Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Thiosemicarbazone-benzenesulfonamide Derivatives as Human Carbonic Anhydrases Inhibitors: Synthesis, Characterization, and In silico Studies

Author(s): Muhammed Trawally, Kübra Demir-Yazıcı, Andrea Angeli*, Kerem Kaya, Atilla Akdemir, Claudiu T. Supuran and Özlen Güzel-Akdemir*

Volume 24, Issue 9, 2024

Published on: 01 February, 2024

Page: [649 - 667] Pages: 19

DOI: 10.2174/0118715206290722240125112447

Price: $65

Abstract

Introduction: Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3 -. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases.

Methods: A series of novel thiosemicarbazone-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach.

Results: The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively.

Conclusion: To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.

Next »
Graphical Abstract

[1]
Nocentini, A.; Supuran, C.T.; Capasso, C. An overview on the recently discovered iota-carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1988-1995.
[http://dx.doi.org/10.1080/14756366.2021.1972995] [PMID: 34482770]
[2]
Supuran, C. T. How many carbonic anhydrase inhibition mechanisms exist_ _ Enhanced Reader // How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem., 2016, 31(3), 345-360.
[http://dx.doi.org/10.3109/14756366.2015.1122001]
[3]
Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032.
[http://dx.doi.org/10.1042/BCJ20160115] [PMID: 27407171]
[4]
Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88.
[http://dx.doi.org/10.1080/17460441.2017.1253677] [PMID: 27783541]
[5]
Chegwidden, W.R. The carbonic anhydrases in health and disease. In: The Carbonic Anhydrases: Current and Emerging Therapeutic Targets; Chegwidden, W.R.; Carter, N.D., Eds.; Springer International Publishing, 2021; 75, pp. 1-12.
[http://dx.doi.org/10.1007/978-3-030-79511-5_1]
[6]
Imtaiyaz H, M.; Shajee, B.; Waheed, A.; Ahmad, F.; Sly, W.S. Structure, function and applications of carbonic anhydrase isozymes. Bioorg. Med. Chem., 2013, 21(6), 1570-1582.
[http://dx.doi.org/10.1016/j.bmc.2012.04.044] [PMID: 22607884]
[7]
Aspatwar, A.; Tolvanen, M.E.E.; Ortutay, C.; Parkkila, S. Carbonic anhydrase related proteins: Molecular biology and evolution. In: Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Frost, S.C.; McKenna, R., Eds.; Springer: Netherlands, 2014; pp. 135-156.
[http://dx.doi.org/10.1007/978-94-007-7359-2_8]
[8]
Supuran, C.T. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites, 2017, 7(3), 48.
[http://dx.doi.org/10.3390/metabo7030048] [PMID: 28926956]
[9]
Supuran, C.T. Carbonic anhydrases. In: Metalloenzymes:From bench to bedside; Supuran, C.T.; Donald, W.A., Eds.; Academic Press, 2024; pp. 139-156.
[http://dx.doi.org/10.1016/B978-0-12-823974-2.00014-0]
[10]
Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov., 2011, 10(10), 767-777.
[http://dx.doi.org/10.1038/nrd3554] [PMID: 21921921]
[11]
Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci., 2021, 135(10), 1233-1249.
[http://dx.doi.org/10.1042/CS20210040] [PMID: 34013961]
[12]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468.
[http://dx.doi.org/10.1021/cr200176r] [PMID: 22607219]
[13]
Mishra, C.B.; Tiwari, M.; Supuran, C.T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med. Res. Rev., 2020, 40(6), 2485-2565.
[http://dx.doi.org/10.1002/med.21713] [PMID: 32691504]
[14]
Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma carbonic anhydrase inhibitors: A patent review. Expert Opin. Ther. Pat., 2013, 23(6), 705-716.
[http://dx.doi.org/10.1517/13543776.2013.794788] [PMID: 23627893]
[15]
Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin. Ther. Pat., 2004, 14(5), 667-702.
[http://dx.doi.org/10.1517/13543776.14.5.667]
[16]
Ondriskova, E.; Debreova, M.; Pastorekova, S. Tumor-associated carbonic anhydrases IX and XII. In: Carbonic anhydrases as biocatalysts: From theory to medical and industrial applications; Supuran, C.T.; de Simone, G., Eds.; Elsevier, 2015; pp. 169-205.
[http://dx.doi.org/10.1016/B978-0-444-63258-6.00010-X]
[17]
Mboge, M.Y.; Chen, Z.; Wolff, A.; Mathias, J.V.; Tu, C.; Brown, K.D.; Bozdag, M.; Carta, F.; Supuran, C.T.; McKenna, R.; Frost, S.C. Selective inhibition of carbonic anhydrase IX over carbonic anhydrase XII in breast cancer cells using benzene sulfonamides: Disconnect between activity and growth inhibition. PLoS One, 2018, 13(11), e0207417.
[http://dx.doi.org/10.1371/journal.pone.0207417] [PMID: 30452451]
[18]
Giovannuzzi, S.; D’Ambrosio, M.; Luceri, C.; Osman, S.M.; Pallecchi, M.; Bartolucci, G.; Nocentini, A.; Supuran, C.T. Aromatic sulfonamides including a sulfonic acid tail: New membrane impermeant carbonic anhydrase inhibitors for targeting selectively the cancer-associated isoforms. Int. J. Mol. Sci., 2021, 23(1), 461.
[http://dx.doi.org/10.3390/ijms23010461] [PMID: 35008884]
[19]
Tawfik, H.O.; Petreni, A.; Supuran, C.T.; El-Hamamsy, M.H. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur. J. Med. Chem., 2022, 232, 114190.
[http://dx.doi.org/10.1016/j.ejmech.2022.114190] [PMID: 35182815]
[20]
Nerella, S.G.; Singh, P.; Arifuddin, M.; Supuran, C.T. Anticancer carbonic anhydrase inhibitors: A patent and literature update 2018-2022. Expert Opin. Ther. Pat., 2022, 32(8), 833-847.
[http://dx.doi.org/10.1080/13543776.2022.2083502] [PMID: 35616541]
[21]
Supuran, C.T. Carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3467-3474.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.009] [PMID: 20529676]
[22]
Carta, F.; Supuran, C.T.; Scozzafava, A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med. Chem., 2014, 6(10), 1149-1165.
[http://dx.doi.org/10.4155/fmc.14.68] [PMID: 25078135]
[23]
Supuran, C.T.; Mugelli, A. Polypharmacology of carbonic anhydrase inhibitors. Pharmadvances, 2019, 1(00)
[http://dx.doi.org/10.36118/pharmadvances.00.2019.06]
[24]
Güzel-Akdemir, Ö.; Trawally, M.; Özbek-Babuç, M.; Özbek-Çelik, B.; Ermut, G.; Özdemir, H. Synthesis and antibacterial activity of new hybrid derivatives of 5-sulfamoyl-1H-indole and 4-thiazolidinone groups. Monatsh. Chem., 2020, 151(9), 1443-1452.
[http://dx.doi.org/10.1007/s00706-020-02664-9]
[25]
Shah, S.A.S.; Rivera, G.; Ashfaq, M. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini Rev. Med. Chem., 2012, 13(1), 70-86.
[http://dx.doi.org/10.2174/1389557511307010070]
[26]
George, J.; Lekha, V.S.; G, R.N.; Mary, Y.S.; Al-Otaibi, J.S.; K, R. Synthesis, crystal structure and anti-tumour activity studies of 4- Tertiarybutylcyclohexanonethiosemicarbazone. J. Mol. Struct., 2022, 1265, 133490.
[http://dx.doi.org/10.1016/j.molstruc.2022.133490]
[27]
Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals—An overview. Coord. Chem. Rev., 2009, 253(7-8), 977-1055.
[http://dx.doi.org/10.1016/j.ccr.2008.07.004]
[28]
Reis, D.; Despaigne, A.; Silva, J.; Silva, N.; Vilela, C.; Mendes, I.; Takahashi, J.; Beraldo, H. Structural studies and investigation on the activity of imidazole-derived thiosemicarbazones and hydrazones against crop-related fungi. Molecules, 2013, 18(10), 12645-12662.
[http://dx.doi.org/10.3390/molecules181012645] [PMID: 24129274]
[29]
Rogolino, D.; Bacchi, A.; Luca, L.; de; Rispoli, G.; Sechi, M.; Stevaert, A.; Naesens, L.; Carcelli, M. Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease. J. Biol. Inorg. Chem., 2015, 20(7), 1109-1121.
[http://dx.doi.org/10.1007/s00775-015-1292-0]
[30]
Suni, V.; Prathapachandra Kurup, M.R.; Nethaji, M. Structural and spectral perspectives of a novel thiosemicarbazone synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 174-181.
[http://dx.doi.org/10.1016/j.saa.2005.05.001] [PMID: 16344250]
[31]
Carradori, S.; Cirilli, R.; Dei Cicchi, S.; Ferretti, R.; Menta, S.; Pierini, M.; Secci, D. 3-Methylcyclohexanone thiosemicarbazone: Determination of E/Z isomerization barrier by dynamic high-performance liquid chromatography, configuration assignment and theoretical study of the mechanisms involved by the spontaneous, acid and base catalyzed processes. J. Chromatogr. A, 2012, 1269, 168-177.
[http://dx.doi.org/10.1016/j.chroma.2012.08.007] [PMID: 22921363]
[32]
Afonin, A.V.; Pavlov, D.V.; Albanov, A.V.; Mal’kina, A.G. Solvent-induced E/Z isomerization of 2-(furylmethylidene)-1-hydrazinecarbothioamide: The N–H⋅⋅⋅O intramolecular hydrogen bond as promoting factor. J. Mol. Struct., 2020, 1207, 127782.
[http://dx.doi.org/10.1016/j.molstruc.2020.127782]
[33]
Ali, N.H.S.O.; Hamid, M.H.S.A.; Putra, N.A.A.M.A.; Adol, H.A.; Mirza, A.H.; Usman, A.; Siddiquee, T.A.; Hoq, M.R.; Karim, M.R. Efficient eco-friendly syntheses of dithiocarbazates and thiosemicarbazones. Green Chem. Lett. Rev., 2020, 13(2), 129-140.
[http://dx.doi.org/10.1080/17518253.2020.1737252]
[34]
Bajaj, K.; Buchanan, R.M.; Grapperhaus, C.A. Antifungal activity of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes. J. Inorg. Biochem., 2021, 225, 111620.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111620] [PMID: 34619407]
[35]
Sevinçli, Z.Ş.; Duran, G.N.; Özbil, M.; Karalı, N. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones. Bioorg. Chem., 2020, 104, 104202.
[http://dx.doi.org/10.1016/j.bioorg.2020.104202] [PMID: 32892069]
[36]
Xu, Y.S.; Chigan, J.Z.; Li, J.Q.; Ding, H.H.; Sun, L.Y.; Liu, L.; Hu, Z.; Yang, K.W. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorg. Chem., 2022, 124, 105799.
[http://dx.doi.org/10.1016/j.bioorg.2022.105799] [PMID: 35462235]
[37]
Ibáñez-Escribano, A.; Fonseca-Berzal, C.; Martínez-Montiel, M.; Álvarez-Márquez, M.; Gómez-Núñez, M.; Lacueva-Arnedo, M.; Espinosa-Buitrago, T.; Martín-Pérez, T.; Escario, J.A.; Merino-Montiel, P.; Montiel-Smith, S.; Gómez-Barrio, A.; López, Ó.; Fernández-Bolaños, J.G. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 781-791.
[http://dx.doi.org/10.1080/14756366.2022.2041629] [PMID: 35193444]
[38]
Güzel, Ö.; Karalı, N.; Salman, A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorg. Med. Chem., 2008, 16(19), 8976-8987.
[http://dx.doi.org/10.1016/j.bmc.2008.08.050] [PMID: 18804379]
[39]
Sardari, S.; Feizi, S.; Rezayan, A.H.; Azerang, P.; Shahcheragh, S.M.; Ghavami, G.; Habibi, A. Synthesis and biological evaluation of thiosemicarbazide derivatives endowed with high activity toward mycobacterium bovis. Iran. J. Pharm. Res., 2017, 16(3), 1128-1140.
[http://dx.doi.org/10.22334/jbhost.v6i2.217.s47] [PMID: 29201099]
[40]
Sevinçli, Z.Ş.; Cantürk, Z.; Dikmen, M.; Karalı, N.L. Anticancer and antituberculosis effects of 5-fluoro1H-indole-2,3-dione 3-thiosemicarbazones. Istanbul J Pharm, 2020, 50(3), 176-180.
[http://dx.doi.org/10.26650/IstanbulJPharm.2020.0086]
[41]
Parker, E.N.; Song, J.; Kishore Kumar, G.D.; Odutola, S.O.; Chavarria, G.E.; Charlton-Sevcik, A.K.; Strecker, T.E.; Barnes, A.L.; Sudhan, D.R.; Wittenborn, T.R.; Siemann, D.W.; Horsman, M.R.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L. Bioorg. Med. Chem., 2015, 23(21), 6974-6992.
[http://dx.doi.org/10.1016/j.bmc.2015.09.036] [PMID: 26462052]
[42]
Othman, E.M.; Fayed, E.A.; Husseiny, E.M.; Abulkhair, H.S. The effect of novel synthetic semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles on the apoptotic markers, VEGFR-2, and cell cycle of myeloid leukemia. Bioorg. Chem., 2022, 127, 105968.
[http://dx.doi.org/10.1016/j.bioorg.2022.105968] [PMID: 35728289]
[43]
Dharmasivam, M.; Azad, M.G.; Afroz, R.; Richardson, V.; Jansson, P.J.; Richardson, D.R. The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(8), 130152.
[http://dx.doi.org/10.1016/j.bbagen.2022.130152] [PMID: 35436509]
[44]
Song, J.; Pan, R.; Li, G.; Su, W.; Song, X.; Li, J.; Liu, S. Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med. Chem. Res., 2020, 29(4), 630-642.
[http://dx.doi.org/10.1007/s00044-020-02503-w]
[45]
Karalı, N.; Akdemir, A.; Göktaş, F.; Eraslan Elma, P.; Angeli, A.; Kızılırmak, M.; Supuran, C.T. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg. Med. Chem., 2017, 25(14), 3714-3718.
[http://dx.doi.org/10.1016/j.bmc.2017.05.029] [PMID: 28545816]
[46]
Güzel-Akdemir, Ö.; Akdemir, A.; Karalı, N.; Supuran, C.T. Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Org. Biomol. Chem., 2015, 13(23), 6493-6499.
[http://dx.doi.org/10.1039/C5OB00688K] [PMID: 25967275]
[47]
Demir-Yazıcı, K.; Bua, S.; Akgüneş, N.M.; Akdemir, A.; Supuran, C.T.; Güzel-Akdemir, Ö. Indole-based hydrazones containing A sulfonamide moiety as selective inhibitors of tumor-associated human carbonic anhydrase isoforms IX and XII. Int. J. Mol. Sci., 2019, 20(9), 2354.
[http://dx.doi.org/10.3390/ijms20092354] [PMID: 31083645]
[48]
Akdemir, A.; Güzel-Akdemir, Ö.; Scozzafava, A.; Capasso, C.; Supuran, C.T. Inhibition of tumor-associated human carbonic anhydrase isozymes IX and XII by a new class of substituted-phenylacetamido aromatic sulfonamides. Bioorg. Med. Chem., 2013, 21(17), 5228-5232.
[http://dx.doi.org/10.1016/j.bmc.2013.06.029] [PMID: 23842519]
[49]
Güzel, Ö.; Temperini, C.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Interaction of 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide with 12 mammalian isoforms: Kinetic and X-ray crystallographic studies. Bioorg. Med. Chem. Lett., 2008, 18(1), 152-158.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.110] [PMID: 18024029]
[50]
Güzel, Ö.; Innocenti, A.; Scozzafava, A.; Salman, A.; Parkkila, S.; Hilvo, M.; Supuran, C.T. Carbonic anhydrase inhibitors: Synthesis and inhibition studies against mammalian isoforms I–XV with a series of 2-(hydrazinocarbonyl)-3-substituted-phenyl-1H-indole-5-sulfonamides. Bioorg. Med. Chem., 2008, 16(20), 9113-9120.
[http://dx.doi.org/10.1016/j.bmc.2008.09.032] [PMID: 18819811]
[51]
Güzel, Ö.; Maresca, A.; Scozzafava, A.; Salman, A.; Balaban, A.T.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of 2,4,6-trimethylpyridinium derivatives of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides acting as potent inhibitors of the tumor-associated isoform IX and XII. Bioorg. Med. Chem. Lett., 2009, 19(11), 2931-2934.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.068] [PMID: 19410461]
[52]
Güzel, Ö.; Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Phenacetyl-, pyridylacetyl- and thienylacetyl-substituted aromatic sulfonamides act as potent and selective isoform VII inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3170-3173.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.123] [PMID: 19435663]
[53]
Güzel, O.; Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C.T. 3-phenyl-1H-indole-5-sulfonamides: Structure-based drug design of a promising class of carbonic anhydrase inhibitors. Curr. Pharm. Des., 2010, 16(29), 3317-3326.
[http://dx.doi.org/10.2174/138161210793429805] [PMID: 20819062]
[54]
Pacchiano, F.; Carta, F.; McDonald, P.C.; Lou, Y.; Vullo, D.; Scozzafava, A.; Dedhar, S.; Supuran, C.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem., 2011, 54(6), 1896-1902.
[http://dx.doi.org/10.1021/jm101541x] [PMID: 21361354]
[55]
McDonald, P.C.; Chia, S.; Bedard, P.L.; Chu, Q.; Lyle, M.; Tang, L.; Singh, M.; Zhang, Z.; Supuran, C.T.; Renouf, D.J.; Dedhar, S. A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am. J. Clin. Oncol., 2020, 43(7), 484-490.
[http://dx.doi.org/10.1097/COC.0000000000000691] [PMID: 32251122]
[56]
Eldehna, W.M.; Abo-Ashour, M.F.; Nocentini, A.; El-Haggar, R.S.; Bua, S.; Bonardi, A.; Al-Rashood, S.T.; Hassan, G.S.; Gratteri, P.; Abdel-Aziz, H.A.; Supuran, C.T. Enhancement of the tail hydrophobic interactions within the carbonic anhydrase IX active site via structural extension: Design and synthesis of novel N-substituted isatins-SLC-0111 hybrids as carbonic anhydrase inhibitors and antitumor agents. Eur. J. Med. Chem., 2019, 162, 147-160.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.068] [PMID: 30445264]
[57]
Sarnella, A.; Ferrara, Y.; Auletta, L.; Albanese, S.; Cerchia, L.; Alterio, V.; De Simone, G.; Supuran, C.T.; Zannetti, A. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J. Exp. Clin. Cancer Res., 2022, 41(1), 122.
[http://dx.doi.org/10.1186/s13046-022-02345-x] [PMID: 35365193]
[58]
Ilies, M.A.; Vullo, D.; Pastorek, J.; Scozzafava, A.; Ilies, M.; Caproiu, M.T.; Pastorekova, S.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of tumor-associated isozyme IX by halogenosulfanilamide and halogenophenylaminobenzolamide derivatives. J. Med. Chem., 2003, 46(11), 2187-2196.
[http://dx.doi.org/10.1021/jm021123s] [PMID: 12747790]
[59]
McKee, R.L.; Bost, R.W. para-Substituted phenyl isothiocyanates and some related thioureas. J. Am. Chem. Soc., 1946, 68(12), 2506-2507.
[http://dx.doi.org/10.1021/ja01216a022] [PMID: 20282387]
[60]
Cecchi, A.; Ciani, L.; Winum, J.Y.; Montero, J.L.; Scozzafava, A.; Ristori, S.; Supuran, C.T. Carbonic anhydrase inhibitors: Design of spin-labeled sulfonamides incorporating TEMPO moieties as probes for cytosolic or transmembrane isozymes. Bioorg. Med. Chem. Lett., 2008, 18(12), 3475-3480.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.051] [PMID: 18513964]
[61]
Eraslan Elma, P. 1H-indole-2,3-dione 3-thiosemicarbazone derivatives carrying 3-sulfamoylphenyl moiety: Synthesis, structure determination, molecular modeling and biological activity evaluation. Ph.D; Istanbul University: Istanbul, 2017.
[62]
Taşdemir, D.; Karaküçük-İyidoğan, A.; Ulaşli, M.; Taşkin-Tok, T.; Oruç-Emre, E.E.; Bayram, H. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents. Chirality, 2015, 27(2), 177-188.
[http://dx.doi.org/10.1002/chir.22408] [PMID: 25399965]
[63]
Karaküçük-İyidoğan, A.; Taşdemir, D.; Oruç-Emre, E.E.; Balzarini, J. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities. Eur. J. Med. Chem., 2011, 46(11), 5616-5624.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.031] [PMID: 21993152]
[64]
Stariat, J.; Kovaříková, P.; Kučera, R.; Klimeš, J.; Kalinowski, D.S.; Richardson, D.R.; Ketola, R.A. Identification of in vitro metabolites of the novel anti-tumor thiosemicarbazone, DpC, using ultra-high performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. Anal. Bioanal. Chem., 2013, 405(5), 1651-1661.
[http://dx.doi.org/10.1007/s00216-012-6562-x] [PMID: 23180090]
[65]
Subhashree, G.R.; Haribabu, J.; Saranya, S.; Yuvaraj, P.; Krishnan, A.D.; Karvembu, R.; Gayathri, D. In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones. J. Mol. Struct., 2017, 1145, 160-169.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.054]
[66]
Yıldız, M.; Ünver, H.; Erdener, D.; Kiraz, A.; İskeleli, N.O. Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-[(1H-indol-3-yl)methylene]thiosemicarbazone. J. Mol. Struct., 2009, 919(1-3), 227-234.
[http://dx.doi.org/10.1016/j.molstruc.2008.09.008]
[67]
Rana, A.; Parekh, N.; Dabhi, H.; Bhoi, D.; Kumari, N. Synthesis, crystal structural characterization and biological properties of thiosemicarbazones of schiff bases derived from 4-acyl-2-pyrazoline-5-one. E-J. Chem., 2011, 8(4), 1820-1831.
[http://dx.doi.org/10.1155/2011/826392]
[68]
Anderson, B.; Jasinski, J.; Freedman, M.; Millikan, S.; O’Rourke, K.; Smolenski, V. Synthesis, crystal structural investigations, and DFT calculations of novel thiosemicarbazones. Crystals, 2016, 6(2), 17.
[http://dx.doi.org/10.3390/cryst6020017]
[69]
Kılıç-Cıkla, I.; Güveli, Ş.; Yavuz, M.; Bal-Demirci, T.; Ülküseven, B. 5-Methyl-2-hydroxy-acetophenone-thiosemicarbazone and its nickel(II) complex: Crystallographic, spectroscopic (IR, NMR and UV) and DFT studies. Polyhedron, 2016, 105, 104-114.
[http://dx.doi.org/10.1016/j.poly.2015.12.021]
[70]
Domagała, M.; Dubis, A.T.; Wojtulewski, S.; Zabel, M.; Pfitzner, A. Hydrogen bonding in crystals of pyrrol-2-yl chloromethyl ketone derivatives and methyl pyrrole-2-carboxylate. Crystals, 2022, 12(11), 1523.
[http://dx.doi.org/10.3390/cryst12111523]
[71]
Haramura, M.; Tanaka, A.; Akimoto, T.; Hirayama, N. Crystal structure of dichlorphenamide. X-ray Struct. Anal. Online., 2003, 19, X35-X36.
[http://dx.doi.org/10.2116/analscix.19.x35]
[72]
Ceylan, Ü.; Durgun, M.; Türkmen, H.; Yalçın, Ş.P.; Kilic, A.; Özdemir, N. Theoretical and experimental investigation of 4-[(2-hydroxy-3-methylbenzylidene)amino]benzenesulfonamide: Structural and spectroscopic properties, NBO, NLO and NPA analysis. J. Mol. Struct., 2015, 1089, 222-232.
[http://dx.doi.org/10.1016/j.molstruc.2015.02.042]
[73]
Gürsoy, A.; Karalı, N. Synthesis, characterization and primary antituberculosis activity evaluation of 4-(3-coumarinyl)-3-benzyl-4-thiazolin-2-one benzylidenehydrazones. Turk. J. Chem., 2003, 27(5), 545-552.
[74]
Sheldrick, G.M.; Schneider, T.R. SHELXL: High-resolution refinement. Methods Enzymol., 1997, 277, 319-343.
[http://dx.doi.org/10.1016/S0076-6879(97)77018-6] [PMID: 18488315]
[75]
Schrödinger. QikProp, 4, 4th ed; Schrödinger, 2015.
[76]
Bank, R.P.D. RCSB PDB: Homepage. Available from: https://www.rcsb.org/
[77]
Fantacuzzi, M.; D’Agostino, I.; Carradori, S.; Liguori, F.; Carta, F.; Agamennone, M.; Angeli, A.; Sannio, F.; Docquier, J.D.; Capasso, C.; Supuran, C.T. Benzenesulfonamide derivatives as Vibrio cholerae carbonic anhydrases inhibitors: A computational-aided insight in the structural rigidity-activity relationships. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2201402.
[http://dx.doi.org/10.1080/14756366.2023.2201402] [PMID: 37073528]
[78]
Gumus, A.; Bozdag, M.; Akdemir, A.; Angeli, A.; Selleri, S.; Carta, F.; Supuran, C.T. Thiosemicarbazide-substituted coumarins as selective inhibitors of the tumor associated human carbonic anhydrases IX and XII. Molecules, 2022, 27(14), 4610.
[http://dx.doi.org/10.3390/molecules27144610] [PMID: 35889480]
[79]
Senaweera, S.; Du, H.; Zhang, H.; Kirby, K.A.; Tedbury, P.R.; Xie, J.; Sarafianos, S.G.; Wang, Z. Discovery of new small molecule hits as hepatitis B virus capsid assembly modulators: Structure and pharmacophore-based approaches. Viruses, 2021, 13(5), 770.
[http://dx.doi.org/10.3390/v13050770] [PMID: 33925540]
[80]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy