, C.H. Discovery of potential antifungal triazoles: Design, synthesis, biological evaluation, and preliminary antifungal mechanism exploration. MedChemComm, 2017, 8(8), 1631-1639.
[http://dx.doi.org/10.1039/C7MD00112F] [PMID: 30108874];
c) Zhang, L.; Addla, D.; Ponmani, J.; Wang, A.; Xie, D.; Wang, Y.N.; Zhang, S.L.; Geng, R.X.; Cai, G.X.; Li, S.; Zhou, C.H. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents. Eur. J. Med. Chem., 2016, 111, 160-182.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.052] [PMID: 26871658];
d) Kang, J.; Tangadanchu, V.K.R.; Gopala, L.; Gao, W.W.; Cheng, Y.; Liu, H.B.; Geng, R.X.; Li, S.; Zhou, C.H. Novel potentially antibacterial naphthalimide-derived metronidazoles: Design, synthesis, biological evaluation and supramolecular interactions with DNA, human serum albumin and topoisomerase II. Chin. Chem. Lett., 2017, 28(7), 1369-1374.
[http://dx.doi.org/10.1016/j.cclet.2017.04.002]
[14]
Cui, S.F.; Addla, D.; Zhou, C.H. Novel 3-aminothiazolquinolones: Design, synthesis, bioactive evaluation, SARs, and preliminary antibacterial mechanism. J. Med. Chem., 2016, 59(10), 4488-4510.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01678] [PMID: 27115717]
[15]
Suryawanshi, V.D.; Anbhule, P.V.; Gore, A.H.; Patil, S.R.; Kolekar, G.B. Spectroscopic investigation on the interaction of pyrimidine derivative, 2-amino-6-hydroxy-4-(3,4-dimethoxyphenyl)-pyrimidine-5-carbonitrile with human serum albumin: Mechanistic and conformational study. Ind. Eng. Chem. Res., 2012, 51(1), 95-102.
[http://dx.doi.org/10.1021/ie202005c]
[16]
a) Hu, Y.J.; Liu, Y.; Xiao, X.H. Investigation of the interaction between Berberine and human serum albumin. Biomacromolecules, 2009, 10(3), 517-521.
[http://dx.doi.org/10.1021/bm801120k] [PMID: 19173654];
b) Yin, B.T.; Yan, C.Y.; Peng, X.M.; Zhang, S.L.; Rasheed, S.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem., 2014, 71, 148-159.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.003] [PMID: 24291568];
c) Peng, L.P.; Nagarajan, S.; Rasheed, S.; Zhou, C.H. Synthesis and biological evaluation of a new class of quinazolinoneazoles as potential antimicrobial agents and their interactions with calf thymus DNA and human serum albumin. MedChemComm, 2015, 6(1), 222-229.
[http://dx.doi.org/10.1039/C4MD00281D]
[17]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed; Springer: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[18]
Zhang, S.L.; Damu, G.L.V.; Zhang, L.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin. Eur. J. Med. Chem., 2012, 55, 164-175.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.015] [PMID: 22863183]
[19]
Zhang, S.L.; Chang, J.J.; Damu, G.L.V.; Geng, R.X.; Zhou, C.H. Berberine azoles as antimicrobial agents: Synthesis, biological evaluation and their interactions with human serum albumin. MedChemComm, 2013, 4(5), 839-846.
[http://dx.doi.org/10.1039/c3md00032j]
[20]
Mote, U.S.; Patil, S.R.; Bhosale, S.H.; Han, S.H.; Kolekar, G.B. Fluorescence resonance energy transfer from tryptophan to folic acid in micellar media and deionised water. J. Photochem. Photobiol. B, 2011, 103(1), 16-21.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.01.006] [PMID: 21288734]
[21]
Zhang, S.L.; Chang, J.J.; Damu, G.L.V.; Fang, B.; Zhou, X.D.; Geng, R.X.; Zhou, C.H. Novel berberine triazoles: Synthesis, antimicrobial evaluation and competitive interactions with metal ions to Human Serum Albumin. Bioorg. Med. Chem. Lett., 2013, 23(4), 1008-1012.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.036] [PMID: 23312473]
[22]
Lv, J.S.; Peng, X.M.; Kishore, B.; Zhou, C.H. 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: Synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorg. Med. Chem. Lett., 2014, 24(1), 308-313.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.013] [PMID: 24295786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy