Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

New Analogues of the Nicotinamide Phosphoribosyltransferase Inhibitor FK866 as Potential Anti-Pancreatic Cancer Agents

Author(s): Irene Conforti, Andrea Benzi, Irene Caffa, Santina Bruzzone, Alessio Nencioni and Alberto Marra*

Volume 20, Issue 7, 2024

Published on: 07 February, 2024

Page: [694 - 708] Pages: 15

DOI: 10.2174/0115734064289584240121142405

Price: $65

conference banner
Abstract

Background: During the past two decades, many nicotinamide phosphoribosyltransferase (NAMPT) inhibitors were prepared and tested because this enzyme is overexpressed in pancreatic cancer. Although FK866 is a well-known, strong NAMPT inhibitor, it suffers severe drawbacks.

Objective: Our work aimed to synthesize efficient NAMPT inhibitors featuring better pharmacokinetic properties than the pyridine-containing FK866. To this aim, the new anticancer agents were based on benzene, pyridazine, or benzothiazole moieties as a cap group instead of the pyridine unit found in FK866 and other NAMPT inhibitors.

Methods: The new compounds, prepared exploiting standard heterocycle chemistry and coupling reactions (e.g., formation of amides, ureas, and cyanoguanidines, copper-mediated azide-alkyne cycloaddition), have been fully characterized using NMR and HRMS analyses. Their activity has been evaluated using cytotoxicity and intracellular NAD depletion assays in the human pancreatic cancer cell line MiaPaCa-2.

Results: Among the 14 products obtained, compound 28, bearing a pyridazine unit as the cap group and a thiophene moiety as the tail group, showed 6.7 nanomolar inhibition activity in the intracellular NAD depletion assay and 43 nanomolar inhibition in the MiaPaCa-2 cells cytotoxicity assay, comparable to that observed for FK866.

Conclusion: The positive results observed for some newly synthesized molecules, particularly those carrying a thiophene unit as a tail group, indicate that they could act as in vivo anti-pancreatic cancer agents.

Graphical Abstract

[1]
Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic cancer. JAMA, 2021, 326(9), 851-862.
[http://dx.doi.org/10.1001/jama.2021.13027] [PMID: 34547082]
[2]
Zuzčák, M.; Trnka, J. Cellular metabolism in pancreatic cancer as a tool for prognosis and treatment. Int. J. Oncol., 2022, 61(2), 93.
[http://dx.doi.org/10.3892/ijo.2022.5383] [PMID: 35730611]
[3]
Fernandes, E.S.M.; de Mello, F.P.T.; Braga, E.P.; de Souza, G.O.; Andrade, R.; Pimentel, L.S.; Girão, C.L.; Siqueira, M.; Moraes-Junior, J.M.A.; de Oliveira, R.V.; Goldaracena, N.; Torres, O.J.M. A more radical perspective on surgical approach and outcomes in pancreatic cancer-a narrative review. J. Gastrointest. Oncol., 2023, 14(4), 1964-1981.
[http://dx.doi.org/10.21037/jgo-22-763] [PMID: 37720458]
[4]
Amaral, M.J.; Oliveira, R.C.; Donato, P.; Tralhão, J.G. Pancreatic cancer biomarkers: Oncogenic mutations, tissue and liquid biopsies, and radiomics-A review. Dig. Dis. Sci., 2023, 68(7), 2811-2823.
[http://dx.doi.org/10.1007/s10620-023-07904-6] [PMID: 36988759]
[5]
Jan, Z.; El Assadi, F.; Abd-alrazaq, A.; Jithesh, P.V. Artificial intelligence for the prediction and early diagnosis of pancreatic cancer: Scoping review. J. Med. Internet Res., 2023, 25, e44248.
[http://dx.doi.org/10.2196/44248] [PMID: 37000507]
[6]
Al-Noshokaty, T.M.; Mansour, A.; Abdelhamid, R.; Abdellatif, N.; Alaaeldien, A.; Reda, T.; Abdelmaksoud, N.M.; Doghish, A.S.; Abulsoud, A.I.; Elshaer, S.S. Role of long non-coding RNAs in pancreatic cancer pathogenesis and treatment resistance- A review. Pathol. Res. Pract., 2023, 245, 154438.
[http://dx.doi.org/10.1016/j.prp.2023.154438] [PMID: 37043965]
[7]
Perazzoli, G.; García-Valdeavero, O.M.; Peña, M.; Prados, J.; Melguizo, C.; Jiménez-Luna, C. Evaluating metabolite-based biomarkers for early diagnosis of pancreatic cancer: A systematic review. Metabolites, 2023, 13(7), 872.
[http://dx.doi.org/10.3390/metabo13070872] [PMID: 37512579]
[8]
Mazur, R.; Trna, J. Principles of palliative and supportive care in pancreatic cancer: A review. Biomedicines, 2023, 11(10), 2690.
[http://dx.doi.org/10.3390/biomedicines11102690] [PMID: 37893064]
[9]
Schlick, K.; Kiem, D.; Greil, R. Recent advances in pancreatic cancer: Novel prognostic biomarkers and targeted therapy-a review of the literature. Biomolecules, 2021, 11(10), 1469.
[http://dx.doi.org/10.3390/biom11101469] [PMID: 34680101]
[10]
Liu, J.; Lee, P.; McGee, H.M.; Chung, V.; Melstrom, L.; Singh, G.; Raoof, M.; Amini, A.; Chen, Y.J.; Williams, T.M. Advances in radiation oncology for pancreatic cancer: An updated review. Cancers, 2022, 14(23), 5725.
[http://dx.doi.org/10.3390/cancers14235725] [PMID: 36497207]
[11]
Rangelova, E.; Kaipe, H. Immunotherapy in pancreatic cancer—an emerging role: A narrative review. Chin. Clin. Oncol., 2022, 11(1), 4.
[http://dx.doi.org/10.21037/cco-21-174] [PMID: 35255693]
[12]
Jiang, S.; Fagman, J.B.; Ma, Y.; Liu, J.; Vihav, C.; Engstrom, C.; Liu, B.; Chen, C. A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging, 2022, 14(18), 7635-7649.
[http://dx.doi.org/10.18632/aging.204310] [PMID: 36173644]
[13]
Triantafillidis, J.K.; Triantafyllidi, E.; Sideris, M.; Pittaras, T.; Papalois, A.E. Herbals and plants in the treatment of pancreatic cancer: A systematic review of experimental and clinical studies. Nutrients, 2022, 14(3), 619.
[http://dx.doi.org/10.3390/nu14030619] [PMID: 35276978]
[14]
Kolbeinsson, H.M.; Chandana, S.; Wright, G.P.; Chung, M. Pancreatic cancer: A review of current treatment and novel therapies. J. Invest. Surg., 2023, 36(1), 2129884.
[http://dx.doi.org/10.1080/08941939.2022.2129884] [PMID: 36191926]
[15]
Willink, C.Y.; Jenniskens, S.F.M.; Klaassen, N.J.M.; Stommel, M.W.J.; Nijsen, J.F.W. Intratumoral injection therapies for locally advanced pancreatic cancer: Systematic review. BJS Open, 2023, 7(3), zrad052.
[http://dx.doi.org/10.1093/bjsopen/zrad052] [PMID: 37254902]
[16]
Petrelli, F.; Parisi, A.; Tomasello, G.; Mini, E.; Arru, M.; Russo, A.; Garrone, O.; Khakoo, S.; Ardito, R.; Ghidini, M. Comparison of different second line treatments for metastatic pancreatic cancer: A systematic review and network meta-analysis. BMC Gastroenterol., 2023, 23(1), 212.
[http://dx.doi.org/10.1186/s12876-023-02853-w] [PMID: 37337148]
[17]
Awais, N.; Satnarine, T.; Ahmed, A.; Haq, A.; Patel, D.; Hernandez, G.N.; Seffah, K.D.; Zaman, M.A.; Khan, S. A systematic review of chemotherapeutic regimens used in pancreatic cancer. Cureus, 2023, 15(10), e46630.
[http://dx.doi.org/10.7759/cureus.46630] [PMID: 37937003]
[18]
Salazar, J.; Bracchiglione, J.; Savall-Esteve, O.; Antequera, A.; Bottaro-Parra, D.; Gutiérrez-Valencia, M.; Martínez-Peralta, S.; Pericay, C.; Tibau, A.; Bonfill, X.; Acosta-Dighero, R.; Auladell-Rispau, A.; Cantero-Fortiz, Y.; Hernandez, E.; Irassar, J.; Meade, A-G.; Meinardi, P.; Merchán-Galvis, A.; Meza, N.; Quintana, M.J.; Requeijo, C.; Rodriguez-Grijalva, G.; Salas-Gama, K.; Santero, M.; Savall-Esteve, O.; Selva, A.; Solà, I.; Urrútia, G. Treatment with anticancer drugs for advanced pancreatic cancer: A systematic review. BMC Cancer, 2023, 23(1), 748.
[http://dx.doi.org/10.1186/s12885-023-11207-4] [PMID: 37573294]
[19]
Grolla, A.A.; Travelli, C.; Genazzani, A.A.; Sethi, J.K. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br. J. Pharmacol., 2016, 173(14), 2182-2194.
[http://dx.doi.org/10.1111/bph.13505] [PMID: 27128025]
[20]
Gasparrini, M.; Audrito, V. NAMPT: A critical driver and therapeutic target for cancer. Int. J. Biochem. Cell Biol., 2022, 145, 106189.
[http://dx.doi.org/10.1016/j.biocel.2022.106189] [PMID: 35219878]
[21]
Yaku, K.; Okabe, K.; Hikosaka, K.; Nakagawa, T. NAD metabolism in cancer therapeutics. Front. Oncol., 2018, 8, 622.
[http://dx.doi.org/10.3389/fonc.2018.00622] [PMID: 30631755]
[22]
Gallí, M.; Van Gool, F.; Rongvaux, A.; Andris, F.; Leo, O. The nicotinamide phosphoribosyltransferase: A molecular link between metabolism, inflammation, and cancer. Cancer Res., 2010, 70(1), 8-11.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2465] [PMID: 20028851]
[23]
Galli, U.; Travelli, C.; Massarotti, A.; Fakhfouri, G.; Rahimian, R.; Tron, G.C.; Genazzani, A.A. Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. J. Med. Chem., 2013, 56(16), 6279-6296.
[http://dx.doi.org/10.1021/jm4001049] [PMID: 23679915]
[24]
Montecucco, B.F.; Cea, M.; Bauer, I.; Soncini, D.; Caffa, I.; Lasigliè, D.; Nahimana, A.; Uccelli, A.; Bruzzone, S.; Nencioni, A. Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors as therapeutics: Rationales, controversies, clinical experience. Curr. Drug Targets, 2013, 14(6), 637-643.
[http://dx.doi.org/10.2174/1389450111314060003] [PMID: 23531116]
[25]
Sampath, D.; Zabka, T.S.; Misner, D.L.; O’Brien, T.; Dragovich, P.S. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol. Ther., 2015, 151, 16-31.
[http://dx.doi.org/10.1016/j.pharmthera.2015.02.004] [PMID: 25709099]
[26]
Galli, U.; Colombo, G.; Travelli, C.; Tron, G.C.; Genazzani, A.A.; Grolla, A.A. Recent advances in NAMPT inhibitors: A novel immunotherapic strategy. Front. Pharmacol., 2020, 11, 656.
[http://dx.doi.org/10.3389/fphar.2020.00656] [PMID: 32477131]
[27]
Heske, C.M. Beyond energy metabolism: Exploiting the additional roles of NAMPT for cancer therapy. Front. Oncol., 2020, 9, 1514.
[http://dx.doi.org/10.3389/fonc.2019.01514] [PMID: 32010616]
[28]
Ghanem, M.S.; Monacelli, F.; Nencioni, A. Advances in NAD-lowering agents for cancer treatment. Nutrients, 2021, 13(5), 1665.
[http://dx.doi.org/10.3390/nu13051665] [PMID: 34068917]
[29]
Wei, Y.; Xiang, H.; Zhang, W. Review of various NAMPT inhibitors for the treatment of cancer. Front. Pharmacol., 2022, 13, 970553.
[http://dx.doi.org/10.3389/fphar.2022.970553] [PMID: 36160449]
[30]
Böhnke, N.; Berger, M.; Griebenow, N.; Rottmann, A.; Erkelenz, M.; Hammer, S.; Berndt, S.; Günther, J.; Wengner, A.M.; Stelte-Ludwig, B.; Mahlert, C.; Greven, S.; Dietz, L.; Jörißen, H.; Barak, N.; Bömer, U.; Hillig, R.C.; Eberspaecher, U.; Weiske, J.; Giese, A.; Mumberg, D.; Nising, C.F.; Weinmann, H.; Sommer, A. A novel NAMPT inhibitor-based antibody-drug conjugate payload class for cancer therapy. Bioconjug. Chem., 2022, 33(6), 1210-1221.
[http://dx.doi.org/10.1021/acs.bioconjchem.2c00178] [PMID: 35658441]
[31]
Tang, H.; Wang, L.; Wang, T.; Yang, J.; Zheng, S.; Tong, J.; Jiang, S.; Zhang, X.; Zhang, K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur. J. Med. Chem., 2023, 258, 115607.
[http://dx.doi.org/10.1016/j.ejmech.2023.115607] [PMID: 37413882]
[32]
Galli, U.; Ercolano, E.; Carraro, L.; Blasi Roman, C.R.; Sorba, G.; Canonico, P.L.; Genazzani, A.A.; Tron, G.C.; Billington, R.A. Synthesis and biological evaluation of isosteric analogues of FK866, an inhibitor of NAD salvage. ChemMedChem, 2008, 3(5), 771-779.
[http://dx.doi.org/10.1002/cmdc.200700311] [PMID: 18247435]
[33]
Zheng, X.; Bauer, P.; Baumeister, T.; Buckmelter, A.J.; Caligiuri, M.; Clodfelter, K.H.; Han, B.; Ho, Y.C.; Kley, N.; Lin, J.; Reynolds, D.J.; Sharma, G.; Smith, C.C.; Wang, Z.; Dragovich, P.S.; Oh, A.; Wang, W.; Zak, M.; Gunzner-Toste, J.; Zhao, G.; Yuen, P.; Bair, K.W. Structure-based identification of ureas as novel nicotinamide phosphoribosyltransferase (Nampt) inhibitors. J. Med. Chem., 2013, 56(12), 4921-4937.
[http://dx.doi.org/10.1021/jm400186h] [PMID: 23617784]
[34]
Zheng, X.; Bauer, P.; Baumeister, T.; Buckmelter, A.J.; Caligiuri, M.; Clodfelter, K.H.; Han, B.; Ho, Y.C.; Kley, N.; Lin, J.; Reynolds, D.J.; Sharma, G.; Smith, C.C.; Wang, Z.; Dragovich, P.S.; Gunzner-Toste, J.; Liederer, B.M.; Ly, J.; O’Brien, T.; Oh, A.; Wang, L.; Wang, W.; Xiao, Y.; Zak, M.; Zhao, G.; Yuen, P.; Bair, K.W. Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors. J. Med. Chem., 2013, 56(16), 6413-6433.
[http://dx.doi.org/10.1021/jm4008664] [PMID: 23859118]
[35]
Christensen, M.K.; Erichsen, K.D.; Olesen, U.H.; Tjørnelund, J.; Fristrup, P.; Thougaard, A.; Nielsen, S.J.; Sehested, M.; Jensen, P.B.; Loza, E.; Kalvinsh, I.; Garten, A.; Kiess, W.; Björkling, F. Nicotinamide phosphoribosyltransferase inhibitors, design, preparation, and structure-activity relationship. J. Med. Chem., 2013, 56(22), 9071-9088.
[http://dx.doi.org/10.1021/jm4009949] [PMID: 24164086]
[36]
Travelli, C.; Aprile, S.; Rahimian, R.; Grolla, A.A.; Rogati, F.; Bertolotti, M.; Malagnino, F.; di Paola, R.; Impellizzeri, D.; Fusco, R.; Mercalli, V.; Massarotti, A.; Stortini, G.; Terrazzino, S.; Del Grosso, E.; Fakhfouri, G.; Troiani, M.P.; Alisi, M.A.; Grosa, G.; Sorba, G.; Canonico, P.L.; Orsomando, G.; Cuzzocrea, S.; Genazzani, A.A.; Galli, U.; Tron, G.C. Identification of novel triazole-based Nicotinamide Phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory activity. J. Med. Chem., 2017, 60(5), 1768-1792.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01392] [PMID: 28165742]
[37]
Neumann, C.S.; Olivas, K.C.; Anderson, M.E.; Cochran, J.H.; Jin, S.; Li, F.; Loftus, L.V.; Meyer, D.W.; Neale, J.; Nix, J.C.; Pittman, P.G.; Simmons, J.K.; Ulrich, M.L.; Waight, A.B.; Wong, A.; Zaval, M.C.; Zeng, W.; Lyon, R.P.; Senter, P.D. Targeted delivery of cytotoxic nampt inhibitors using antibody-drug conjugates. Mol. Cancer Ther., 2018, 17(12), 2633-2642.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0643] [PMID: 30242091]
[38]
Karpov, A.S.; Abrams, T.; Clark, S.; Raikar, A.; D’Alessio, J.A.; Dillon, M.P.; Gesner, T.G.; Jones, D.; Lacaud, M.; Mallet, W.; Martyniuk, P.; Meredith, E.; Mohseni, M.; Nieto-Oberhuber, C.M.; Palacios, D.; Perruccio, F.; Piizzi, G.; Zurini, M.; Bialucha, C.U. Nicotinamide phosphoribosyltransferase inhibitor as a novel payload for antibody-drug conjugates. ACS Med. Chem. Lett., 2018, 9(8), 838-842.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00254] [PMID: 30128077]
[39]
Travelli, C.; Aprile, S.; Mattoteia, D.; Colombo, G.; Clemente, N.; Scanziani, E.; Terrazzino, S.; Alisi, M.A.; Polenzani, L.; Grosa, G.; Genazzani, A.A.; Tron, G.C.; Galli, U. Identification of potent triazolylpyridine nicotinamide phosphoribosyltransferase (NAMPT) inhibitors bearing a 1,2,3-triazole tail group. Eur. J. Med. Chem., 2019, 181, 111576.
[http://dx.doi.org/10.1016/j.ejmech.2019.111576] [PMID: 31400709]
[40]
Biniecka, P.; Matsumoto, S.; Belotti, A.; Joussot, J.; Bai, J.F.; Majjigapu, S.R.; Thoueille, P.; Spaggiari, D.; Desfontaine, V.; Piacente, F.; Bruzzone, S.; Cea, M.; Decosterd, L.A.; Vogel, P.; Nencioni, A.; Duchosal, M.A.; Nahimana, A. Anticancer activities of novel nicotinamide phosphoribosyltransferase inhibitors in hematological malignancies. Molecules, 2023, 28(4), 1897.
[http://dx.doi.org/10.3390/molecules28041897] [PMID: 36838885]
[41]
Hasmann, M.; Schemainda, I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res., 2003, 63(21), 7436-7442.
[PMID: 14612543]
[42]
Khan, J.A.; Tao, X.; Tong, L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat. Struct. Mol. Biol., 2006, 13(7), 582-588.
[http://dx.doi.org/10.1038/nsmb1105] [PMID: 16783377]
[43]
Conforti, I.; Benzi, A.; Caffa, I.; Bruzzone, S.; Nencioni, A.; Marra, A. Iminosugar-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors as potential anti-pancreatic cancer agents. Pharmaceutics, 2023, 15(5), 1472.
[http://dx.doi.org/10.3390/pharmaceutics15051472] [PMID: 37242714]
[44]
Benzi, A.; Sturla, L.; Heine, M.; Fischer, A.W.; Spinelli, S.; Magnone, M.; Sociali, G.; Parodi, A.; Fenoglio, D.; Emionite, L.; Koch-Nolte, F.; Mittrücker, H.W.; Guse, A.H.; De Flora, A.; Zocchi, E.; Heeren, J.; Bruzzone, S. CD38 downregulation modulates NAD+ and NADP(H) levels in thermogenic adipose tissues. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(1), 158819.
[http://dx.doi.org/10.1016/j.bbalip.2020.158819] [PMID: 33010451]
[45]
Fiala, T.; Wang, J.; Dunn, M.; Šebej, P.; Choi, S.J.; Nwadibia, E.C.; Fialova, E.; Martinez, D.M.; Cheetham, C.E.; Fogle, K.J.; Palladino, M.J.; Freyberg, Z.; Sulzer, D.; Sames, D. Chemical targeting of voltage sensitive dyes to specific cells and molecules in the brain. J. Am. Chem. Soc., 2020, 142(20), 9285-9301.
[http://dx.doi.org/10.1021/jacs.0c00861] [PMID: 32395989]
[46]
Fu, L.Y.; Ying, J.; Qi, X.; Peng, J.B.; Wu, X.F. Palladium-catalyzed carbonylative synthesis of isoindolinones from benzylamines with TFBen as the CO source. J. Org. Chem., 2019, 84(3), 1421-1429.
[http://dx.doi.org/10.1021/acs.joc.8b02862] [PMID: 30620192]
[47]
Grandjean, C.; Boutonnier, A.; Guerreiro, C.; Fournier, J.M.; Mulard, L.A. On the preparation of carbohydrate-protein conjugates using the traceless Staudinger ligation. J. Org. Chem., 2005, 70(18), 7123-7132.
[http://dx.doi.org/10.1021/jo0505472] [PMID: 16122231]
[48]
Vogel, P.; Duchosal, M.; Nahimana, A.; Robina, I.; Mollinedo, F.; Nencioni, A. Piperidine derivatives for use in the treatment of pancreatic cancer. W.O. Patent 2018024907, 2018.
[49]
Li, F.; Li, Y.; Zhou, Z.; Lv, S.; Deng, Q.; Xu, X.; Yin, L. Engineering the aromaticity of cationic helical polypeptides toward “self-activated” DNA/siRNA delivery. ACS Appl. Mater. Interfaces, 2017, 9(28), 23586-23601.
[http://dx.doi.org/10.1021/acsami.7b08534] [PMID: 28657294]
[50]
Colombano, G.; Travelli, C.; Galli, U.; Caldarelli, A.; Chini, M.G.; Canonico, P.L.; Sorba, G.; Bifulco, G.; Tron, G.C.; Genazzani, A.A. A novel potent nicotinamide phosphoribosyltransferase inhibitor synthesized via click chemistry. J. Med. Chem., 2010, 53(2), 616-623.
[http://dx.doi.org/10.1021/jm9010669] [PMID: 19961183]
[51]
Bai, J.F.; Majjigapu, S.R.; Sordat, B.; Poty, S.; Vogel, P.; Elías-Rodríguez, P.; Moreno-Vargas, A.J.; Carmona, A.T.; Caffa, I.; Ghanem, M.; Khalifa, A.; Monacelli, F.; Cea, M.; Robina, I.; Gajate, C.; Mollinedo, F.; Bellotti, A.; Nahimana, A.; Duchosal, M.; Nencioni, A. Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. Eur. J. Med. Chem., 2022, 239, 114504.
[http://dx.doi.org/10.1016/j.ejmech.2022.114504] [PMID: 35724566]
[52]
Fratta, S.; Biniecka, P.; Moreno-Vargas, A.J.; Carmona, A.T.; Nahimana, A.; Duchosal, M.A.; Piacente, F.; Bruzzone, S.; Caffa, I.; Nencioni, A.; Robina, I. Synthesis and structure-activity relationship of new nicotinamide phosphoribosyltransferase inhibitors with antitumor activity on solid and haematological cancer. Eur. J. Med. Chem., 2023, 250, 115170.
[http://dx.doi.org/10.1016/j.ejmech.2023.115170] [PMID: 36787658]
[53]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy