Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Long Non-coding RNA DNM3OS: Pathogenic Roles and Molecular Mechanisms in Pathophysiological Processes

Author(s): Shuwen Wang, Yaqi Hu, Rui Wang, Yifan Zhang, Qi Yuan and Chengfu Yuan*

Volume 31, Issue 29, 2024

Published on: 31 January, 2024

Page: [4687 - 4702] Pages: 16

DOI: 10.2174/0109298673280484240101070607

Price: $65

Abstract

Background: Long non-coding RNA (lncRNA) is a class of single-stranded RNA biomolecules involving over 200 nucleotides and does not encode proteins. Research on lncRNA has become a hot spot for the past few years. DNM3OS (Dynamin 3 Opposite Strand), which has been clearly identified as a regulatory lncRNA, exerts an integral role in the pathophysiology of multiple human diseases.

Objective: The current review study summarizes the pathogenic mechanism of DNM3OS in various pathophysiological processes, aiming to reveal its important value as a therapeutic drug target for related human diseases and provide a new way for targeted therapy.

Methods: Through systematic retrieval and in-depth study of relevant articles in PubMed, this article analyzes and summarizes the pathogenic roles and molecular mechanisms in pathophysiological processes of long non-coding RNA DNM3OS.

Results: DNM3OS exerts an important regulatory role in the occurrence and development of bone diseases, neoplastic diseases, fibrotic diseases, inflammatory diseases, and many other diseases.

Conclusion: DNM3OS is a potential new biomarker and therapeutic target for the treatment of a series of diseases, consisting of bone diseases, neoplastic diseases, fibrotic diseases, and inflammatory diseases.

[1]
Zampetaki, A.; Albrecht, A.; Steinhofel, K. Long non-coding RNA structure and function: Is there a link? Front. Physiol., 2018, 9, 1201.
[http://dx.doi.org/10.3389/fphys.2018.01201] [PMID: 30197605]
[2]
Cech, T.R.; Steitz, J.A. The noncoding RNA revolution- trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[3]
Guttman, M.; Russell, P.; Ingolia, N.T.; Weissman, J.S.; Lander, E.S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1), 240-251.
[http://dx.doi.org/10.1016/j.cell.2013.06.009] [PMID: 23810193]
[4]
Naz, F.; Tariq, I.; Ali, S.; Somaida, A.; Preis, E.; Bakowsky, U. The role of long non-coding RNAs (lncRNAs) in female oriented cancers. Cancers, 2021, 13(23), 6102.
[http://dx.doi.org/10.3390/cancers13236102] [PMID: 34885213]
[5]
Kazimierczyk, M.; Kasprowicz, M.K.; Kasprzyk, M.E.; Wrzesinski, J.; Human Long Noncoding, R.N.A. Human long noncoding RNA interactome: Detection, characterization and function. Int. J. Mol. Sci., 2020, 21(3), 1027.
[http://dx.doi.org/10.3390/ijms21031027] [PMID: 32033158]
[6]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[7]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[8]
Mitra, R.; Chen, X.; Greenawalt, E.J.; Maulik, U.; Jiang, W.; Zhao, Z.; Eischen, C.M. Decoding critical long non- coding RNA in ovarian cancer epithelial-to-mesenchymal transition. Nat. Commun., 2017, 8(1), 1604.
[http://dx.doi.org/10.1038/s41467-017-01781-0] [PMID: 29150601]
[9]
Morris, K.V.; Mattick, J.S. The rise of regulatory RNA. Nat. Rev. Genet., 2014, 15(6), 423-437.
[http://dx.doi.org/10.1038/nrg3722] [PMID: 24776770]
[10]
Wang, X.; Guo, B.; Li, Q.; Peng, J.; Yang, Z.; Wang, A.; Li, D.; Hou, Z.; Lv, K.; Kan, G.; Cao, H.; Wu, H.; Song, J.; Pan, X.; Sun, Q.; Ling, S.; Li, Y.; Zhu, M.; Zhang, P.; Peng, S.; Xie, X.; Tang, T.; Hong, A.; Bian, Z.; Bai, Y.; Lu, A.; Li, Y.; He, F.; Zhang, G.; Li, Y. miR-214 targets ATF4 to inhibit bone formation. Nat. Med., 2013, 19(1), 93-100.
[http://dx.doi.org/10.1038/nm.3026] [PMID: 23223004]
[11]
Loebel, D.A.F.; Tsoi, B.; Wong, N.; Tam, P.P.L. A conserved noncoding intronic transcript at the mouse Dnm3 locus. Genomics, 2005, 85(6), 782-789.
[http://dx.doi.org/10.1016/j.ygeno.2005.02.001] [PMID: 15885504]
[12]
Yu, T.; Xu, Q.; Li, S.Y.; Huang, H.; Dugan, S.; Shao, L.; Roggenbuck, J.A.; Liu, X.; Liu, H.; Hirsch, B.A.; Yue, S.; Liu, C.; Cheng, S.Y. Deletion at an 1q24 locus reveals a critical role of long noncoding RNA DNM3OS in skeletal development. Cell Biosci., 2021, 11(1), 47.
[http://dx.doi.org/10.1186/s13578-021-00559-8] [PMID: 33653390]
[13]
Loebel, D.A.F.; O’Rourke, M.P.; Steiner, K.A.; Banyer, J.; Tam, P.P.L. Isolation of differentially expressed genes from wild-type and Twist mutant mouse limb buds. Genesis, 2002, 33(3), 103-113.
[http://dx.doi.org/10.1002/gene.10091] [PMID: 12124942]
[14]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[15]
Dhir, A.; Dhir, S.; Proudfoot, N.J.; Jopling, C.L. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat. Struct. Mol. Biol., 2015, 22(4), 319-327.
[http://dx.doi.org/10.1038/nsmb.2982] [PMID: 25730776]
[16]
Fukuda, T.; Yamagata, K.; Fujiyama, S.; Matsumoto, T.; Koshida, I.; Yoshimura, K.; Mihara, M.; Naitou, M.; Endoh, H.; Nakamura, T.; Akimoto, C.; Yamamoto, Y.; Katagiri, T.; Foulds, C.; Takezawa, S.; Kitagawa, H.; Takeyama, K.; O’Malley, B.W.; Kato, S. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat. Cell Biol., 2007, 9(5), 604-611.
[http://dx.doi.org/10.1038/ncb1577] [PMID: 17435748]
[17]
Watanabe, T.; Sato, T.; Amano, T.; Kawamura, Y.; Kawamura, N.; Kawaguchi, H.; Yamashita, N.; Kurihara, H.; Nakaoka, T. Dnm3os, a non-coding RNA, is required for normal growth and skeletal development in mice. Dev. Dyn., 2008, 237(12), 3738-3748.
[http://dx.doi.org/10.1002/dvdy.21787] [PMID: 18985749]
[18]
He, D.; Wu, D.; Muller, S.; Wang, L.; Saha, P.; Ahanger, S.H.; Liu, S.J.; Cui, M.; Hong, S.J.; Jain, M.; Olson, H.E.; Akeson, M.; Costello, J.F.; Diaz, A.; Lim, D.A. miRNA-independent function of long noncoding pri-miRNA loci. Proc. Natl. Acad. Sci. USA, 2021, 118(13), e2017562118.
[http://dx.doi.org/10.1073/pnas.2017562118] [PMID: 33758101]
[19]
Taysi, K.; Sekhon, G.S.; Hillman, R.E.; Opitz, J.M. A new syndrome of proximal deletion of the long arm of chromosome 1: 1q21–23→1q25. Am. J. Med. Genet., 1982, 13(4), 423-430.
[http://dx.doi.org/10.1002/ajmg.1320130411] [PMID: 7158642]
[20]
Ashraf, T.; Collinson, M.N.; Fairhurst, J.; Wang, R.; Wilson, L.C.; Foulds, N. Two further patients with the 1q24 deletion syndrome expand the phenotype: A possible role for the miR199–214 cluster in the skeletal features of the condition. Am. J. Med. Genet. A., 2015, 167(12), 3153-3160.
[http://dx.doi.org/10.1002/ajmg.a.37336] [PMID: 26333682]
[21]
Burkardt, D.D.C.; Rosenfeld, J.A.; Helgeson, M.L.; Angle, B.; Banks, V.; Smith, W.E.; Gripp, K.W.; Moline, J.; Moran, R.T.; Niyazov, D.M.; Stevens, C.A.; Zackai, E.; Lebel, R.R.; Ashley, D.G.; Kramer, N.; Lachman, R.S.; Graham, J.M., Jr Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25. Am. J. Med. Genet. A., 2011, 155(6), 1336-1351.
[http://dx.doi.org/10.1002/ajmg.a.34049] [PMID: 21548129]
[22]
Shepherdson, J.L.; Zheng, H.; Amarillo, I.E.; McAlinden, A.; Shinawi, M. Delineation of the 1q24.3 microdeletion syndrome provides further evidence for the potential role of non-coding RNAs in regulating the skeletal phenotype. Bone, 2021, 142, 115705.
[http://dx.doi.org/10.1016/j.bone.2020.115705] [PMID: 33141070]
[23]
Johnston, C.B.; Dagar, M. Osteoporosis in older adults. Med. Clin. North Am., 2020, 104(5), 873-884.
[http://dx.doi.org/10.1016/j.mcna.2020.06.004] [PMID: 32773051]
[24]
Hattersley, G.; Owens, J.; Flanagan, A.M.; Chambers, T.J. Macrophage colony stimulating factor (M-CSF) is essential for osteoclast formation in vitro. Biochem. Biophys. Res. Commun., 1991, 177(1), 526-531.
[http://dx.doi.org/10.1016/0006-291X(91)92015-C] [PMID: 2043138]
[25]
Takahashi, N.; Udagawa, N.; Suda, T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun., 1999, 256(3), 449-455.
[http://dx.doi.org/10.1006/bbrc.1999.0252] [PMID: 10080918]
[26]
Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki, S.; Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; Tsuda, E.; Morinaga, T.; Higashio, K.; Udagawa, N.; Takahashi, N.; Suda, T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3597-3602.
[http://dx.doi.org/10.1073/pnas.95.7.3597] [PMID: 9520411]
[27]
Zhao, C.; Sun, W.; Zhang, P.; Ling, S.; Li, Y.; Zhao, D.; Peng, J.; Wang, A.; Li, Q.; Song, J.; Wang, C.; Xu, X.; Xu, Z.; Zhong, G.; Han, B.; Chang, Y.Z.; Li, Y. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol., 2015, 12(3), 343-353.
[http://dx.doi.org/10.1080/15476286.2015.1017205] [PMID: 25826666]
[28]
Roberto, V.P.; Gavaia, P.; Nunes, M.J.; Rodrigues, E.; Cancela, M.L.; Tiago, D.M. Evidences for a new role of miR-214 in chondrogenesis. Sci. Rep., 2018, 8(1), 3704.
[http://dx.doi.org/10.1038/s41598-018-21735-w] [PMID: 29487295]
[29]
Lin, E.A.; Kong, L.; Bai, X.H.; Luan, Y.; Liu, C. miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J. Biol. Chem., 2009, 284(17), 11326-11335.
[http://dx.doi.org/10.1074/jbc.M807709200] [PMID: 19251704]
[30]
Ason, B.; Darnell, D.K.; Wittbrodt, B.; Berezikov, E.; Kloosterman, W.P.; Wittbrodt, J.; Antin, P.B.; Plasterk, R.H.A. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. USA, 2006, 103(39), 14385-14389.
[http://dx.doi.org/10.1073/pnas.0603529103] [PMID: 16983084]
[31]
Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; Lin, C.; Socci, N.D.; Hermida, L.; Fulci, V.; Chiaretti, S.; Foà, R.; Schliwka, J.; Fuchs, U.; Novosel, A.; Müller, R.U.; Schermer, B.; Bissels, U.; Inman, J.; Phan, Q.; Chien, M.; Weir, D.B.; Choksi, R.; De Vita, G.; Frezzetti, D.; Trompeter, H.I.; Hornung, V.; Teng, G.; Hartmann, G.; Palkovits, M.; Di Lauro, R.; Wernet, P.; Macino, G.; Rogler, C.E.; Nagle, J.W.; Ju, J.; Papavasiliou, F.N.; Benzing, T.; Lichter, P.; Tam, W.; Brownstein, M.J.; Bosio, A.; Borkhardt, A.; Russo, J.J.; Sander, C.; Zavolan, M.; Tuschl, T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007, 129(7), 1401-1414.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[32]
Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H.A. MicroRNA expression in zebrafish embryonic development. Science, 2005, 309(5732), 310-311.
[http://dx.doi.org/10.1126/science.1114519] [PMID: 15919954]
[33]
Huang, L.; Jin, M.; Gu, R.; Xiao, K.; Lu, M.; Huo, X.; Sun, M.; Yang, Z.; Wang, Z.; Zhang, W.; Zhi, L.; Meng, Z.; Ma, J.; Ma, J.; Zhang, R. miR-199a-5p reduces chondrocyte hypertrophy and attenuates osteoarthritis progression via the indian hedgehog signal pathway. J. Clin. Med., 2023, 12(4), 1313.
[http://dx.doi.org/10.3390/jcm12041313] [PMID: 36835852]
[34]
Bortoluzzi, A.; Furini, F.; Scirè, C.A. Osteoarthritis and its management - Epidemiology, nutritional aspects and environmental factors. Autoimmun. Rev., 2018, 17(11), 1097-1104.
[http://dx.doi.org/10.1016/j.autrev.2018.06.002] [PMID: 30213694]
[35]
Saxby, D.J.; Lloyd, D.G. Osteoarthritis year in review 2016: Mechanics. Osteoarthritis Cartilage, 2017, 25(2), 190-198.
[http://dx.doi.org/10.1016/j.joca.2016.09.023] [PMID: 28100420]
[36]
Chagin, A.S. Effectors of mTOR-autophagy pathway: Targeting cancer, affecting the skeleton. Curr. Opin. Pharmacol., 2016, 28, 1-7.
[http://dx.doi.org/10.1016/j.coph.2016.02.004] [PMID: 26921601]
[37]
Ai, D.; Yu, F. LncRNA DNM3OS promotes proliferation and inhibits apoptosis through modulating IGF1 expression by sponging MiR-126 in CHON-001 cells. Diagn. Pathol., 2019, 14(1), 106.
[http://dx.doi.org/10.1186/s13000-019-0877-2] [PMID: 31526393]
[38]
Makris, E.A.; Gomoll, A.H.; Malizos, K.N.; Hu, J.C.; Athanasiou, K.A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol., 2015, 11(1), 21-34.
[http://dx.doi.org/10.1038/nrrheum.2014.157] [PMID: 25247412]
[39]
Bornes, T.D.; Adesida, A.B.; Jomha, N.M. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: A comprehensive review. Arthritis Res. Ther., 2014, 16(5), 432.
[http://dx.doi.org/10.1186/s13075-014-0432-1] [PMID: 25606595]
[40]
Zhou, X.; Xu, W.; Wang, Y.; Zhang, H.; Zhang, L.; Li, C.; Yao, S.; Huang, Z.; Huang, L.; Luo, D. LncRNA DNM3OS regulates GREM2 via miR-127-5p to suppress early chondrogenic differentiation of rat mesenchymal stem cells under hypoxic conditions. Cell. Mol. Biol. Lett., 2021, 26(1), 22.
[http://dx.doi.org/10.1186/s11658-021-00269-6] [PMID: 34049478]
[41]
Phatak, P.; Burrows, W.M.; Creed, T.M.; Youssef, M.; Lee, G.; Donahue, J.M. MiR-214-3p targets Ras-related protein 14 (RAB14) to inhibit cellular migration and invasion in esophageal Cancer cells. BMC Cancer, 2022, 22(1), 1265.
[http://dx.doi.org/10.1186/s12885-022-10304-0] [PMID: 36471277]
[42]
Orso, F.; Virga, F.; Dettori, D.; Dalmasso, A.; Paradzik, M.; Savino, A.; Pomatto, M.A.C.; Quirico, L.; Cucinelli, S.; Coco, M.; Mareschi, K.; Fagioli, F.; Salmena, L.; Camussi, G.; Provero, P.; Poli, V.; Mazzone, M.; Pandolfi, P.P.; Taverna, D. Stroma-derived miR-214 coordinates tumor dissemination. J. Exp. Clin. Cancer Res., 2023, 42(1), 20.
[http://dx.doi.org/10.1186/s13046-022-02553-5] [PMID: 36639824]
[43]
Guo, X.; Lin, J.; Pan, L.; He, K.; Huang, Z.; Chen, J.; Lin, C.; Zeng, B.; Luo, S.; Wang, M. Ultrasound-triggered release of miR-199a-3p from liposome nanobubbles for enhanced hepatocellular carcinoma treatment. Artif. Cells Nanomed. Biotechnol., 2023, 51(1), 560-571.
[http://dx.doi.org/10.1080/21691401.2023.2268137] [PMID: 37850395]
[44]
Hong, S.A.; Lee, S.; Park, J.; Hong, M.; Yoon, J.S.; Lee, H.; Lee, J.H.; Kim, S.; Won, H.S.; Kang, K.; Ko, Y.H.; Ahn, Y.H. miR-199a and miR-199b facilitate diffuse gastric cancer progression by targeting Frizzled-6. Sci. Rep., 2023, 13(1), 17480.
[http://dx.doi.org/10.1038/s41598-023-44716-0] [PMID: 37838767]
[45]
Phatak, P.; Tulapurkar, M.E.; Burrows, W.M.; Donahue, J.M. MiR-199a-5p decreases esophageal cancer cell proliferation partially through repression of Jun-B. Cancers, 2023, 15(19), 4811.
[http://dx.doi.org/10.3390/cancers15194811] [PMID: 37835506]
[46]
Chen, Z.W.; Kang, F.P.; Xie, C.K.; Liao, C.Y.; Li, G.; Wu, Y.D.; Lin, H.Y.; Zhu, S.C.; Hu, J.F.; Lin, C.F.; Huang, Y.; Tian, Y.F.; Huang, L.; Wang, Z.W.; Chen, S. A novel trojan horse nanotherapy strategy targeting the cPKM-STMN1/TGFB1 axis for effective treatment of intrahepatic cholangiocarcinoma. Adv. Sci., 2023, 10(32), 2303814.
[http://dx.doi.org/10.1002/advs.202303814] [PMID: 37789644]
[47]
Okazaki, Y.; Chew, S.H.; Nagai, H.; Yamashita, Y.; Ohara, H.; Jiang, L.; Akatsuka, S.; Takahashi, T.; Toyokuni, S. Overexpression of miR-199/214 is a distinctive feature of iron-induced and asbestos-induced sarcomatoid mesothelioma in rats. Cancer Sci., 2020, 111(6), 2016-2027.
[http://dx.doi.org/10.1111/cas.14405] [PMID: 32248600]
[48]
Hsieh, T.H.; Liu, Y.R.; Chang, T.Y.; Liang, M.L.; Chen, H.H.; Wang, H.W.; Yen, Y.; Wong, T.T. Global DNA methylation analysis reveals miR-214-3p contributes to cisplatin resistance in pediatric intracranial nongerminomatous malignant germ cell tumors. Neuro-oncol., 2018, 20(4), 519-530.
[http://dx.doi.org/10.1093/neuonc/nox186] [PMID: 29036598]
[49]
He, L.; He, G. DNM3OS facilitates ovarian cancer progression by regulating miR-193a-3p/MAP3K3 axis. Yonsei Med. J., 2021, 62(6), 535-544.
[http://dx.doi.org/10.3349/ymj.2021.62.6.535] [PMID: 34027641]
[50]
Fang, X.; Tang, Z.; Zhang, H.; Quan, H. Long non-coding RNA DNM3OS/miR-204-5p/HIP1 axis modulates oral cancer cell viability and migration. J. Oral Pathol. Med., 2020, 49(9), 865-875.
[http://dx.doi.org/10.1111/jop.13047] [PMID: 32463958]
[51]
Wang, H.; Ji, X. SMAD6, positively regulated by the DNM3OS-miR-134-5p axis, confers promoting effects to cell proliferation, migration and EMT process in retinoblastoma. Cancer Cell Int., 2020, 20(1), 23.
[http://dx.doi.org/10.1186/s12935-020-1103-8] [PMID: 31992960]
[52]
Shulman, Z.; Stern-Ginossar, N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat. Immunol., 2020, 21(5), 501-512.
[http://dx.doi.org/10.1038/s41590-020-0650-4] [PMID: 32284591]
[53]
Chen, Y.; Lin, Y.; Shu, Y.; He, J.; Gao, W. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Mol. Cancer, 2020, 19(1), 94.
[http://dx.doi.org/10.1186/s12943-020-01207-4] [PMID: 32443966]
[54]
Coker, H.; Wei, G.; Brockdorff, N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(3), 310-318.
[http://dx.doi.org/10.1016/j.bbagrm.2018.12.002] [PMID: 30550772]
[55]
Yi, Y.C.; Chen, X.Y.; Zhang, J.; Zhu, J.S. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Mol. Cancer, 2020, 19(1), 121.
[http://dx.doi.org/10.1186/s12943-020-01233-2] [PMID: 32767982]
[56]
Geng, R.; Chen, T.; Zhong, Z.; Ni, S.; Bai, J.; Liu, J. The m6A-related long noncoding RNA signature predicts prognosis and indicates tumor immune infiltration in ovarian cancer. Cancers, 2022, 14(16), 4056.
[http://dx.doi.org/10.3390/cancers14164056] [PMID: 36011053]
[57]
Wang, W.; Wang, Q.; Huang, D.B.; Sun, Q.K.; Wu, S.S.; Zhao, Y.J.; Jia, W.; Hu, D.S.; He, Y.F. Tumor-associated mesenchymal stem cells promote hepatocellular carcinoma metastasis via a DNM3OS/KDM6B/TIAM1 axis. Cancer Lett., 2021, 503, 19-31.
[http://dx.doi.org/10.1016/j.canlet.2021.01.011] [PMID: 33472090]
[58]
Wang, S.; Ni, B.; Zhang, Z.; Wang, C.; Wo, L.; Zhou, C.; Zhao, Q.; Zhao, E. Long non-coding RNA DNM3OS promotes tumor progression and EMT in gastric cancer by associating with Snail. Biochem. Biophys. Res. Commun., 2019, 511(1), 57-62.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.030] [PMID: 30770102]
[59]
Takai, M.; Terai, Y.; Kawaguchi, H.; Ashihara, K.; Fujiwara, S.; Tanaka, T.; Tsunetoh, S.; Tanaka, Y.; Sasaki, H.; Kanemura, M.; Tanabe, A.; Ohmichi, M. The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J. Ovarian Res., 2014, 7(1), 76.
[http://dx.doi.org/10.1186/1757-2215-7-76] [PMID: 25296567]
[60]
Nuti, S.V.; Mor, G.; Li, P.; Yin, G. TWIST and ovarian cancer stem cells: Implications for chemoresistance and metastasis. Oncotarget, 2014, 5(17), 7260-7271.
[http://dx.doi.org/10.18632/oncotarget.2428] [PMID: 25238494]
[61]
Zhang, H.; Hua, Y.; Jiang, Z.; Yue, J.; Shi, M.; Zhen, X.; Zhang, X.; Yang, L.; Zhou, R.; Wu, S. Cancer-associated fibroblast–promoted LncRNA DNM3OS confers radioresistance by regulating DNA damage response in esophageal squamous cell carcinoma. Clin. Cancer Res., 2019, 25(6), 1989-2000.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0773] [PMID: 30463848]
[62]
Zhang, H.; Yue, J.; Jiang, Z.; Zhou, R.; Xie, R.; Xu, Y.; Wu, S. CAF-secreted CXCL1 conferred radioresistance by regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carcinoma. Cell Death Dis., 2017, 8(5), e2790.
[http://dx.doi.org/10.1038/cddis.2017.180] [PMID: 28518141]
[63]
Zhang, H.; Xie, C.; Yue, J.; Jiang, Z.; Zhou, R.; Xie, R.; Wang, Y.; Wu, S. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma. Mol. Carcinog., 2017, 56(3), 1150-1163.
[http://dx.doi.org/10.1002/mc.22581] [PMID: 27769097]
[64]
Yin, X.; Yin, Y.; Dai, L.; Shen, C.; Chen, N.; Li, J.; Cai, Z.; Jiang, Z.; Wang, J.; Zhao, Z.; Chen, X.; Deng, H.; Zhang, B. Integrated analysis of long non-coding RNAs and mRNAs associated with malignant transformation of gastrointestinal stromal tumors. Cell Death Dis., 2021, 12(7), 669.
[http://dx.doi.org/10.1038/s41419-021-03942-y] [PMID: 34218261]
[65]
Ousati Ashtiani, Z.; Abbasi, S.; Pourmand, G.; Ghafouri- Fard, S. Overexpression of long intergenic noncoding RNAs in bladder cancer: A new insight to cancer diagnosis. Pathol. Res. Pract., 2022, 235, 153961.
[http://dx.doi.org/10.1016/j.prp.2022.153961] [PMID: 35653924]
[66]
Peng, Y.; Wang, H.; Huang, Q.; Wu, J.; Zhang, M. A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer. J. Ovarian Res., 2022, 15(1), 8.
[http://dx.doi.org/10.1186/s13048-021-00930-w] [PMID: 35031063]
[67]
Sun, Q.; Gao, Y.; Zhang, Y.; Cao, H.; Liu, J.; Neo, S.Y.; Chen, K.; Bi, Y.; Wu, J. Prognostic profiling of the EMT-associated and immunity-related LncRNAs in lung squamous cell carcinomas. Cells, 2022, 11(18), 2881.
[http://dx.doi.org/10.3390/cells11182881] [PMID: 36139456]
[68]
Lakhia, R.; Yheskel, M.; Flaten, A.; Ramalingam, H.; Aboudehen, K.; Ferrè, S.; Biggers, L.; Mishra, A.; Chaney, C.; Wallace, D.P.; Carroll, T. Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression, JCI Insight, 2020, 5(7).
[http://dx.doi.org/10.1172/jci.insight.133785]
[69]
Das, S.; Reddy, M.A.; Senapati, P.; Stapleton, K.; Lanting, L.; Wang, M.; Amaram, V.; Ganguly, R.; Zhang, L.; Devaraj, S.; Schones, D.E. Diabetes mellitus-induced long noncoding RNA Dnm3os regulates macrophage functions and inflammation via nuclear mechanisms, Arterioscler. Thromb. Vasc. Biol., 2018, 38(8), 1806-1820.
[http://dx.doi.org/10.1161/ATVBAHA.117.310663]
[70]
Y. Su.; P. Guan.; D. Li. Intermedin attenuates macrophage phagocytosis via regulation of the long noncoding RNA Dnm3os/miR-27b-3p/SLAMF7 axis in a mouse model of atherosclerosis in diabetes, Biochem. Biophys. Res. Commun., 2021, 583, 35-42
[http://dx.doi.org/10.1016/j.bbrc.2021.10.038]
[71]
Lacey, M.; Baribault, C.; Ehrlich, K.C.; Ehrlich, M. Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis, 2019, 280, 183-191.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.11.031] [PMID: 30529831]
[72]
Pleguezuelos, O.; Hagi-Pavli, E.; Crowther, G.; Kapas, S. Adrenomedullin signals through NF-κB in epithelial cells. FEBS Lett., 2004, 577(1-2), 249-254.
[http://dx.doi.org/10.1016/j.febslet.2004.10.019] [PMID: 15527794]
[73]
Song, D.; Fang, G.; Mao, S.; Ye, X.; Liu, G.; Miller, E.J.; Greenberg, H.; Liu, S.F. Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice. Atherosclerosis, 2018, 270, 68-75.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.027] [PMID: 29407890]
[74]
Mussbacher, M.; Salzmann, M.; Haigl, B.; Basílio, J.; Hochreiter, B.; Gleitsmann, V.; Moser, B.; Hoesel, B.; Suur, B.E.; Puhm, F.; Ungerböck, C.; Kuttke, M.; Forteza, M.J.; Binder, C.J.; Ketelhuth, D.F.J.; Assinger, A.; Schmid, J.A. Ikk2-mediated inflammatory activation of arterial endothelial cells promotes the development and progression of atherosclerosis. Atherosclerosis, 2020, 307, 21-31.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.06.005] [PMID: 32711212]
[75]
Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669.
[http://dx.doi.org/10.1053/j.gastro.2008.03.003] [PMID: 18471545]
[76]
Huang, G.; Brigstock, D.R. Regulation of hepatic stellate cells by connective tissue growth factor. Front. Biosci., 2012, 17(7), 2495-2507.
[http://dx.doi.org/10.2741/4067] [PMID: 22652794]
[77]
Chen, L.; Charrier, A.; Zhou, Y.; Chen, R.; Yu, B.; Agarwal, K.; Tsukamoto, H.; Lee, L.J.; Paulaitis, M.E.; Brigstock, D.R. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology, 2014, 59(3), 1118-1129.
[http://dx.doi.org/10.1002/hep.26768] [PMID: 24122827]
[78]
Chen, L.; Chen, R.; Kemper, S.; Charrier, A.; Brigstock, D.R. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: Role of exosomes in horizontal transfer of Twist1. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 309(6), G491-G499.
[http://dx.doi.org/10.1152/ajpgi.00140.2015] [PMID: 26229009]
[79]
Savary, G.; Dewaeles, E.; Diazzi, S.; Buscot, M.; Nottet, N.; Fassy, J.; Courcot, E.; Henaoui, I.S.; Lemaire, J.; Martis, N.; Van der Hauwaert, C.; Pons, N.; Magnone, V.; Leroy, S.; Hofman, V.; Plantier, L.; Lebrigand, K.; Paquet, A.; Lino Cardenas, C.L.; Vassaux, G.; Hofman, P.; Günther, A.; Crestani, B.; Wallaert, B.; Rezzonico, R.; Brousseau, T.; Glowacki, F.; Bellusci, S.; Perrais, M.; Broly, F.; Barbry, P.; Marquette, C.H.; Cauffiez, C.; Mari, B.; Pottier, N. The long noncoding RNA DNM3OS is a reservoir of fibromirs with major functions in lung fibroblast response to TGF-β and pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2019, 200(2), 184-198.
[http://dx.doi.org/10.1164/rccm.201807-1237OC] [PMID: 30964696]
[80]
Guo, X.; Wang, X.F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res., 2009, 19(1), 71-88.
[http://dx.doi.org/10.1038/cr.2008.302] [PMID: 19002158]
[81]
Baarsma, H.A.; Königshoff, M. ‘WNT-er is coming’ : WNT signalling in chronic lung diseases. Thorax, 2017, 72(8), 746-759.
[http://dx.doi.org/10.1136/thoraxjnl-2016-209753] [PMID: 28416592]
[82]
Zheng, W.; Chen, C.; Chen, S.; Fan, C.; Ruan, H. Integrated analysis of long non-coding RNAs and mRNAs associated with peritendinous fibrosis. J. Adv. Res., 2019, 15, 49-58.
[http://dx.doi.org/10.1016/j.jare.2018.08.001] [PMID: 30581612]
[83]
Huang, B.-Z.; Jing-Jing, Y.; Dong, X.-M.; Zhuan, Z.; Xiao-Ning, L. Analysis of the lncRNA-associated competing endogenous RNA (ceRNA) network for tendinopathy. Genet Res, 2022, 2022, 9792913.
[http://dx.doi.org/10.1155/2022/9792913]
[84]
Kong, Q.; Zhou, J.; Tian, G.; Quan, Y.; Wu, W.; Liu, X. The potential role of long non-coding RNA Dnm3os in the activation of cardiac fibroblasts. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih, 2021, 38(3), 574-582.
[http://dx.doi.org/10.7507/1001-5515.202102021] [PMID: 34180204]
[85]
Dong, X.; Cong, S. DNM3OS regulates GAPDH expression and influences the molecular pathogenesis of Huntington’s disease. J. Cell. Mol. Med., 2021, 25(18), 9066-9071.
[http://dx.doi.org/10.1111/jcmm.16838] [PMID: 34369082]
[86]
el Azzouzi, H.; Leptidis, S.; Dirkx, E.; Hoeks, J.; van Bree, B.; Brand, K.; McClellan, E.A.; Poels, E.; Sluimer, J.C.; van den Hoogenhof, M.M.G.; Armand, A.S.; Yin, X.; Langley, S.; Bourajjaj, M.; Olieslagers, S.; Krishnan, J.; Vooijs, M.; Kurihara, H.; Stubbs, A.; Pinto, Y.M.; Krek, W.; Mayr, M.; Martins, P.A.C.; Schrauwen, P.; De Windt, L.J. The hypoxia-inducible microRNA cluster miR-199a-214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab., 2013, 18(3), 341-354.
[http://dx.doi.org/10.1016/j.cmet.2013.08.009] [PMID: 24011070]
[87]
Qin, Y.; Buermans, H.P.J.; van Kester, M.S.; van der Fits, L.; Out-Luiting, J.J.; Osanto, S.; Willemze, R.; Vermeer, M.H.; Tensen, C.P. Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sézary syndrome. J. Invest. Dermatol., 2012, 132(5), 1520-1522.
[http://dx.doi.org/10.1038/jid.2011.481] [PMID: 22336940]
[88]
Li, C.; Mpollo, M.S.E.M.; Gonsalves, C.S.; Tahara, S.M.; Malik, P.; Kalra, V.K. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α. J. Biol. Chem., 2014, 289(52), 36031-36047.
[http://dx.doi.org/10.1074/jbc.M114.600775] [PMID: 25389292]
[89]
Li, C.; Zhou, Y.; Loberg, A.; Tahara, S.M.; Malik, P.; Kalra, V.K. Activated transcription factor 3 in association with histone deacetylase 6 negatively regulates MicroRNA 199a2 transcription by chromatin remodeling and reduces endothelin-1 expression. Mol. Cell. Biol., 2016, 36(22), 2838-2854.
[http://dx.doi.org/10.1128/MCB.00345-16] [PMID: 27573019]
[90]
Hirata, M.; Asano, N.; Katayama, K.; Yoshida, A.; Tsuda, Y.; Sekimizu, M.; Mitani, S.; Kobayashi, E.; Komiyama, M.; Fujimoto, H.; Goto, T.; Iwamoto, Y.; Naka, N.; Iwata, S.; Nishida, Y.; Hiruma, T.; Hiraga, H.; Kawano, H.; Motoi, T.; Oda, Y.; Matsubara, D.; Fujita, M.; Shibata, T.; Nakagawa, H.; Nakayama, R.; Kondo, T.; Imoto, S.; Miyano, S.; Kawai, A.; Yamaguchi, R.; Ichikawa, H.; Matsuda, K. Integrated exome and RNA sequencing of dedifferentiated liposarcoma. Nat. Commun., 2019, 10(1), 5683.
[http://dx.doi.org/10.1038/s41467-019-13286-z] [PMID: 31831742]
[91]
Wang, R.; Zhang, M.; Ou, Z.; He, W.; Chen, L.; Zhang, J.; He, Y.; Xu, R.; Jiang, S.; Qi, L.; Wang, L. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes. Aging, 2019, 11(21), 9442-9460.
[http://dx.doi.org/10.18632/aging.102395] [PMID: 31694982]
[92]
Li, N.; Flynt, A.S.; Kim, H.R.; Solnica-Krezel, L.; Patton, J.G. Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res., 2008, 36(13), 4277-4285.
[http://dx.doi.org/10.1093/nar/gkn388] [PMID: 18583362]
[93]
Shi, K.; Lu, J.; Zhao, Y.; Wang, L.; Li, J.; Qi, B.; Li, H.; Ma, C. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone, 2013, 55(2), 487-494.
[http://dx.doi.org/10.1016/j.bone.2013.04.002] [PMID: 23579289]
[94]
Sun, Y.; Kuek, V.; Liu, Y.; Tickner, J.; Yuan, Y.; Chen, L.; Zeng, Z.; Shao, M.; He, W.; Xu, J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J. Cell. Physiol., 2019, 234(1), 231-245.
[http://dx.doi.org/10.1002/jcp.26856] [PMID: 30076721]
[95]
Ottevanger, P.B. Ovarian cancer stem cells more questions than answers. Semin. Cancer Biol., 2017, 44, 67-71.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.009] [PMID: 28450177]
[96]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[97]
Song, H.; Liu, Y.; Liang, H.; Jin, X.; Liu, L. SPINT1-AS1 drives cervical cancer progression via repressing miR-214 biogenesis. Front. Cell Dev. Biol., 2021, 9, 691140.
[http://dx.doi.org/10.3389/fcell.2021.691140] [PMID: 34350182]
[98]
Myers, J.L.; Katzenstein, A.L.A. Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial pneumonia. Chest, 1988, 94(6), 1309-1311.
[http://dx.doi.org/10.1378/chest.94.6.1309] [PMID: 3191777]
[99]
Leslie, K.O. Idiopathic pulmonary fibrosis may be a disease of recurrent, tractional injury to the periphery of the aging lung: A unifying hypothesis regarding etiology and pathogenesis. Arch. Pathol. Lab. Med., 2012, 136(6), 591-600.
[http://dx.doi.org/10.5858/arpa.2011-0511-OA] [PMID: 22136526]
[100]
Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4), 875.
[http://dx.doi.org/10.3390/cells9040875] [PMID: 32260126]
[101]
Liu, Z.; Zhu, P.; Zhang, L.; Xiong, B.; Tao, J.; Guan, W.; Li, C.; Chen, C.; Gu, J.; Duanmu, J.; Zhang, W. Autophagy inhibition attenuates the induction of anti-inflammatory effect of catalpol in liver fibrosis. Biomed. Pharmacother., 2018, 103, 1262-1271.
[http://dx.doi.org/10.1016/j.biopha.2018.04.156] [PMID: 29864907]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy