Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cancer Pathways Targeted by Berberine: Role of microRNAs

Author(s): Mansoor Ali, Deepali Mishra and Rana Pratap Singh*

Volume 31, Issue 32, 2024

Published on: 31 January, 2024

Page: [5178 - 5198] Pages: 21

DOI: 10.2174/0109298673275121231228124031

Price: $65

conference banner
Abstract

Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.

[1]
Pipitò, L.; Illingworth, T.A.; Deganutti, G. Targeting hPKM2 in cancer: A bio isosteric approach for ligand design. Comput. Biol. Med., 2023, 158, 106852.
[http://dx.doi.org/10.1016/j.compbiomed.2023.106852] [PMID: 37044047]
[2]
Tompa, A.; Major, J.; Jakab, M.G. Application of UV-Induced Unscheduled DNA-Synthesis Measurements in Human Genotoxicological Risk Assessment; In InTech eBooks, 2011.
[http://dx.doi.org/10.5772/21021]
[3]
Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; Al-Gazally, M.E.; Mustafa, Y.F.; Siahmansouri, H. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther., 2022, 13(1), 366.
[http://dx.doi.org/10.1186/s13287-022-03054-0] [PMID: 35902958]
[4]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, Ø.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[5]
Mustafa, Y.F. Harmful free radicals in aging: A narrative review of their detrimental effects on health. Indian J. Clin. Biochem., 2023, 1-14.
[http://dx.doi.org/10.1007/s12291-023-01147-y]
[6]
Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci., 2001, 98(19), 10869-10874.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[7]
Craig, W.J. Nutrition concerns and health effects of vegetarian diets. Nutr. Clin. Pract., 2010, 25(6), 613-620.
[http://dx.doi.org/10.1177/0884533610385707] [PMID: 21139125]
[8]
Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci., 2019, 20(20), 4981.
[http://dx.doi.org/10.3390/ijms20204981] [PMID: 31600949]
[9]
Mustafa, Y.F.; Ismael, R.N.; Jebir, R.M. Natural coumarins from two cultivars of watermelon seeds as biosafe anticancer agents, an algorithm for their isolation and evaluation. J. Mol. Struct., 2024, 1295, 136644.
[http://dx.doi.org/10.1016/j.molstruc.2023.136644]
[10]
Zhong, X.D.; Chen, L.J.; Xu, X.Y.; Liu, Y.J.; Tao, F.; Zhu, M.H.; Li, C.Y.; Zhao, D.; Yang, G.J.; Chen, J. Berberine as a potential agent for breast cancer therapy. Front. Oncol., 2022, 12, 993775.
[http://dx.doi.org/10.3389/fonc.2022.993775] [PMID: 36119505]
[11]
Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Khan, I.; Rahman, M.M.; Jeandet, P.; Gondal, T.A. Berberine as a potential anticancer agent: A comprehensive review. Molecules, 2021, 26(23), 7368.
[http://dx.doi.org/10.3390/molecules26237368] [PMID: 34885950]
[12]
Aghanoori, M.R.; Mirzaei, B.; Tavallaei, M. MiRNA molecular profiles in human medical conditions: Connecting lung cancer and lung development phenomena. Asian Pac. J. Cancer Prev., 2014, 15(22), 9557-9565.
[http://dx.doi.org/10.7314/APJCP.2014.15.22.9557] [PMID: 25520067]
[13]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[14]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[15]
Cheng, C.W.; Chen, P.M.; Hsieh, Y.H.; Weng, C.C.; Chang, C.W.; Yao, C.C.; Hu, L.Y.; Wu, P.E.; Shen, C.Y. Foxo3a-mediated overexpression of microRNA-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1α in erk-responsive lung cancer. Oncotarget, 2015, 6(42), 44222-44238.
[http://dx.doi.org/10.18632/oncotarget.5826] [PMID: 26528854]
[16]
Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev., 2015, 87, 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[17]
Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther., 2021, 6(1), 386.
[http://dx.doi.org/10.1038/s41392-021-00780-4] [PMID: 34776511]
[18]
Mokhlis, H.A.; Bayraktar, R.; Kabil, N.N.; Caner, A.; Kahraman, N.; Rodríguez-Aguayo, C.; Zambalde, E.P.; Sheng, J.; Karagoz, K.; Kanlikilicer, P.; Abdel Aziz, A.A.H.; Abdelghany, T.M.; Ashour, A.A.; Wong, S.; Gatza, M.L.; Calin, G.A.; López-Berestein, G.; Özpolat, B. The modulatory role of microRNA-873 in the progression of KRAS-driven cancers. Mol. Ther. Nucleic Acids, 2019, 14, 301-317.
[http://dx.doi.org/10.1016/j.omtn.2018.11.019] [PMID: 30654191]
[19]
Warowicka, A.; Nawrot, R.; Goździcka-Józefiak, A. Antiviral activity of berberine. Arch. Virol., 2020, 165(9), 1935-1945.
[http://dx.doi.org/10.1007/s00705-020-04706-3] [PMID: 32594322]
[20]
Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064.
[http://dx.doi.org/10.1038/srep26064] [PMID: 27263652]
[21]
Ma, J.; Chan, C.C.; Huang, W.C.; Kuo, M.L. Berberine inhibits pro-inflammatory cytokine-induced IL-6 and CCL11 production via modulation of STAT6 pathway in human bronchial epithelial cells. Int. J. Med. Sci., 2020, 17(10), 1464-1473.
[http://dx.doi.org/10.7150/ijms.45400] [PMID: 32624703]
[22]
Gu, W.; Zhang, M.; Gao, F.; Niu, Y.; Sun, L.; Xia, H.; Li, W.; Zhang, Y.; Guo, Z.; Du, G. Berberine regulates PADI4-related macrophage function to prevent lung cancer. Int. Immunopharmacol., 2022, 110, 108965.
[http://dx.doi.org/10.1016/j.intimp.2022.108965] [PMID: 35764017]
[23]
Guo, P.; Cai, C.; Wu, X.; Fan, X.; Huang, W.; Zhou, J.; Wu, Q.; Huang, Y.; Zhao, W.; Zhang, F.; Wang, Q.; Zhang, Y.; Fang, J. An insight into the molecular mechanism of berberine towards multiple cancer types through systems pharmacology. Front. Pharmacol., 2019, 10, 857.
[http://dx.doi.org/10.3389/fphar.2019.00857] [PMID: 31447670]
[24]
Karnam, K.C.; Ellutla, M.; Bodduluru, L.N.; Kasala, E.R.; Uppulapu, S.K.; Kalyankumarraju, M.; Lahkar, M. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed. Pharmacother., 2017, 92, 207-214.
[http://dx.doi.org/10.1016/j.biopha.2017.05.069] [PMID: 28544934]
[25]
Cao, H.; Song, S.; Zhang, H.; Zhang, Y.; Qu, R.; Yang, B.; Jing, Y.; Hu, T.; Yan, F.; Wang, B. Chemopreventive effects of berberine on intestinal tumor development in Apc min/+mice. BMC Gastroenterol., 2013, 13(1), 163.
[http://dx.doi.org/10.1186/1471-230X-13-163] [PMID: 24279644]
[26]
He, B.; Yang, Q.; Mu, Y.; Zhou, L.; Liu, Y.; Zhou, Q.; He, B. Berberine inhibits the proliferation of colon cancer cells by inactivating Wnt/β-catenin signaling. Int. J. Oncol., 2012, 41(1), 292-298.
[http://dx.doi.org/10.3892/ijo.2012.1423] [PMID: 22469784]
[27]
Zhu, Y.; Xie, N.; Chai, Y.; Nie, Y.; Liu, K.; Liu, Y.; Yang, Y.; Su, J.; Zhang, C. Apoptosis induction, a sharp edge of berberine to exert anti-cancer effects, focus on breast, lung, and liver cancer. Front. Pharmacol., 2022, 13, 803717.
[http://dx.doi.org/10.3389/fphar.2022.803717] [PMID: 35153781]
[28]
Ni, L.; Li, Z.; Ren, H.; Kong, L.; Chen, X.; Xiong, M.; Zhang, X.; Ning, B.; Li, J. Berberine inhibits non-small cell lung cancer cell growth through repressing DNA repair and replication rather than through apoptosis. Clin. Exp. Pharmacol. Physiol., 2022, 49(1), 134-144.
[http://dx.doi.org/10.1111/1440-1681.13582] [PMID: 34448246]
[29]
Jain, V.; Singh, M.P.; Amaravadi, R.K. Recent advances in targeting autophagy in cancer. Trends Pharmacol. Sci., 2023, 44(5), 290-302.
[http://dx.doi.org/10.1016/j.tips.2023.02.003] [PMID: 36931971]
[30]
Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res., 2020, 12, 695-702.
[http://dx.doi.org/10.2147/CMAR.S242329] [PMID: 32099466]
[31]
Li, G.; Zhang, C.; Liang, W.; Zhang, Y.; Shen, Y.; Tian, X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol., 2021, 59(1), 21-30.
[http://dx.doi.org/10.1080/13880209.2020.1865407] [PMID: 33417512]
[32]
Liu, Y.; Hua, W.; Li, Y.; Xian, X.; Zhao, Z.; Liu, C.; Zou, J.; Li, J.; Fang, X.; Zhu, Y. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem. Pharmacol., 2020, 174, 113776.
[http://dx.doi.org/10.1016/j.bcp.2019.113776] [PMID: 31874145]
[33]
El Khalki, L.; Maire, V.; Dubois, T.; Zyad, A. Berberine impairs the survival of triple negative breast cancer cells: cellular and molecular analyses. Molecules, 2020, 25(3), 506.
[http://dx.doi.org/10.3390/molecules25030506] [PMID: 31991634]
[34]
Tak, J.; Sabarwal, A.; Shyanti, R.K.; Singh, R.P. Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol. Cell. Biochem., 2019, 458(1-2), 49-59.
[http://dx.doi.org/10.1007/s11010-019-03529-4] [PMID: 30911957]
[35]
Sakaguchi, M.; Kitaguchi, D.; Morinami, S.; Kurashiki, Y.; Hashida, H.; Miyata, S.; Yamaguchi, M.; Sakai, M.; Murata, N.; Tanaka, S. Berberine-induced nucleolar stress response in a human breast cancer cell line. Biochem. Biophys. Res. Commun., 2020, 528(1), 227-233.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.020] [PMID: 32475643]
[36]
Yao, M.; Fan, X.; Yuan, B.; Takagi, N.; Liu, S.; Han, X.; Ren, J.; Liu, J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement. Altern. Med., 2019, 19(1), 216.
[http://dx.doi.org/10.1186/s12906-019-2615-4] [PMID: 31412862]
[37]
Zhang, C.; Sheng, J.; Li, G.; Zhao, L.; Wang, Y.; Yang, W.; Yao, X.; Sun, L.; Zhang, Z.; Cui, R. Effects of berberine and its derivatives on cancer: A systems pharmacology review. Front. Pharmacol., 2020, 10, 1461.
[http://dx.doi.org/10.3389/fphar.2019.01461] [PMID: 32009943]
[38]
Park, K.S.; Kim, J.B.; Bae, J.; Park, S.Y.; Jee, H.G.; Lee, K.E.; Youn, Y.K. Berberine inhibited the growth of thyroid cancer cell lines 8505C and TPC1. Yonsei Med. J., 2012, 53(2), 346-351.
[http://dx.doi.org/10.3349/ymj.2012.53.2.346] [PMID: 22318822]
[39]
Liu, J.; Luo, X.; Guo, R.; Jing, W.; Lü, H. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism. J. Proteome Res., 2020, 19(9), 3825-3836.
[http://dx.doi.org/10.1021/acs.jproteome.0c00394] [PMID: 32692565]
[40]
Tian, W.; Hao, H.; Chu, M.; Gong, J.; Li, W.; Fang, Y.; Zhang, J.; Zhang, C.; Huang, Y.; Pei, F.; Duan, L. Berberine suppresses lung metastasis of cancer via inhibiting endothelial transforming growth factor beta receptor 1. Front. Pharmacol., 2022, 13, 917827.
[http://dx.doi.org/10.3389/fphar.2022.917827] [PMID: 35784732]
[41]
Qian, K.; Tang, C.; Chen, L.; Zheng, S.; Zhao, Y.; Ma, L.; Xu, L.; Fan, L.; Yu, J.; Tan, H.; Sun, Y.; Shen, L.; Lu, Y.; Liu, Q.; Liu, Y.; Xiong, Y. Berberine reverses breast cancer multidrug resistance based on fluorescence pharmacokinetics in vitro and in vivo. ACS Omega, 2021, 6(16), 10645-10654.
[http://dx.doi.org/10.1021/acsomega.0c06288] [PMID: 34056218]
[42]
Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280.
[http://dx.doi.org/10.3389/fimmu.2020.01280] [PMID: 32849491]
[43]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[44]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[45]
Zhao, Z.; Zeng, J.; Guo, Q.; Pu, K.; Yang, Y.; Chen, N.; Zhang, G.; Zhao, M.; Zheng, Q.; Tang, J.; Hu, Q. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6A methylation. Front. Oncol., 2021, 11, 775418.
[http://dx.doi.org/10.3389/fonc.2021.775418] [PMID: 34869024]
[46]
Aravindan, N.; Jain, D.; Somasundaram, D.B.; Herman, S.; Aravindan, S. Cancer stem cells in neuroblastoma therapy resistance. Cancer Drug Resist., 2019, 2(4), 948-967.
[http://dx.doi.org/10.20517/cdr.2019.72] [PMID: 31867574]
[47]
Cognetti, F.; Bazzichetto, C.; Falcone, I.; Ferretti, G.; Cognetti, F.; Milella, M.; Ciuffreda, L. Colorectal cancer stem cells properties and features: Evidence of interleukin-8 involvement. Cancer Drug Resist., 2019, 2(4), 968-979.
[http://dx.doi.org/10.20517/cdr.2019.56]
[48]
Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 2016, 23(7), 736-744.
[http://dx.doi.org/10.1016/j.phymed.2016.03.013] [PMID: 27235712]
[49]
Faller, M.; Guo, F. MicroRNA biogenesis: There’s more than one way to skin a cat. Biochim. Biophys. Acta. Gene Regul. Mech., 2008, 1779(11), 663-667.
[http://dx.doi.org/10.1016/j.bbagrm.2008.08.005] [PMID: 18778799]
[50]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[51]
Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics, 2010, 11(7), 537-561.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[52]
Gregory, R.I.; Yan, K.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014), 235-240.
[http://dx.doi.org/10.1038/nature03120] [PMID: 15531877]
[53]
Okamura, K.; Hagen, J.W.; Duan, H.; Tyler, D.M.; Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 2007, 130(1), 89-100.
[http://dx.doi.org/10.1016/j.cell.2007.06.028] [PMID: 17599402]
[54]
Liu, J.; Zhou, F.; Guan, Y.; Meng, F.; Zhao, Z.; Su, Q.; Bao, W.; Wang, X.; Zhao, J.; Huo, Z.; Zhang, L.; Zhou, S.; Chen, Y.; Wang, X. The biogenesis of miRNAs and their role in the development of amyotrophic lateral sclerosis. Cells, 2022, 11(3), 572.
[http://dx.doi.org/10.3390/cells11030572] [PMID: 35159383]
[55]
Nakanishi, K. Anatomy of RISC : how do small RNAS and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, 7(5), 637-660.
[http://dx.doi.org/10.1002/wrna.1356] [PMID: 27184117]
[56]
Wang, Z.; Li, Y.; Kong, D.; Ahmad, A.; Banerjee, S.; Sarkar, F.H. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett., 2010, 292(2), 141-148.
[http://dx.doi.org/10.1016/j.canlet.2009.11.012] [PMID: 20022691]
[57]
Abolfathi, H.; Arabi, M.; Sheikhpour, M. A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir. Res., 2023, 24(1), 55.
[http://dx.doi.org/10.1186/s12931-023-02366-w] [PMID: 36800962]
[58]
Zhan, M.N.; Yu, X.T.; Tang, J.; Zhou, C.X.; Wang, C.L.; Yin, Q.Q.; Gong, X.F.; He, M.; He, J.R.; Chen, G.Q.; Zhao, Q. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis., 2017, 8(1), e2529.
[http://dx.doi.org/10.1038/cddis.2016.440] [PMID: 28055013]
[59]
Hy, L.; Yy, Z.; Bl, Z.; Fz, F. H, Y.; Hy, Z.; Zhou, B. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. PubMed, 2019, 23(10), 4149-4155.
[http://dx.doi.org/10.26355/eurrev_201905_17917]
[60]
Zhou, H.; Liu, H.; Jiang, M.; Zhang, S.; Chen, J.; Fan, X. Targeting MicroRNA-21 suppresses gastric cancer cell proliferation and migration via PTEN/Akt signaling axis. Cell Transplant., 2019, 28(3), 306-317.
[http://dx.doi.org/10.1177/0963689719825573] [PMID: 30700111]
[61]
Egorova, O.; Lau, H.H.C.; McGraphery, K.; Sheng, Y. Mdm2 and MdmX RING domains play distinct roles in the regulation of p53 responses: A comparative study of Mdm2 and MdmX RING Domains in U2OS Cells. Int. J. Mol. Sci., 2020, 21(4), 1309.
[http://dx.doi.org/10.3390/ijms21041309] [PMID: 32075226]
[62]
Li, H.; Wang, Z.; Jiang, M.; Fang, R.; Shi, H.; Shen, Y.; Cai, X.; Liu, Q.; Ye, K.; Fan, S.; Zhang, W.; Ye, L. The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol. Sin., 2018, 39(11), 1787-1796.
[http://dx.doi.org/10.1038/s41401-018-0034-6] [PMID: 30181579]
[63]
Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 613-619.
[http://dx.doi.org/10.1016/j.bbapap.2009.09.018] [PMID: 19782770]
[64]
Xu, X.; Tao, Y.; Niu, Y.; Wang, Z.; Zhang, C.; Yu, Y.; Ma, L. miR-125a-5p inhibits tumorigenesis in hepatocellular carcinoma. Aging, 2019, 11(18), 7639-7662.
[http://dx.doi.org/10.18632/aging.102276] [PMID: 31527306]
[65]
Charalambous, M.P.; Lightfoot, T.; Speirs, V.; Horgan, K.; Gooderham, N.J. Expression of COX-2, NF-κB-p65, NF-κB-p50 and IKKα in malignant and adjacent normal human colorectal tissue. Br. J. Cancer, 2009, 101(1), 106-115.
[http://dx.doi.org/10.1038/sj.bjc.6605120] [PMID: 19513071]
[66]
Li, B.; Lü, Y.; Yu, L.; Han, X.; Wang, H.; Mao, J.; Shen, J.; Wang, B.; Tang, J.; Li, C.; Song, B. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-κB/COX-2 activation. Chem. Biol. Interact., 2017, 277, 33-42.
[http://dx.doi.org/10.1016/j.cbi.2017.08.014] [PMID: 28844858]
[67]
Minami, A.; Nakanishi, A.; Ogura, Y.; Kitagishi, Y.; Matsuda, S. Connection between tumor suppressor BRCA1 and PTEN in damaged DNA repair. Front. Oncol., 2014, 4, 318.
[http://dx.doi.org/10.3389/fonc.2014.00318] [PMID: 25426449]
[68]
Chehade, R.; Pettapiece-Phillips, R.; Salmena, L.; Kotlyar, M.; Jurišica, I.; Narod, S.A.; Akbari, M.R.; Kotsopoulos, J. Reduced BRCA1 transcript levels in freshly isolated blood leukocytes from BRCA1 mutation carriers is mutation specific. Breast Cancer Res., 2016, 18(1), 87.
[http://dx.doi.org/10.1186/s13058-016-0739-8] [PMID: 27534398]
[69]
Matamala, N.; Vargas, M.T.; González-Cámpora, R.; Arias, J.I.; Menéndez, P.; Andrés-León, E.; Yanowsky, K.; Llaneza-Folgueras, A.; Miñambres, R.; Martínez-Delgado, B.; Benítez, J. MicroRNA deregulation in triple negative breast cancer reveals a role of miR-498 in regulating BRCA1 expression. Oncotarget, 2016, 7(15), 20068-20079.
[http://dx.doi.org/10.18632/oncotarget.7705] [PMID: 26933805]
[70]
Kazanets, A.; Shorstova, T.; Hilmi, K.; Marques, M.; Witcher, M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim. Biophys. Acta Rev. Cancer, 2016, 1865(2), 275-288.
[http://dx.doi.org/10.1016/j.bbcan.2016.04.001] [PMID: 27085853]
[71]
Zhang, H.; Sun, P.; Wang, Y-L.; Yu, X.F.; Tong, J.J. MiR-214 promotes proliferation and inhibits apoptosis of oral cancer cells through MAPK/ERK signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 3710-3716.
[PMID: 32329847]
[72]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[73]
Razaviyan, J.; Hadavi, R.; Tavakoli, R.; Kamani, F.; Paknejad, M.; Mohammadi-Yeganeh, S. Expression of miRNAs targeting mTOR and S6K1 genes of mTOR signaling pathway including miR-96, miR-557, and miR-3182 in triple-negative breast cancer. Appl. Biochem. Biotechnol., 2018, 186(4), 1074-1089.
[http://dx.doi.org/10.1007/s12010-018-2773-8] [PMID: 29862445]
[74]
Chang, D.L.F.; Wei, W.; Yu, Z.P.; Qin, C.K. miR-152-5p inhibits proliferation and induces apoptosis of liver cancer cells by up-regulating FOXO expression. Pharmazie, 2017, 72(6), 338-343.
[http://dx.doi.org/10.1691/ph.2017.7406] [PMID: 29442022]
[75]
Yeh, T.C.; Huang, T.T.; Yeh, T.S.; Chen, Y.R.; Hsu, K.W.; Yin, P.H.; Lee, H.C.; Tseng, L.M. miR-151-3p Targets TWIST1 to repress migration of human breast cancer cells. PLoS One, 2016, 11(12), e0168171.
[http://dx.doi.org/10.1371/journal.pone.0168171] [PMID: 27930738]
[76]
Pastorino, R.; Sassano, M.; Danilo Tiziano, F.; Giraldi, L.; Amore, R.; Arzani, D.; Abiusi, E.; Ahrens, W.; Vilches, L.A.; Canova, C.; Healy, C.M.; Holcátová, I.; Lagiou, P.; Polesel, J.; Popović, M.; Nygård, S.; Cadoni, G.; Znaor, A.; Boffetta, P.; Matsuo, K.; Oze, I.; Brennan, P.; Boccia, S. Plasma miR-151-3p as a candidate diagnostic biomarker for head and neck cancer: A cross-sectional study within the inhance consortium. Cancer Epidemiol. Biomarkers Prev., 2022, 31(12), 2237-2243.
[http://dx.doi.org/10.1158/1055-9965.EPI-22-0376] [PMID: 36126276]
[77]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[78]
Tan, Z.; Zheng, H.; Liu, X.; Zhang, W.; Zhu, J.; Wu, G.; Cao, L.; Song, J.; Wu, S.; Song, L.; Li, J. MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/β-catenin signaling in breast cancer. Oncotarget, 2016, 7(17), 24076-24087.
[http://dx.doi.org/10.18632/oncotarget.8119] [PMID: 26992223]
[79]
Ge, S.; Wang, D.; Kong, Q.; Gao, W.; Sun, J. Function of miR-152 as a tumor suppressor in human breast cancer by targeting PIK3CA. Oncol. Res., 2017, 25(8), 1363-1371.
[http://dx.doi.org/10.3727/096504017X14878536973557] [PMID: 28247844]
[80]
Guo, Y.; Ying, L.; Tian, Y.; Yang, P.; Zhu, Y.; Wang, Z.; Qiu, F.; Lin, J. miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH 2 and regulating Wnt signaling. FEBS J., 2013, 280(18), 4531-4538.
[http://dx.doi.org/10.1111/febs.12417] [PMID: 23815091]
[81]
Sheng, S.; Xie, L.; Wu, Y.; Ding, M.; Zhang, T.; Wang, X. MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4. Biosci. Rep., 2019, 39(3), BSR20181895.
[http://dx.doi.org/10.1042/BSR20181895] [PMID: 30745456]
[82]
Li, B.; Ding, C.M.; Li, Y.X.; Peng, J.C.; Geng, N.; Qin, W.W. MicroRNA-145 inhibits migration and induces apoptosis in human non-small cell lung cancer cells through regulation of the EGFR/PI3K/AKT signaling pathway. Oncol. Rep., 2018, 40(5), 2944-2954.
[http://dx.doi.org/10.3892/or.2018.6666] [PMID: 30226581]
[83]
Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17.
[http://dx.doi.org/10.1155/2014/804510] [PMID: 25254214]
[84]
Zheng, F.; Li, J.; Ma, C.; Tang, X.; Tang, Q.; Wu, J.; Chai, X.; Xie, J.; Yang, X.; Hann, S.S. Novel regulation of miR-34a-5p and HOTAIR by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. J. Cell. Mol. Med., 2020, 24(10), 5578-5592.
[http://dx.doi.org/10.1111/jcmm.15214] [PMID: 32248643]
[85]
Chen, Q.; Shi, J.; Ding, Z.; Xia, Q.; Zheng, T.; Ren, Y.; Li, M.; Fan, L. Berberine induces apoptosis in non-small-cell lung cancer cells by upregulating miR-19a targeting tissue factor. Cancer Manag. Res., 2019, 11, 9005-9015.
[http://dx.doi.org/10.2147/CMAR.S207677] [PMID: 31695492]
[86]
Chen, S.; Li, P.; Li, J.; Wang, Y.; Du, Y.; Chen, X.; Zang, W.; Wang, H.; Chu, H.; Zhao, G.; Zhang, G. MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell. Physiol. Biochem., 2015, 35(3), 997-1007.
[http://dx.doi.org/10.1159/000369755] [PMID: 25660220]
[87]
Gao, Z.; Tan, C. Y.; Sha, R. Berberine promotes a549 cell apoptosis and autophagy via MIR-144. Natural Product Communications, 2022, 17(9)
[http://dx.doi.org/10.1177/1934578X221124752]
[88]
Zhu, C.; Li, J.; Hua, Y.; Wang, J.; Wang, K.; Sun, J. Berberine inhibits the expression of sct through mir-214-3p stimulation in breast cancer cells. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/2817147] [PMID: 33312221]
[89]
Lo, S.N.; Wang, C.W.; Chen, Y.S.; Huang, C.C.; Wu, T.S.; Li, L.A.; Lee, I.J.; Ueng, Y.F. Berberine activates aryl hydrocarbon receptor but suppresses CYP1A1 induction through miR-21-3p stimulation in MCF-7 breast cancer cells. Molecules, 2017, 22(11), 1847.
[http://dx.doi.org/10.3390/molecules22111847] [PMID: 29143794]
[90]
Hashemi- Niasari, F.; Rabbani-Chadegani, A.; Razmi, M.; Fallah, S. Synergy of theophylline reduces necrotic effect of berberine, induces cell cycle arrest and PARP, HMGB1, Bcl-2 family mediated apoptosis in MDA-MB-231 breast cancer cells. Biomed. Pharmacother., 2018, 106, 858-867.
[http://dx.doi.org/10.1016/j.biopha.2018.07.019] [PMID: 30119256]
[91]
Ebeid, S. A.; Moneim, N. a. A. E.; Ghoneim, H.; El-Benhawy, S. A.; Ismail, S. E. Combination of doxorubicin and berberine generated synergistic anticancer effect on breast cancer cells through down-regulation of NANOG and MIRNA-21 gene expression. DOAJ, 2020, 11(3), 273-285.
[http://dx.doi.org/10.30476/mejc.2019.81277.0]
[92]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[93]
Li, C.H.; Tang, S.C.; Wong, C.H.; Wang, Y.; Jiang, J.; Chen, Y. Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. Eur. J. Pharmacol., 2018, 825, 107-118.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.035] [PMID: 29477657]
[94]
Chen, J.; Wu, F.X.; Luo, H.L.; Liu, J-J.; Luo, T.; Bai, T.; Li, L.Q.; Fan, X.H. Berberine upregulates miR-22-3p to suppress hepatocellular carcinoma cell proliferation by targeting Sp1. Am. J. Transl. Res., 2016, 8(11), 4932-4941.
[PMID: 27904693]
[95]
Wei, S.; Zhang, M.; Yu, Y.; Lan, X.; Yao, F.; Yan, X.; Chen, L.; Hatch, G.M. Berberine attenuates development of the hepatic gluconeogenesis and lipid metabolism disorder in type 2 diabetic mice and in palmitate-incubated HepG2 cells through suppression of the HNF-4α miR122 pathway. PLoS One, 2016, 11(3), e0152097.
[http://dx.doi.org/10.1371/journal.pone.0152097] [PMID: 27011261]
[96]
Wang, N.; Zhu, M.; Wang, X.; Tan, H.Y.; Tsao, S.; Feng, Y. Berberine-induced tumor suppressor p53 up-regulation gets involved in the regulatory network of MIR-23a in hepatocellular carcinoma. Biochim. Biophys. Acta. Gene Regul. Mech., 2014, 1839(9), 849-857.
[http://dx.doi.org/10.1016/j.bbagrm.2014.05.027] [PMID: 24942805]
[97]
Lo, T.F.; Tsai, W.C.; Chen, S.T. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One, 2013, 8(9), e75628.
[http://dx.doi.org/10.1371/journal.pone.0075628] [PMID: 24098708]
[98]
Hong, Y.; Ye, M.; Wang, F.; Fang, J.; Wang, C.; Luo, J.; Liu, J.; Liu, J.; Liu, L.; Zhao, Q.; Chang, Y. MiR-21-3p promotes hepatocellular carcinoma progression via SMAD7/YAP1 regulation. Front. Oncol., 2021, 11, 642030.
[http://dx.doi.org/10.3389/fonc.2021.642030] [PMID: 33763375]
[99]
Yan, S.; Chang, J.; Hao, X.; Liu, J.; Tan, X.; Geng, Z.; Wang, Z. Berberine regulates short-chain fatty acid metabolism and alleviates the colitis-associated colorectal tumorigenesis through remodeling intestinal flora. Phytomedicine, 2022, 102, 154217.
[http://dx.doi.org/10.1016/j.phymed.2022.154217] [PMID: 35660350]
[100]
Lü, Y.; Han, B.; Yu, H.; Cui, Z.; Li, Z.; Wang, J. Berberine regulates the microRNA-21-ITGΒ4-PDCD4 axis and inhibits colon cancer viability. Oncol. Lett., 2018, 15(4), 5971-5976.
[http://dx.doi.org/10.3892/ol.2018.7997] [PMID: 29564000]
[101]
Huang, C.; Liu, H.; Gong, X.L.; Wu, L.Y.; Wen, B. Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-β1. Oncol. Rep., 2017, 37(3), 1637-1645.
[http://dx.doi.org/10.3892/or.2017.5379] [PMID: 28098901]
[102]
Wen, B.; Huang, C.; Wu, L.; Liu, H. Effect of evodiamine and berberine on miR-429 as an oncogene in human colorectal cancer. OncoTargets Ther., 2016, 9, 4121-4127.
[http://dx.doi.org/10.2147/OTT.S104729] [PMID: 27462166]
[103]
Ling, Q.; Fang, J.; Zhai, C.; Huang, W.; Chen, Y.; Zhou, T.; Liu, Y.; Fang, X. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-155–5p in colitis-associated colorectal cancer. Eur. J. Pharmacol., 2023, 949, 175724.
[http://dx.doi.org/10.1016/j.ejphar.2023.175724] [PMID: 37059377]
[104]
Lee, K.H.; Lin, F.C.; Hsu, T.I.; Lin, J.T.; Guo, J.H.; Tsai, C.H.; Lee, Y.C.; Lee, Y.C.; Chen, C.L.; Hsiao, M.; Lu, P.J. MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(9), 2055-2066.
[http://dx.doi.org/10.1016/j.bbamcr.2014.06.001] [PMID: 24915000]
[105]
Hallajzadeh, J.; Maleki Dana, P.; Mobini, M.; Asemi, Z.; Mansournia, M.A.; Sharifi, M.; Yousefi, B. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med. Oncol., 2020, 37(6), 49.
[http://dx.doi.org/10.1007/s12032-020-01367-9] [PMID: 32303850]
[106]
Jiang, Z.; Zhang, Y.; Zhang, Y.; Jia, Z.; Zhang, Z.; Yang, J. Cancer derived exosomes induce macrophages immunosuppressive polarization to promote bladder cancer progression. Cell Commun. Signal., 2021, 19(1), 93.
[http://dx.doi.org/10.1186/s12964-021-00768-1] [PMID: 34521440]
[107]
Chen, C.L.; Cen, L.; Kohout, J.; Hutzen, B.; Chan, C.; Hsieh, F.C.; Loy, A.; Huang, V.; Cheng, G.; Lin, J. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol. Cancer, 2008, 7(1), 78.
[http://dx.doi.org/10.1186/1476-4598-7-78] [PMID: 18939995]
[108]
Qureshy, Z.; Johnson, D.E.; Grandis, J.R. Targeting the JAK/STAT pathway in solid tumors. J. Cancer Metastasis Treat., 2020, 2020, 27.
[http://dx.doi.org/10.20517/2394-4722.2020.58] [PMID: 33521321]
[109]
Xia, Y.; Chen, S.; Cui, J.; Wang, Y.; Liu, X.; Shen, Y.; Gong, L.; Jiang, X.; Wang, W.; Zhu, Y.; Sun, S.; Li, J.; Zou, Y.; Shi, B. Berberine suppresses bladder cancer cell proliferation by inhibiting JAK1-STAT3 signaling via upregulation of miR-17-5p. Biochem. Pharmacol., 2021, 188, 114575.
[http://dx.doi.org/10.1016/j.bcp.2021.114575] [PMID: 33887260]
[110]
Cardona-Mendoza, A.; Olivares-Niño, G.; Díaz-Báez, D.; Lafaurie, G.I.; Perdomo, S.J. Chemopreventive and anti-tumor potential of natural products in oral cancer. Nutr. Cancer, 2022, 74(3), 779-795.
[http://dx.doi.org/10.1080/01635581.2021.1931698] [PMID: 34100309]
[111]
Solomon, M.C.; Radhakrishnan, R.A. MicroRNA’s – The vibrant performers in the oral cancer scenario. Jpn. Dent. Sci. Rev., 2020, 56(1), 85-89.
[http://dx.doi.org/10.1016/j.jdsr.2020.04.001] [PMID: 32612717]
[112]
Zheng, G.; Li, N.; Jia, X.; Peng, C.; Luo, L.; Deng, Y.; Yin, J.; Song, Y.; Líu, H.; Lu, M.; Zhang, Z.; Gu, Y.; He, Z. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J. Mol. Med., 2016, 94(10), 1129-1141.
[http://dx.doi.org/10.1007/s00109-016-1417-0] [PMID: 27055844]
[113]
Lin, C.Y.; Hsieh, P.L.; Liao, Y.W.; Peng, C.Y.; Lu, M.Y.; Yang, C.H.; Yu, C.C.; Liu, C.M. Berberine-targeted miR-21 chemosensitizes oral carcinomas stem cells. Oncotarget, 2017, 8(46), 80900-80908.
[http://dx.doi.org/10.18632/oncotarget.20723] [PMID: 29113353]
[114]
Aleissa, M.S.; AL-Zharani, M.; Alneghery, L.M.; Aleissa, A.M. Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3). Saudi Pharm. J., 2023, 31(1), 110-118.
[http://dx.doi.org/10.1016/j.jsps.2022.11.009] [PMID: 36685297]
[115]
Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[116]
Xu, X.D.; Shao, S.X.; Jiang, H.P.; Cao, Y.W.; Wang, Y.H.; Yang, X.C.; Wang, Y.L.; Wang, X.S.; Niu, H.T. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol. Res. Treat., 2015, 38(3), 117-122.
[http://dx.doi.org/10.1159/000375435] [PMID: 25792083]
[117]
Li, J.; Zou, Y.; Pei, M.; Zhang, Y.; Jiang, Y. Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells. J. Cancer, 2021, 12(1), 207-216.
[http://dx.doi.org/10.7150/jca.48896] [PMID: 33391417]
[118]
Chen, Q.; Qin, R.; Fang, Y.; Li, H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell. Physiol. Biochem., 2015, 36(3), 956-965.
[http://dx.doi.org/10.1159/000430270] [PMID: 26087719]
[119]
Li, J.; Zhang, S.; Wu, L.; Pei, M.; Jiang, Y. Berberine inhibited metastasis through miR-145/MMP16 axis in vitro. J. Ovarian Res., 2021, 14(1), 4.
[http://dx.doi.org/10.1186/s13048-020-00752-2] [PMID: 33407764]
[120]
Matsuhashi, S.; Manirujjaman, M.; Hamajima, H.; Ozaki, I. Control mechanisms of the tumor suppressor PDCD4: Expression and functions. Int. J. Mol. Sci., 2019, 20(9), 2304.
[http://dx.doi.org/10.3390/ijms20092304] [PMID: 31075975]
[121]
Liu, S.; Fang, Y.; Shen, H.; Xu, W.; Li, H. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim. Biophys. Sin., 2013, 45(9), 756-762.
[http://dx.doi.org/10.1093/abbs/gmt075] [PMID: 23824073]
[122]
Liu, Q.; Tang, J.; Chen, S.; Hu, S.; Shen, C.; Xiang, J.; Chen, N.; Wang, J.; Ma, X.; Zhang, Y.; Zeng, J. Berberine for gastric cancer prevention and treatment: Multi-step actions on the Correa’s cascade underlie its therapeutic effects. Pharmacol. Res., 2022, 184, 106440.
[http://dx.doi.org/10.1016/j.phrs.2022.106440] [PMID: 36108874]
[123]
Li, X.; Ren, C.; Huang, A.; Zhao, Y.; Wang, L.; Shen, H.; Gao, C.; Chen, B.; Zhu, T.; Xiong, J.; Zhu, D.; Huang, Y.; Ding, J.; Yuan, Z.; Ding, W.; Wang, H. PIBF1 regulates multiple gene expression via impeding long-range chromatin interaction to drive the malignant transformation of HPV16 integration epithelial cells. J. Adv. Res., 2023, 585, 1-20.
[http://dx.doi.org/10.1016/j.jare.2023.04.015] [PMID: 37182685]
[124]
Sasaki, T.; Kuniyasu, H. Significance of AKT in gastric cancer (Review). Int. J. Oncol., 2014, 45(6), 2187-2192.
[http://dx.doi.org/10.3892/ijo.2014.2678] [PMID: 25270272]
[125]
You, H.Y.; Xie, X.M.; Zhang, W.J.; Zhu, H.L.; Jiang, F.Z. Berberine modulates cisplatin sensitivity of human gastric cancer cells by upregulation of miR-203. In vitro Cell. Dev. Biol. Anim., 2016, 52(8), 857-863.
[http://dx.doi.org/10.1007/s11626-016-0044-y] [PMID: 27142767]
[126]
Calvani, M.; Subbiani, A.; Bruno, G.; Favre, C. Beta-Blockers and berberine: A possible dual approach to contrast neuroblastoma growth and progression. Oxid. Med. Cell. Longev., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/7534693] [PMID: 32855766]
[127]
Dong, X.; Nao, J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. Phytomedicine, 2023, 108, 154501.
[http://dx.doi.org/10.1016/j.phymed.2022.154501] [PMID: 36368284]
[128]
Li, X.; Su, Y.; Li, N.; Zhang, F.R.; Zhang, N. Berberine attenuates MPP+-induced neuronal injury by regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway in SK-N-SH cells. Neurochem. Res., 2021, 46(12), 3286-3300.
[http://dx.doi.org/10.1007/s11064-021-03431-w] [PMID: 34427876]
[129]
Abdelmaksoud, N.M.; El-Mahdy, H.A.; Ismail, A.; Elsakka, E.G.E.; El-Husseiny, A.A.; Khidr, E.G.; Ali, E.M.; Rashed, M.H.; El-Demerdash, F.E.S.; Doghish, A.S. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: A spotlight on the convergence of signaling pathways. Pathol. Res. Pract., 2023, 244, 154411.
[http://dx.doi.org/10.1016/j.prp.2023.154411] [PMID: 36921547]
[130]
Kim, W.R.; Park, E.G.; Lee, D.H.; Lee, Y.J.; Bae, W.H.; Kim, H.S. The tumorigenic role of circular RNA-MicroRNA axis in cancer. Int. J. Mol. Sci., 2023, 24(3), 3050.
[http://dx.doi.org/10.3390/ijms24033050] [PMID: 36769372]
[131]
Liang, H.; Liu, Y.; Fu, L.; Li, L.; Gong, N. Berberine inhibits the development of endometrial cancer through circ_ZNF608/miR-377-3p/COX2 axis. Autoimmunity, 2022, 55(7), 485-495.
[http://dx.doi.org/10.1080/08916934.2021.2010050] [PMID: 35876160]
[132]
Yarla, N.S.; Bishayee, A.; Sethi, G.; Reddanna, P.; Kalle, A.M.; Dhananjaya, B.L.; Dowluru, K.S.V.G.K.; Chintala, R.; Duddukuri, G.R. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin. Cancer Biol., 2016, 40-41, 48-81.
[http://dx.doi.org/10.1016/j.semcancer.2016.02.001] [PMID: 26853158]
[133]
Wang, Y.; Zhang, S. Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed. Pharmacother., 2018, 103, 1287-1293.
[http://dx.doi.org/10.1016/j.biopha.2018.04.161] [PMID: 29864910]
[134]
Yin, Z.; Yang, J.; Ning, R.; Liu, Y.; Feng, M.; Gu, C.; Fei, J.; Li, Y. Signal pathways, diseases, and functions associated with the miR-19a/92a cluster and the use of berberine to modulate the expression of this cluster in multiple myeloma cells. J. Biochem. Mol. Toxicol., 2018, 32(6), e22057.
[http://dx.doi.org/10.1002/jbt.22057] [PMID: 29687521]
[135]
Gu, C.; Li, T.; Yin, Z.; Chen, S.; Fei, J.; Shen, J.; Zhang, Y. Integrative analysis of signaling pathways and diseases associated with the miR-106b/25 cluster and their function study in berb erine-induced multiple myeloma cells. Funct. Integr. Genomics, 2017, 17(2-3), 253-262.
[http://dx.doi.org/10.1007/s10142-016-0519-7] [PMID: 27647143]
[136]
Hu, H.; Li, K.; Wang, X.; Liu, Y.; Lu, Z.; Dong, R.; Guo, H.; Zhang, M. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol. Sin., 2013, 34(1), 157-166.
[http://dx.doi.org/10.1038/aps.2012.161] [PMID: 23247593]
[137]
Feng, M.; Luo, X.; Gu, C.; Li, Y.; Zhu, X.; Fei, J. Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a-125b cluster function by seed-targeting inhibitors in multiple myeloma cells. RNA Biol., 2015, 12(1), 82-91.
[http://dx.doi.org/10.1080/15476286.2015.1017219] [PMID: 25826415]
[138]
Luo, X.; Gu, J.; Zhu, R.; Feng, M.; Zhu, X.; Li, Y.; Fei, J. Integrative analysis of differential miRNA and functional study of miR-21 by seed-targeting inhibition in multiple myeloma cells in response to berberine. BMC Syst. Biol., 2014, 8(1), 82.
[http://dx.doi.org/10.1186/1752-0509-8-82] [PMID: 25000828]
[139]
Letašiová, S.; Jantová, S.; Čipák, L.; Múčková, M. Berberine—antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett., 2006, 239(2), 254-262.
[http://dx.doi.org/10.1016/j.canlet.2005.08.024] [PMID: 16229943]
[140]
Căruntu, A.; Căruntu, C. Recent advances in oral squamous cell carcinoma. J. Clin. Med., 2022, 11(21), 6406.
[http://dx.doi.org/10.3390/jcm11216406] [PMID: 36362637]
[141]
Li, L.; Li, X.; Huang, X.; Jiang, W.; Liu, L.; Hou, C.; Yang, Y.; Zhang, L.; Zhang, X.; Ye, L.; Yuan, J.; Li, G.; Sun, H.; Mao, L. Synergistic anticancer effects of nanocarrier loaded with berberine and miR-122. Biosci. Rep., 2018, 38(3), BSR20180311.
[http://dx.doi.org/10.1042/BSR20180311] [PMID: 29769413]
[142]
Ali, M.; Bamezai, R.N.K.; Singh, R.P. Invasive breast cancer: miR-24-2 targets genes associated with survival and sensitizes MDA-MB-231 cells to berberine. OMICS, 2023, 27(9), 409-420.
[http://dx.doi.org/10.1089/omi.2023.0092] [PMID: 37669117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy