Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Modulation of the HIF-1α-NCOA4-FTH1 Signaling Axis Regulating Ferroptosis-induced Hepatic Stellate Cell Senescence to Explore the Anti-hepatic Fibrosis Mechanism of Curcumol

Author(s): Yang Zheng*, Lei Wang*, Jiaru Wang, Tiejian Zhao and Jiahui Wang

Volume 31, Issue 19, 2024

Published on: 13 February, 2024

Page: [2821 - 2837] Pages: 17

DOI: 10.2174/0109298673271261231213051410

Price: $65

Abstract

Introduction: Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis.

Methods: We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments.

Result: We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators.

Conclusion: Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.

« Previous
[1]
Lambrecht, J.; van Grunsven, L.A.; Tacke, F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin. Pharmacother., 2020, 21(13), 1637-1649.
[http://dx.doi.org/10.1080/14656566.2020.1774553] [PMID: 32543284]
[2]
Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4), 875.
[http://dx.doi.org/10.3390/cells9040875] [PMID: 32260126]
[3]
Chang, M.L.; Yang, S.S. Metabolic signature of hepatic fibrosis: From individual pathways to systems biology. Cells, 2019, 8(11), 1423.
[http://dx.doi.org/10.3390/cells8111423] [PMID: 31726658]
[4]
Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166.
[http://dx.doi.org/10.1038/s41575-020-00372-7] [PMID: 33128017]
[5]
Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[6]
Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell, 2022, 82(12), 2215-2227.
[http://dx.doi.org/10.1016/j.molcel.2022.03.022] [PMID: 35390277]
[7]
Mehta, K.J.; Farnaud, S.J.; Sharp, P.A. Iron and liver fibrosis: Mechanistic and clinical aspects. World J. Gastroenterol., 2019, 25(5), 521-538.
[http://dx.doi.org/10.3748/wjg.v25.i5.521] [PMID: 30774269]
[8]
Yuan, S.; Wei, C.; Liu, G.; Zhang, L.; Li, J.; Li, L.; Cai, S.; Fang, L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif., 2022, 55(1), e13158.
[http://dx.doi.org/10.1111/cpr.13158] [PMID: 34811833]
[9]
Roger, L.; Tomas, F.; Gire, V. Mechanisms and regulation of cellular senescence. Int. J. Mol. Sci., 2021, 22(23), 13173.
[http://dx.doi.org/10.3390/ijms222313173] [PMID: 34884978]
[10]
Zhang, M.; Serna-Salas, S.; Damba, T.; Borghesan, M.; Demaria, M.; Moshage, H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech. Ageing Dev., 2021, 199, 111572.
[http://dx.doi.org/10.1016/j.mad.2021.111572] [PMID: 34536446]
[11]
Maharajan, N.; Ganesan, C.D.; Moon, C.; Jang, C.H.; Oh, W.K.; Cho, G.W.; Licochalcone, D. Licochalcone D ameliorates oxidative stress-induced senescence via aMPK activation. Int. J. Mol. Sci., 2021, 22(14), 7324.
[http://dx.doi.org/10.3390/ijms22147324] [PMID: 34298945]
[12]
Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(9), 1398-1409.
[http://dx.doi.org/10.1016/j.bbagen.2019.06.010] [PMID: 31229492]
[13]
Li, S.; Wang, M.; Wang, Y.; Guo, Y.; Tao, X.; Wang, X.; Cao, Y.; Tian, S.; Li, Q. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol. In vitro, 2021, 73, 105146.
[http://dx.doi.org/10.1016/j.tiv.2021.105146] [PMID: 33737050]
[14]
Zheng, Y.; Wang, J.; Zhao, T.; Wang, L.; Wang, J. Modulation of the VEGF/AKT/eNOS signaling pathway to regulate liver angiogenesis to explore the anti-hepatic fibrosis mechanism of curcumol. J. Ethnopharmacol., 2021, 280, 114480.
[http://dx.doi.org/10.1016/j.jep.2021.114480] [PMID: 34358654]
[15]
Zheng, Y.; Wang, L.; Wang, J.; Liu, L.; Zhao, T. Effect of curcumol on NOD-like receptor thermoprotein domain 3 inflammasomes in liver fibrosis of mice. Chin. J. Integr. Med., 2022, 28(11), 992-999.
[http://dx.doi.org/10.1007/s11655-021-3310-0] [PMID: 34319504]
[16]
Yuan, Y.; Zhai, Y.; Chen, J.; Xu, X.; Wang, H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules, 2021, 11(7), 923.
[http://dx.doi.org/10.3390/biom11070923] [PMID: 34206421]
[17]
Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med., 2019, 65, 37-55.
[http://dx.doi.org/10.1016/j.mam.2018.09.002] [PMID: 30213667]
[18]
Wu, A.; Feng, B.; Yu, J.; Yan, L.; Che, L.; Zhuo, Y.; Luo, Y.; Yu, B.; Wu, D.; Chen, D. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol., 2021, 46, 102131.
[http://dx.doi.org/10.1016/j.redox.2021.102131] [PMID: 34530349]
[19]
Wang, H.; Jiang, C.; Yang, Y.; Li, J.; Wang, Y.; Wang, C.; Gao, Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ, 2022, 10, e13592.
[http://dx.doi.org/10.7717/peerj.13592] [PMID: 35698613]
[20]
Wang, F.; Li, Z.; Chen, L.; Yang, T.; Liang, B.; Zhang, Z.; Shao, J.; Xu, X.; Yin, G.; Wang, S.; Ding, H.; Zhang, F.; Zheng, S. Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis. Acta Pharm. Sin. B, 2022, 12(9), 3618-3638.
[http://dx.doi.org/10.1016/j.apsb.2022.03.014] [PMID: 36176909]
[21]
Jiang, P.; Yang, F.; Zou, C.; Bao, T.; Wu, M.; Yang, D.; Bu, S. The construction and analysis of a ferroptosis-related gene prognostic signature for pancreatic cancer. Aging, 2021, 13(7), 10396-10414.
[http://dx.doi.org/10.18632/aging.202801] [PMID: 33819918]
[22]
Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176.
[http://dx.doi.org/10.1016/j.tcb.2015.10.014] [PMID: 26653790]
[23]
Wang, L.; Liu, Y.; Du, T.; Yang, H.; Lei, L.; Guo, M.; Ding, H.F.; Zhang, J.; Wang, H.; Chen, X.; Yan, C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ., 2020, 27(2), 662-675.
[http://dx.doi.org/10.1038/s41418-019-0380-z] [PMID: 31273299]
[24]
Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.014] [PMID: 30219704]
[25]
Miao, Y.; Chen, Y.; Xue, F.; Liu, K.; Zhu, B.; Gao, J.; Yin, J.; Zhang, C.; Li, G. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. E. Bio. Medicine, 2022, 76, 103847.
[http://dx.doi.org/10.1016/j.ebiom.2022.103847] [PMID: 35101656]
[26]
Marku, A.; Galli, A.; Marciani, P.; Dule, N.; Perego, C.; Castagna, M. Iron metabolism in pancreatic beta-cell function and dysfunction. Cells, 2021, 10(11), 2841.
[http://dx.doi.org/10.3390/cells10112841] [PMID: 34831062]
[27]
He, Y.J.; Liu, X.Y.; Xing, L.; Wan, X.; Chang, X.; Jiang, H.L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials, 2020, 241, 119911.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119911] [PMID: 32143060]
[28]
McGill, M.R.; Jaeschke, H. Biomarkers of drug-induced liver injury. Adv. Pharmacol., 2019, 85, 221-239.
[http://dx.doi.org/10.1016/bs.apha.2019.02.001] [PMID: 31307588]
[29]
Douros, A.; Bronder, E.; Andersohn, F.; Klimpel, A.; Kreutz, R.; Garbe, E.; Bolbrinker, J. Herb-induced liver injury in the berlin case-control surveillance study. Int. J. Mol. Sci., 2016, 17(1), 114.
[http://dx.doi.org/10.3390/ijms17010114] [PMID: 26784183]
[30]
Visentin, M.; Lenggenhager, D.; Gai, Z.; Kullak-Ublick, G.A. Drug-induced bile duct injury. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1498-1506.
[http://dx.doi.org/10.1016/j.bbadis.2017.08.033] [PMID: 28882625]
[31]
Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced liver injury: From animal models to humans. J. Clin. Transl. Hepatol., 2014, 2(3), 153-161.
[PMID: 26355817]
[32]
Chao, X.; Wang, H.; Jaeschke, H.; Ding, W.X. Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int., 2018, 38(8), 1363-1374.
[http://dx.doi.org/10.1111/liv.13866] [PMID: 29682868]
[33]
Aluri, J.; Cooper, M.A.; Schuettpelz, L.G. Toll-like receptor signaling in the establishment and function of the immune system. Cells, 2021, 10(6), 1374.
[http://dx.doi.org/10.3390/cells10061374] [PMID: 34199501]
[34]
Yang, T.; Wang, H.; Wang, X.; Li, J.; Jiang, L. The dual role of innate immune response in acetaminophen-induced liver injury. Biology, 2022, 11(7), 1057.
[http://dx.doi.org/10.3390/biology11071057] [PMID: 36101435]
[35]
Yamada, N.; Karasawa, T.; Kimura, H.; Watanabe, S.; Komada, T.; Kamata, R.; Sampilvanjil, A.; Ito, J.; Nakagawa, K.; Kuwata, H.; Hara, S.; Mizuta, K.; Sakuma, Y.; Sata, N.; Takahashi, M. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Dis., 2020, 11(2), 144.
[http://dx.doi.org/10.1038/s41419-020-2334-2] [PMID: 32094346]
[36]
Wu, Y.; Jiao, H.; Yue, Y.; He, K.; Jin, Y.; Zhang, J.; Zhang, J.; Wei, Y.; Luo, H.; Hao, Z.; Zhao, X.; Xia, Q.; Zhong, Q.; Zhang, J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ., 2022, 29(9), 1705-1718.
[http://dx.doi.org/10.1038/s41418-022-00957-6] [PMID: 35260822]
[37]
Niu, B.; Lei, X.; Xu, Q.; Ju, Y.; Xu, D.; Mao, L.; Li, J.; Zheng, Y.; Sun, N.; Zhang, X.; Mao, Y.; Li, X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol. Toxicol., 2022, 38(3), 505-530.
[http://dx.doi.org/10.1007/s10565-021-09624-x] [PMID: 34401974]
[38]
Wu, J.; Xue, R.; Wu, M.; Yin, X.; Xie, B.; Meng, Q. Nrf2-mediated ferroptosis inhibition exerts a protective effect on acute-on-chronic liver failure. Oxid. Med. Cell. Longev., 2022, 2022, 1-23.
[http://dx.doi.org/10.1155/2022/4505513] [PMID: 35480867]
[39]
Li, L.; Wang, K.; Jia, R.; xie, J.; Ma, L.; Hao, Z.; Zhang, W.; Mo, J.; Ren, F. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol., 2022, 56, 102435.
[http://dx.doi.org/10.1016/j.redox.2022.102435] [PMID: 36029649]
[40]
You, Y.; Liu, C.; Liu, T.; Tian, M.; Wu, N.; Yu, Z.; Zhao, F.; Qi, J.; Zhu, Q. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease. Free Radic. Biol. Med., 2022, 193(Pt 2), 808-819.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.10.322] [PMID: 36336231]
[41]
Kowdley, K.V.; Belt, P.; Wilson, L.A.; Yeh, M.M.; Neuschwander-Tetri, B.A.; Chalasani, N.; Sanyal, A.J.; Nelson, J.E. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology, 2012, 55(1), 77-85.
[http://dx.doi.org/10.1002/hep.24706] [PMID: 21953442]
[42]
Gao, G.; Xie, Z.; Li, E.; Yuan, Y.; Fu, Y.; Wang, P.; Zhang, X.; Qiao, Y.; Xu, J.; Hölscher, C.; Wang, H.; Zhang, Z. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J. Nat. Med., 2021, 75(3), 540-552.
[http://dx.doi.org/10.1007/s11418-021-01491-4] [PMID: 33590347]
[43]
Chen, S.; Zhu, J.; Zang, X.; Zhai, Y. The emerging role of ferroptosis in liver diseases. Front. Cell Dev. Biol., 2021, 9, 801365.
[http://dx.doi.org/10.3389/fcell.2021.801365] [PMID: 34970553]
[44]
Ali, N.; Ferrao, K.; Mehta, K.J. Liver iron loading in alcohol-associated liver disease. Am. J. Pathol., 2023, 193(10), 1427-1439.
[http://dx.doi.org/10.1016/j.ajpath.2022.08.010] [PMID: 36306827]
[45]
Liu, C.Y.; Wang, M.; Yu, H.M.; Han, F.X.; Wu, Q.S.; Cai, X.J.; Kurihara, H.; Chen, Y.X.; Li, Y.F.; He, R.R. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci. Biotechnol. Biochem., 2020, 84(8), 1621-1628.
[http://dx.doi.org/10.1080/09168451.2020.1763155] [PMID: 32419644]
[46]
Gao, R.; Tang, H.; Mao, J. Programmed cell death in liver fibrosis. J. Inflamm. Res., 2023, 16, 3897-3910.
[http://dx.doi.org/10.2147/JIR.S427868] [PMID: 37674533]
[47]
Wang, L.; Zhang, Z.; Li, M.; Wang, F.; Jia, Y.; Zhang, F.; Shao, J.; Chen, A.; Zheng, S. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life, 2019, 71(1), 45-56.
[http://dx.doi.org/10.1002/iub.1895] [PMID: 30321484]
[48]
Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392.
[http://dx.doi.org/10.1021/acsnano.8b06399] [PMID: 30495919]
[49]
He, G.N.; Bao, N.R.; Wang, S.; Xi, M.; Zhang, T.H.; Chen, F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther., 2021, 15, 3965-3978.
[http://dx.doi.org/10.2147/DDDT.S332847] [PMID: 34566408]
[50]
Yang, Y.; Wang, H.; Guo, Y.; Lei, W.; Wang, J.; Hu, X.; Yang, J.; He, Q. Metal ion imbalance-related oxidative stress is involved in the mechanisms of liver injury in a rat model of chronic aluminum exposure. Biol. Trace Elem. Res., 2016, 173(1), 126-131.
[http://dx.doi.org/10.1007/s12011-016-0627-1] [PMID: 26811106]
[51]
Blázovics, A.; Sárdi, É.; Szentmihályi, K.; Váli, L.; Takács-Hájos, M.; Stefanovits-Bányai, É. Extreme consumption of beta vulgaris var. rubra can cause metal ion accumulation in the liver. Acta Biol. Hung., 2007, 58(3), 281-286.
[http://dx.doi.org/10.1556/ABiol.58.2007.3.4] [PMID: 17899785]
[52]
Liu, Z.; Ma, H.; Lai, Z. The role of ferroptosis and cuproptosis in curcumin against hepatocellular carcinoma. Molecules, 2023, 28(4), 1623.
[http://dx.doi.org/10.3390/molecules28041623] [PMID: 36838613]
[53]
Zatulovskaia, Y.A.; Ilyechova, E.Y.; Puchkova, L.V. The features of copper metabolism in the rat liver during development. PLoS One, 2015, 10(10), e0140797.
[http://dx.doi.org/10.1371/journal.pone.0140797] [PMID: 26474410]
[54]
Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429.
[http://dx.doi.org/10.1007/s00424-020-02412-2] [PMID: 32506322]
[55]
Hatano, R.; Ebara, M.; Fukuda, H.; Yoshikawa, M.; Sugiura, N.; Kondo, F.; Yukawa, M.; Saisho, H. Accumulation of copper in the liver and hepatic injury in chronic hepatitis C. J. Gastroenterol. Hepatol., 2000, 15(7), 786-791.
[http://dx.doi.org/10.1046/j.1440-1746.2000.02199.x] [PMID: 10937686]
[56]
Tassabehji, N.M.; Vanlandingham, J.W.; Levenson, C.W. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human Hep G2 cells. Exp. Biol. Med., 2005, 230(10), 699-708.
[http://dx.doi.org/10.1177/153537020523001002] [PMID: 16246896]
[57]
Mikhail, T.H.; Nicola, W.G.; Ibrahim, K.H.; Salama, S.H.; Emam, M. Abnormal zinc and copper metabolism in hepatic steatosis. Boll. Chim. Farm., 1996, 135(10), 591-597.
[PMID: 9048448]
[58]
Mousa, S.O.; Abd Alsamia, E.M.; Moness, H.M.; Mohamed, O.G. The effect of zinc deficiency and iron overload on endocrine and exocrine pancreatic function in children with transfusion-dependent thalassemia: A cross-sectional study. BMC Pediatr., 2021, 21(1), 468.
[http://dx.doi.org/10.1186/s12887-021-02940-5] [PMID: 34686155]
[59]
Himoto, T.; Masaki, T. Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients, 2018, 10(1), 88.
[http://dx.doi.org/10.3390/nu10010088] [PMID: 29342898]
[60]
Rayssiguier, Y.; Chevalier, F.; Bonnet, M.; Kopp, J.; Durlach, J. Influence of magnesium deficiency on liver collagen after carbon tetrachloride or ethanol administration to rats. J. Nutr., 1985, 115(12), 1656-1662.
[http://dx.doi.org/10.1093/jn/115.12.1656] [PMID: 4067656]
[61]
Dong, Z.; Yang, X.; Qiu, T.; an, Y.; Zhang, G.; Li, Q.; Jiang, L.; Yang, G.; Cao, J.; Sun, X.; Liu, X.; Liu, D.; Yao, X. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem. Biol. Interact., 2022, 358, 109899.
[http://dx.doi.org/10.1016/j.cbi.2022.109899] [PMID: 35305974]
[62]
Birch, J.; Gil, J. Senescence and the SASP: Many therapeutic avenues. Genes Dev., 2020, 34(23-24), 1565-1576.
[http://dx.doi.org/10.1101/gad.343129.120] [PMID: 33262144]
[63]
Mohamad Kamal, N.S.; Safuan, S.; Shamsuddin, S.; Foroozandeh, P. Aging of the cells: Insight into cellular senescence and detection methods. Eur. J. Cell Biol., 2020, 99(6), 151108.
[http://dx.doi.org/10.1016/j.ejcb.2020.151108] [PMID: 32800277]
[64]
Wagner, V.; Gil, J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene, 2020, 39(29), 5165-5176.
[http://dx.doi.org/10.1038/s41388-020-1354-9] [PMID: 32541838]
[65]
Duan, J.L.; Ruan, B.; Song, P.; Fang, Z.Q.; Yue, Z.S.; Liu, J.J.; Dou, G.R.; Han, H.; Wang, L. Shear stress–induced cellular senescence blunts liver regeneration through Notch–sirtuin 1–P21/P16 axis. Hepatology, 2022, 75(3), 584-599.
[http://dx.doi.org/10.1002/hep.32209] [PMID: 34687050]
[66]
Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972.
[http://dx.doi.org/10.1172/JCI64098] [PMID: 23454759]
[67]
Krizhanovsky, V.; Yon, M.; Dickins, R.A.; Hearn, S.; Simon, J.; Miething, C.; Yee, H.; Zender, L.; Lowe, S.W. Senescence of activated stellate cells limits liver fibrosis. Cell, 2008, 134(4), 657-667.
[http://dx.doi.org/10.1016/j.cell.2008.06.049] [PMID: 18724938]
[68]
Kong, X.; Feng, D.; Wang, H.; Hong, F.; Bertola, A.; Wang, F.S.; Gao, B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology, 2012, 56(3), 1150-1159.
[http://dx.doi.org/10.1002/hep.25744] [PMID: 22473749]
[69]
Jin, H.; Lian, N.; Zhang, F.; Chen, L.; Chen, Q.; Lu, C.; Bian, M.; Shao, J.; Wu, L.; Zheng, S. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis., 2016, 7(4), e2189.
[http://dx.doi.org/10.1038/cddis.2016.92] [PMID: 27077805]
[70]
Aravinthan, A.D.; Alexander, G.J.M. Senescence in chronic liver disease: Is the future in aging? J. Hepatol., 2016, 65(4), 825-834.
[http://dx.doi.org/10.1016/j.jhep.2016.05.030] [PMID: 27245432]
[71]
Yuen, V.W.H.; Wong, C.C.L. Hypoxia-inducible factors and innate immunity in liver cancer. J. Clin. Invest., 2020, 130(10), 5052-5062.
[http://dx.doi.org/10.1172/JCI137553] [PMID: 32750043]
[72]
Li, X.; Lozovatsky, L.; Sukumaran, A.; Gonzalez, L.; Jain, A.; Liu, D.; Ayala-Lopez, N.; Finberg, K.E. NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss. Blood, 2020, 136(23), blood.2020006321.
[http://dx.doi.org/10.1182/blood.2020006321] [PMID: 32659785]
[73]
Mancias, J.D.; Pontano Vaites, L.; Nissim, S.; Biancur, D.E.; Kim, A.J.; Wang, X.; Liu, Y.; Goessling, W.; Kimmelman, A.C.; Harper, J.W. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife, 2015, 4, e10308.
[http://dx.doi.org/10.7554/eLife.10308] [PMID: 26436293]
[74]
Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting ferroptosis through disrupting the NCOA4–FTH1 interaction: A new mechanism of action. ACS Cent. Sci., 2021, 7(6), 980-989.
[http://dx.doi.org/10.1021/acscentsci.0c01592] [PMID: 34235259]
[75]
Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A red carpet for iron metabolism. Cell, 2017, 168(3), 344-361.
[http://dx.doi.org/10.1016/j.cell.2016.12.034] [PMID: 28129536]
[76]
Huang, Y.; Zhang, N.; Xie, C.; You, Y.; Guo, L.; Ye, F.; Xie, X.; Wang, J. Lipocalin-2 in neutrophils induces ferroptosis in septic cardiac dysfunction via increasing labile iron pool of cardiomyocytes. Front. Cardiovasc. Med., 2022, 9, 922534.
[http://dx.doi.org/10.3389/fcvm.2022.922534] [PMID: 35990970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy