Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Spectroscopic Analysis of the Effect of Ibuprofen Degradation Products on the Interaction between Ibuprofen and Human Serum Albumin

Author(s): Anna Ploch-Jankowska*

Volume 25, Issue 6, 2024

Published on: 13 February, 2024

Page: [492 - 506] Pages: 15

DOI: 10.2174/0113892037284277240126094716

Price: $65

Abstract

Background: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most commonly used groups of medicinal compounds in the world. The wide access to NSAIDs and the various ways of storing them due to their easy accessibility often entail the problem with the stability and durability resulting from the exposure of drugs to external factors.

The aim of the research was to evaluate in vitro the mechanism of competition between ibuprofen (IBU) and its degradation products, i.e., 4'-isobutylacetophenone (IBAP) and (2RS)-2-(4- formylphenyl)propionic acid (FPPA) during transport in a complex with fatted (HSA) and defatted (dHSA) human serum albumin.

Methods: The research was carried out using spectroscopic techniques, such as spectrophotometry, infrared spectroscopy and nuclear magnetic resonance spectroscopy.

Results: The comprehensive application of spectroscopic techniques allowed, among others, for the determination of the binding constant, the number of classes of binding sites and the cooperativeness constant of the analyzed systems IBU-(d)HSA, IBU-(d)HSA-FPPA, IBU-(d)HSA-IBAP; the determination of the effect of ibuprofen and its degradation products on the secondary structure of albumin; identification and assessment of interactions between ligand and albumin; assessment of the impact of the presence of fatty acids in the structure of albumin and the measurement temperature on the binding of IBU, IBAP and FPPA to (d)HSA.

Conclusion: The conducted research allowed us to conclude that the presence of ibuprofen degradation products and the increase in their concentration significantly affect the formation of the IBU-albumin complex and thus, the value of the association constant of the drug, changing the concentration of its free fraction in the blood plasma. It was also found that the presence of an ibuprofen degradation product in a complex with albumin affects its secondary structure.

« Previous
Graphical Abstract

[1]
Kostowski, W.; Herman, Z.S. Farmakologia; Wydawnictwo Lekarskie PZWL: Warszawa, 2008.
[2]
Czyrski, A.; Kazińska, I. Nonsteroidal anti-inflammatory drugs derived from 2-arylpropionic acid. Gazeta Farmaceutyczna, 2013, 22(4), 28-30.
[3]
Paulose-Ram, R.; Hirsch, R.; Dillon, C.; Gu, Q. Frequent monthly use of selected non-prescription and prescription non-narcotic analgesics among U.S. adults. Pharmacoepidemiol. Drug Saf., 2005, 14(4), 257-266.
[http://dx.doi.org/10.1002/pds.983] [PMID: 15386703]
[4]
Amin, M.O.; Al-Hetlani, E.; Lednev, I.K. Stability of nonsteroidal anti-inflammatory drugs in contaminated fingermarks probed by Raman Spectroscopy: Effect of temperature and time since deposition. Forensic Chem., 2022, 31, 100457.
[http://dx.doi.org/10.1016/j.forc.2022.100457]
[5]
Rangel-Yagui, C.O.; Hsu, H.W.L.; Pessoa-Jr, A.; Tavares, L.C. Micellar solubilization of ibuprofen: Influence of surfactant head groups on the extent of solubilization. RBCF Rev. Bras. Cienc. Farm., 2005, 41(2), 237-246.
[http://dx.doi.org/10.1590/S1516-93322005000200012]
[6]
Bushra, R.; Aslam, N. An overview of clinical pharmacology of Ibuprofen. Oman Med. J., 2010, 25(3), 155-161.
[http://dx.doi.org/10.5001/omj.2010.49] [PMID: 22043330]
[7]
Amirimoghadam, P.; Zihayat, B.; Dabaghzadeh, F.; Kiani, K.; Ebrahimi, J.; Ghazanfari, M. Evaluation and awareness of over the counter use of non-steroidal anti-inflammatory drugs? J. Appl. Pharm. Sci., 2017, 7(3), 154-159.
[8]
Bradbury, F. How important is the role of the physician in the correct use of a drug? An observational cohort study in general practice. Int. J. Clin. Pract., 2004, 58(144), 27-32.
[http://dx.doi.org/10.1111/j.1742-1241.2004.027_e.x] [PMID: 16035400]
[9]
Kaoru, N. Flurbiprofen: Highly potent inhibitor of prostaglandin synthesis. Biochim. Biophys. Acta Lipids Lipid Metab., 1978, 529(3), 493-496.
[http://dx.doi.org/10.1016/0005-2760(78)90093-0] [PMID: 96864]
[10]
Adams, S.S.; McCullough, K.F.; Nicholson, J.S. The pharmacological properties of ibuprofen, an anti-inflammatory, analgesic and antipyretic agent. Arch. Int. Pharmacodyn. Ther., 1969, 178(1), 115-129.
[PMID: 5353466]
[11]
Lyngstad, G.; Skjelbred, P.; Swanson, D.M.; Skoglund, L.A. Analgesic effect of oral ibuprofen 400, 600, and 800 mg; paracetamol 500 and 1000 mg; and paracetamol 1000 mg plus 60 mg codeine in acute postoperative pain: A single-dose, randomized, placebo-controlled, and double-blind study. Eur. J. Clin. Pharmacol., 2021, 77(12), 1843-1852.
[http://dx.doi.org/10.1007/s00228-021-03231-9] [PMID: 34655316]
[12]
Potthast, H.; Dressman, J.B.; Junginger, H.E.; Midha, K.K.; Oeser, H.; Shah, V.P.; Vogelpoel, H.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: Ibuprofen. J. Pharm. Sci., 2005, 94(10), 2121-2131.
[http://dx.doi.org/10.1002/jps.20444] [PMID: 16136567]
[13]
Sharma, P.K.; Garg, S.K.; Narang, A. Pharmacokinetics of oral ibuprofen in premature infants. J. Clin. Pharmacol., 2003, 43(9), 968-973.
[http://dx.doi.org/10.1177/0091270003254635] [PMID: 12971028]
[14]
Zawada, E.T., Jr Renal consequences of nonsteroidal antiinflammatory drugs. Postgrad. Med., 1982, 71(5), 223-230.
[http://dx.doi.org/10.1080/00325481.1982.11716077] [PMID: 7041104]
[15]
Melton, L.M.; Keith, A.B.; Davis, S.; Oakley, A.E.; Edwardson, J.A.; Morris, C.M. Chronic glial activation, neurodegeneration, and APP immunoreactive deposits following acute administration of double‐stranded RNA. Glia, 2003, 44(1), 1-12.
[http://dx.doi.org/10.1002/glia.10276] [PMID: 12951652]
[16]
Ton, T.G.; Heckbert, S.R.; Longstreth, W.T., Jr; Rossing, M.A.; Kukull, W.A.; Franklin, G.M.; Swanson, P.D.; Smith-Weller, T.; Checkoway, H. Nonsteroidal anti‐inflammatory drugs and risk of Parkinson’s disease. Mov. Disord., 2006, 21(7), 964-969.
[http://dx.doi.org/10.1002/mds.20856] [PMID: 16550541]
[17]
Harris, R.E.; Kasbari, S.; Farrar, W.B. Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol. Rep., 1999, 6(1), 71-73.
[http://dx.doi.org/10.3892/or.6.1.71] [PMID: 9864404]
[18]
Jamali, F.; Brocks, D.R. The pharmacokinetics of ibuprofen in humans and animals. In: Ibuprofen; Rainsford, K., Ed.; Wiley, 2015; pp. 81-131.
[http://dx.doi.org/10.1002/9781118743614.ch4]
[19]
Katzung, B.G.; Furst, D.E. Non steroidal anti inflammatory drugs, disease miodifying anti rheumatic drugs, non opioid analgesics, drugs used in gout. In: Basic and clinical pharmacology; McGraw-Hill Education, 1998.
[20]
Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Aspects Med., 2012, 33(3), 209-290.
[http://dx.doi.org/10.1016/j.mam.2011.12.002] [PMID: 22230555]
[21]
Kosa, T.; Maruyama, T.; Otagiri, M. Species differences of serum albumins: I. Drug binding sites. Pharm. Res., 1997, 14(11), 1607-1612.
[http://dx.doi.org/10.1023/A:1012138604016] [PMID: 9434282]
[22]
Lee, P.; Wu, X. Review: Modifications of human serum albumin and their binding effect. Curr. Pharm. Des., 2015, 21(14), 1862-1865.
[http://dx.doi.org/10.2174/1381612821666150302115025] [PMID: 25732553]
[23]
Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol., 2005, 353(1), 38-52.
[http://dx.doi.org/10.1016/j.jmb.2005.07.075] [PMID: 16169013]
[24]
Dondoni, A.; Dall’Occo, T.; Fantin, G.; Medici, A.; Pedrini, P.; Rossetti, V. Studies on the actual and potential impurities in ibuprofen. Farmaco, Prat., 1986, 41(7), 237-244.
[PMID: 3743735]
[25]
Castell, J.V.; Gomez-L, M.J.; Miranda, M.A.; Morera, I.M. Photolytic degradation of ibuprofen. toxicity of the isolated photoproducts on fibroblasts and erythrocytes. Photochem. Photobiol., 1987, 46(6), 991-996.
[http://dx.doi.org/10.1111/j.1751-1097.1987.tb04882.x] [PMID: 3438349]
[26]
Archibald, T.; Brown, S. Monitoring commercial ibuprofen potency changes over 1 year when stored in a household setting. J. Pharm. Technol., 2020, 36(1), 16-21.
[http://dx.doi.org/10.1177/8755122519877808] [PMID: 34752511]
[27]
Asmus, P.A. Determination of 2-(4-isobutylphenyl)propionic acid in bulk drug and compressed tablets by reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 1985, 331(1), 169-176.
[http://dx.doi.org/10.1016/0021-9673(85)80018-2] [PMID: 4044737]
[28]
TSO. European Pharmacopoeia; Strasbourg, France, 2008.
[29]
Gou, N.; Yuan, S.; Lan, J.; Gao, C.; Alshawabkeh, A.N.; Gu, A.Z. A quantitative toxicogenomics assay reveals the evolution and nature of toxicity during the transformation of environmental pollutants. Environ. Sci. Technol., 2014, 48(15), 8855-8863.
[http://dx.doi.org/10.1021/es501222t] [PMID: 25010344]
[30]
Caviglioli, G.; Valeria, P.; Brunella, P.; Sergio, C.; Attilia, A.; Gaetano, B. Identification of degradation products of Ibuprofen arising from oxidative and thermal treatments. J. Pharm. Biomed. Anal., 2002, 30(3), 499-509.
[http://dx.doi.org/10.1016/S0731-7085(02)00400-4] [PMID: 12367674]
[31]
Ghosh, R.; Darin, K.; Deb, P. Presence of organic impurities into active pharmaceutical ingredients: A review. Int. J. Pharm. Sci. Res., 2014, 5(10), 4078-4108.
[32]
Ruggeri, G.; Ghigo, G.; Maurino, V.; Minero, C.; Vione, D. Photochemical transformation of ibuprofen into harmful 4-isobutylacetophenone: Pathways, kinetics, and significance for surface waters. Water Res., 2013, 47(16), 6109-6121.
[http://dx.doi.org/10.1016/j.watres.2013.07.031] [PMID: 23972675]
[33]
Carter, D.C.; He, X.M. Structure of human serum albumin. Science, 1990, 249(4966), 302-303.
[http://dx.doi.org/10.1126/science.2374930] [PMID: 2374930]
[34]
Lambrinidis, G.; Vallianatou, T.; Tsantili-Kakoulidou, A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv. Drug Deliv. Rev., 2015, 86, 27-45.
[http://dx.doi.org/10.1016/j.addr.2015.03.011] [PMID: 25819487]
[35]
Chechłacz, M.; Korytowska, N. Plasma protein-binding compounds in humans. Importance in therapy and methods for determining the free fraction. Prosp. Pharmaceut. Sci., 2017, 15(6), 50-59.
[http://dx.doi.org/10.56782/pps.76]
[36]
Peters, T. All about albumin: Biochemistry, genetics, and medical applications; Academic Press: San Diego, 1996.
[37]
Zhu, L.; Yang, F.; Chen, L.; Meehan, E.J.; Huang, M. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. J. Struct. Biol., 2008, 162(1), 40-49.
[http://dx.doi.org/10.1016/j.jsb.2007.12.004] [PMID: 18258455]
[38]
Maciążek-Jurczyk, M.; Szkudlarek-Haśnik, A.; Siek, D.; Chłosta, M.; Faruga, K.; Moskała, W.; Sułkowska, A. Binding of ketoprofen to plasma protein in inflammatory states. Ann. Acad. Med. Siles., 2012, 66(3), 27-33.
[39]
Yamasaki, K.; Hyodo, S.; Taguchi, K.; Nishi, K.; Yamaotsu, N.; Hirono, S.; Chuang, V.T.G.; Seo, H.; Maruyama, T.; Otagiri, M. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. PLoS One, 2017, 12(6), e0180404.
[http://dx.doi.org/10.1371/journal.pone.0180404] [PMID: 28662200]
[40]
Polish Pharmacopoeia. 2017. Available from:https://www.urpl.gov.pl/en/polish-pharmacopoeia
[41]
European Medicines Agency Science Medicines Health. ICH M9 guideline on biopharmaceutics classification system - based biowaivers, Step 5. 2020. Available from:https://www.ema.europa.eu/en/ich-m9-biopharmaceutics-classification-system-based-biowaivers-scientific-guideline
[42]
Czub, M.P.; Handing, K.B.; Venkataramany, B.S.; Cooper, D.R.; Shabalin, I.G.; Minor, W. Albumin-based transport of nonsteroidal anti-inflammatory drugs in mammalian blood plasma. J. Med. Chem., 2020, 63(13), 6847-6862.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00225] [PMID: 32469516]
[43]
Bou-Abdallah, F.; Sprague, S.E.; Smith, B.M.; Giffune, T.R. Binding thermodynamics of diclofenac and naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study. J. Chem. Thermodyn., 2016, 103, 299-309.
[http://dx.doi.org/10.1016/j.jct.2016.08.020]
[44]
Ploch-Jankowska, A.; Pentak, D.; Nycz, J.E. A comprehensive spectroscopic analysis of the ibuprofen binding with human serum albumin, part II. Sci. Pharm., 2021, 89(3), 30.
[http://dx.doi.org/10.3390/scipharm89030030]
[45]
Ploch-Jankowska, A.; Pentak, D. A Comprehensive spectroscopic analysis of the ibuprofen binding with human serum albumin, part I. Pharmaceuticals, 2020, 13(9), 205.
[http://dx.doi.org/10.3390/ph13090205] [PMID: 32825638]
[46]
Miyamoto, H.; Matsueda, S.; Moritsuka, A.; Shimokawa, K.; Hirata, H.; Nakashima, M.; Sasaki, H.; Fumoto, S.; Nishida, K. Evaluation of hypothermia on the in vitro metabolism and binding and in vivo disposition of midazolam in rats. Biopharm. Drug Dispos., 2015, 36(7), 481-489.
[http://dx.doi.org/10.1002/bdd.1960] [PMID: 26037413]
[47]
Carter, D.C.; He, X.M.; Munson, S.H.; Twigg, P.D.; Gernert, K.M.; Broom, M.B.; Miller, T.Y. Three-dimensional structure of human serum albumin. Science, 1989, 244(4909), 1195-1198.
[http://dx.doi.org/10.1126/science.2727704] [PMID: 2727704]
[48]
Salahuddin, P. Urea and acid induced unfolding of fatted and defatted human serum albumin. Protein Pept. Lett., 2008, 15(8), 826-833.
[http://dx.doi.org/10.2174/092986608785203764] [PMID: 18855756]
[49]
Cistola, D.P.; Small, D.M.; Hamilton, J.A. Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. II. Electrostatic interactions in individual fatty acid binding sites. J. Biol. Chem., 1987, 262(23), 10980-10985.
[http://dx.doi.org/10.1016/S0021-9258(18)60914-7] [PMID: 3611100]
[50]
Curry, S.; Mandelkow, H.; Brick, P.; Franks, N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol., 1998, 5(9), 827-835.
[http://dx.doi.org/10.1038/1869] [PMID: 9731778]
[51]
Zhao, P.; Zhu, G.; Zhang, W.; Zhang, L.; Liang, Z.; Zhang, Y. Study of multiple binding constants of dexamethasone with human serum albumin by capillary electrophoresis-frontal analysis and multivariate regression. Anal. Bioanal. Chem., 2009, 393(1), 257-261.
[http://dx.doi.org/10.1007/s00216-008-2373-5] [PMID: 18807018]
[52]
Hiratsuka, T. Conformational changes in the 23-kilodalton NH2-terminal peptide segment of myosin ATPase associated with ATP hydrolysis. J. Biol. Chem., 1990, 265(31), 18786-18790.
[http://dx.doi.org/10.1016/S0021-9258(17)30581-1] [PMID: 2146263]
[53]
Huang, B.X.; Dass, C.; Kim, H.Y. Probing conformational changes of human serum albumin due to unsaturated fatty acid binding by chemical cross-linking and mass spectrometry. Biochem. J., 2005, 387(3), 695-702.
[http://dx.doi.org/10.1042/BJ20041624] [PMID: 15588254]
[54]
Hill, A.V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol., 1910, 40, 4-7.
[55]
Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Varga, B.; Juhasz, B.; Tosaki, A. The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact Sci., 2012, 66(4), 427-438.
[http://dx.doi.org/10.1007/s00407-012-0098-5]
[56]
Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc., 2015, 10(3), 382-396.
[http://dx.doi.org/10.1038/nprot.2015.024] [PMID: 25654756]
[57]
Wüthrich, K. NMR - this other method for protein and nucleic acid structure determination. Acta Crystallogr. D Biol. Crystallogr., 1995, 51(3), 249-270.
[http://dx.doi.org/10.1107/S0907444994010188] [PMID: 15299291]
[58]
Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spektroskopowe metody identyfikacji związków organicznych; Wydawnictwo Naukowe PWN: Warszawa, 2012.
[59]
Pentak, D.; Maciążek-Jurczyk, M.; Zawada, Z.H. The role of nanoparticles in the albumin-cytarabine and albumin-methotrexate interactions. Mater. Sci. Eng. C, 2017, 73, 388-397.
[http://dx.doi.org/10.1016/j.msec.2016.12.055] [PMID: 28183623]
[60]
Gamov, G.A.; Zavalishin, M.N.; Sharnin, V.A. Comment on the frequently used method of the metal complex-DNA binding constant determination from UV-Vis data. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 160-164.
[http://dx.doi.org/10.1016/j.saa.2018.08.009] [PMID: 30099313]
[61]
Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules, 2019, 9(8), 359.
[http://dx.doi.org/10.3390/biom9080359] [PMID: 31409012]
[62]
Lu, R.; Li, W.W.; Katzir, A.; Raichlin, Y.; Yu, H.Q.; Mizaikoff, B. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst, 2015, 140(3), 765-770.
[http://dx.doi.org/10.1039/C4AN01495B] [PMID: 25525641]
[63]
Baronio, C.M.; Baldassarre, M.; Barth, A. Insight into the internal structure of amyloid-β oligomers by isotope-edited Fourier transform infrared spectroscopy. Phys. Chem. Chem. Phys., 2019, 21(16), 8587-8597.
[http://dx.doi.org/10.1039/C9CP00717B] [PMID: 30964131]
[64]
Wei, W.; Hu, W.; Zhang, X.Y.; Zhang, F.P.; Sun, S.Q.; Liu, Y.; Xu, C.H. Analysis of protein structure changes and quality regulation of surimi during gelation based on infrared spectroscopy and microscopic imaging. Sci. Rep., 2018, 8(1), 5566.
[http://dx.doi.org/10.1038/s41598-018-23645-3] [PMID: 29615642]
[65]
Carton, I.; Böcker, U.; Ofstad, R.; Sørheim, O.; Kohler, A. Monitoring secondary structural changes in salted and smoked salmon muscle myofiber proteins by FT-IR microspectroscopy. J. Agric. Food Chem., 2009, 57(9), 3563-3570.
[http://dx.doi.org/10.1021/jf803668e] [PMID: 19292444]
[66]
Tatulian, S.A. FTIR analysis of proteins and protein-membrane interactions. Methods Mol. Biol., 2019, 2003, 281-325.
[http://dx.doi.org/10.1007/978-1-4939-9512-7_13] [PMID: 31218623]
[67]
Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem., 1986, 38, 181-364.
[http://dx.doi.org/10.1016/S0065-3233(08)60528-8] [PMID: 3541539]
[68]
Lin, K.; Yang, H.; Gao, Z.; Li, F.; Yu, S. Overestimated accuracy of circular dichroism in determining protein secondary structure. Eur. Biophys. J., 2013, 42(6), 455-461.
[http://dx.doi.org/10.1007/s00249-013-0896-y] [PMID: 23467783]
[69]
Kelly, S.; Price, N. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci., 2000, 1(4), 349-384.
[http://dx.doi.org/10.2174/1389203003381315] [PMID: 12369905]
[70]
Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg., 2007, 1767(9), 1073-1101.
[http://dx.doi.org/10.1016/j.bbabio.2007.06.004] [PMID: 17692815]
[71]
Zeeshan, F.; Tabbassum, M.; Jorgensen, L.; Medlicott, N.J. Attenuated total reflection fourier transform infrared (ATR FTIR) spectroscopy as an analytical method to investigate the secondary structure of a model protein embedded in solid lipid matrices. Appl. Spectrosc., 2018, 72(2), 268-279.
[http://dx.doi.org/10.1177/0003702817739908] [PMID: 29022355]
[72]
Balaei, F.; Ghobadi, S. Hydrochlorothiazide binding to human serum albumin induces some compactness in the molecular structure of the protein: A multi-spectroscopic and computational study. J. Pharm. Biomed. Anal., 2019, 162, 1-8.
[http://dx.doi.org/10.1016/j.jpba.2018.09.009] [PMID: 30218717]
[73]
Bandekar, J. Amide modes and protein conformation. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1992, 1120(2), 123-143.
[http://dx.doi.org/10.1016/0167-4838(92)90261-B] [PMID: 1373323]
[74]
Belatik, A.; Hotchandani, S.; Carpentier, R.; Tajmir-Riahi, H.A. Locating the binding sites of Pb(II) ion with human and bovine serum albumins. PLoS One, 2012, 7(5), e36723.
[http://dx.doi.org/10.1371/journal.pone.0036723] [PMID: 22574219]
[75]
Ahmed-Ouameur, A.; Diamantoglou, S.; Sedaghat-Herati, M.R.; Nafisi, S.; Carpentier, R.; Tajmir-Riahi, H.A. The effects of drug complexation on the stability and conformation of human serum albumin: Protein unfolding. Cell Biochem. Biophys., 2006, 45(2), 203-214.
[http://dx.doi.org/10.1385/CBB:45:2:203] [PMID: 16757821]
[76]
Ahmed, A.; Tajmir-Riahi, H.A.; Carpentier, R. A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett., 1995, 363(1-2), 65-68.
[http://dx.doi.org/10.1016/0014-5793(95)00282-E] [PMID: 7729557]
[77]
Beauchemin, R.; N’soukpoé-Kossi, C.N.; Thomas, T.J.; Thomas, T.; Carpentier, R.; Tajmir-Riahi, H.A. Polyamine analogues bind human serum albumin. Biomacromolecules, 2007, 8(10), 3177-3183.
[http://dx.doi.org/10.1021/bm700697a] [PMID: 17887793]
[78]
Guzzi, R.; Bartucci, R. Interactive multiple binding of oleic acid, warfarin and ibuprofen with human serum albumin revealed by thermal and fluorescence studies. Eur. Biophys. J., 2022, 51(1), 41-49.
[http://dx.doi.org/10.1007/s00249-021-01582-w] [PMID: 35048131]
[79]
Varshney, A.; Ahmad, B.; Khan, R.H. Comparative studies of unfolding and binding of ligands to human serum albumin in the presence of fatty acid: Spectroscopic approach. Int. J. Biol. Macromol., 2008, 42(5), 483-490.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.03.004] [PMID: 18452986]
[80]
Liu, T.; Liu, M.; Guo, Q.; Liu, Y.; Zhao, Y.; Wu, Y.; Sun, B.; Wang, Q.; Liu, J.; Han, J. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation. J. Mol. Liq., 2020, 311, 113364.
[http://dx.doi.org/10.1016/j.molliq.2020.113364]
[81]
bratty, M.A. Spectroscopic and molecular docking studies for characterizing binding mechanism and conformational changes of human serum albumin upon interaction with Telmisartan. Saudi Pharm. J., 2020, 28(6), 729-736.
[http://dx.doi.org/10.1016/j.jsps.2020.04.015] [PMID: 32550805]
[82]
Hou, H.; Qu, X.; Li, Y.; Kong, Y.; Jia, B.; Yao, X.; Jiang, B. Binding of citreoviridin to human serum albumin: Multispectroscopic and molecular docking. BioMed Res. Int., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/162391] [PMID: 25977915]
[83]
Wang, W.; Nema, S.; Teagarden, D. Protein aggregation-Pathways and influencing factors. Int. J. Pharm., 2010, 390(2), 89-99.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.025] [PMID: 20188160]
[84]
Oleszko, A.; Hartwich, J.; Gąsior-Głogowska, M.; Olsztyńska-Janus, S. Changes of albumin secondary structure after palmitic acid binding. FT-IR spectroscopic study. Acta Bioeng. Biomech., 2018, 20(1), 59-64.
[PMID: 29658532]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy