[1]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “a concise report of its phytopharmaceutical importance”. Curr. Tradit. Med., 2017, 3(3), 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[http://dx.doi.org/10.2174/2215083803666170615111759]
[2]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar, P.D. Health benefits of furanocoumarins ‘psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15(4), 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[http://dx.doi.org/10.2174/1573407214666180511153438]
[3]
Patel, D.K. Biological importance, therapeutic benefits, and analytical aspects of active flavonoidal compounds ‘corylin’ from psoralea corylifolia in the field of medicine. Infect. Disord. Drug Targets, 2023, 23(1), e250822208005.
[http://dx.doi.org/10.2174/1871526522666220825160906] [PMID: 36028973]
[http://dx.doi.org/10.2174/1871526522666220825160906] [PMID: 36028973]
[4]
Patel, D.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders. Curr. Bioact. Compd., 2022, 18(3), e240821195804.
[http://dx.doi.org/10.2174/1573407217666210824125427]
[http://dx.doi.org/10.2174/1573407217666210824125427]
[5]
Patel, K.; Patel, D.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr. Bioact. Compd., 2021, 17(3), 206-213.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[http://dx.doi.org/10.2174/1573407216999200609130841]
[6]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[7]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[8]
Patel, D.K.; Patel, K. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects. Pharmacol. Res. - Mod. Chin. Med., 2022, 5, 100175.
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[9]
Patel, K.; Patel, D.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr. Bioact. Compd., 2020, 16(3), 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[http://dx.doi.org/10.2174/1573407214666181023115355]
[10]
Patel, D.K.; Patel, K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects. Curr. Cancer Ther. Rev., 2022, 18(1), 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[http://dx.doi.org/10.2174/1573394717666210831163322]
[11]
Patel, D.K.; Patel, K. Biological application of cirsiliol in the medicine for the treatment of inflammatory disorders: Scientific data analysis for therapeutic benefit. HPB, 2021, 23, S555-S556.
[http://dx.doi.org/10.1016/j.hpb.2021.06.198]
[http://dx.doi.org/10.1016/j.hpb.2021.06.198]
[12]
Patel, D.K. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives. Pharmacol. Res. - Mod. Chin. Med., 2023, 7, 100232.
[http://dx.doi.org/10.1016/j.prmcm.2023.100232]
[http://dx.doi.org/10.1016/j.prmcm.2023.100232]
[13]
Ju, Z.; Liao, Q.; Yang, Y.; Guan, H.; Ma, C.; Tang, X.; Yang, L.; Wang, Z. Identification of lusianthridin metabolites in rat liver microsomes by liquid chromatography combined with electrospray ionization time‐of‐flight mass spectrometry. Biomed. Chromatogr., 2021, 35(3), e5001.
[http://dx.doi.org/10.1002/bmc.5001] [PMID: 33063881]
[http://dx.doi.org/10.1002/bmc.5001] [PMID: 33063881]
[14]
Pengdee, C.; Sritularak, B.; Putalun, W. Optimization of microwave-assisted extraction of phenolic compounds in Dendrobium formosum Roxb. ex Lindl. and glucose uptake activity. S. Afr. J. Bot., 2020, 132, 423-431.
[http://dx.doi.org/10.1016/j.sajb.2020.06.009]
[http://dx.doi.org/10.1016/j.sajb.2020.06.009]
[15]
Ju, Z.; Tang, X.; Liao, Q.; Guan, H.; Yang, L.; Wang, Z. Pharmacokinetic, bioavailability, and metabolism studies of lusianthridin, a dihydrophenanthrene compound, in rats by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal., 2021, 195, 113836.
[http://dx.doi.org/10.1016/j.jpba.2020.113836] [PMID: 33358433]
[http://dx.doi.org/10.1016/j.jpba.2020.113836] [PMID: 33358433]
[16]
Bai, L.; Yamaki, M.; Takagi, S. Stilbenoids from pleione bulbocodioides. Phytochemistry, 1996, 42(3), 853-856.
[http://dx.doi.org/10.1016/0031-9422(95)00068-2]
[http://dx.doi.org/10.1016/0031-9422(95)00068-2]
[17]
Wu, Y.P.; Liu, W.J.; Zhong, W.J.; Chen, Y.J.; Chen, D.N.; He, F.; Jiang, L. Phenolic compounds from the stems of Flickingeria fimbriata. Nat. Prod. Res., 2017, 31(13), 1518-1522.
[http://dx.doi.org/10.1080/14786419.2017.1278599] [PMID: 28278646]
[http://dx.doi.org/10.1080/14786419.2017.1278599] [PMID: 28278646]
[18]
Zhu, X.; Yan, H.; Yang, M.; Yang, X.; He, L. Separation of three phenanthrenes and two bibenzyls from chloroform fractions of pholidota articulata Lindl. using HPLC. J. AOAC Int., 2022, 105(1), 282-287.
[http://dx.doi.org/10.1093/jaoacint/qsab072] [PMID: 34037763]
[http://dx.doi.org/10.1093/jaoacint/qsab072] [PMID: 34037763]
[19]
Nam, B.; Jang, H.J.; Han, A.R.; Kim, Y.R.; Jin, C.H.; Jung, C.H.; Kang, K.B.; Kim, S.H.; Hong, M.J.; Kim, J.B.; Ryu, H.W. Chemical and biological profiles of dendrobium in two different species, their hybrid, and gamma-irradiated mutant lines of the hybrid based on LC-QToF MS and cytotoxicity analysis. Plants, 2021, 10(7), 1376.
[http://dx.doi.org/10.3390/plants10071376] [PMID: 34371579]
[http://dx.doi.org/10.3390/plants10071376] [PMID: 34371579]
[20]
Liu, M.F.; Ding, Y.; Zhang, D.M. Phenanthrene constituents from rhizome of Arundina graminifolia. Zhongguo Zhongyao Zazhi, 2005, 30(5), 353-356.
[PMID: 15806968]
[PMID: 15806968]
[21]
Thant, M.T.; Chatsumpun, N.; Mekboonsonglarp, W.; Sritularak, B.; Likhitwitayawuid, K. New fluorene derivatives from Dendrobium gibsonii and their α-glucosidase inhibitory activity. Molecules, 2020, 25(21), 4931.
[http://dx.doi.org/10.3390/molecules25214931] [PMID: 33113779]
[http://dx.doi.org/10.3390/molecules25214931] [PMID: 33113779]
[22]
Sarakulwattana, C.; Mekboonsonglarp, W.; Likhitwitayawuid, K.; Rojsitthisak, P.; Sritularak, B. New bisbibenzyl and phenanthrene derivatives from Dendrobium scabrilingue and their α-glucosidase inhibitory activity. Nat. Prod. Res., 2020, 34(12), 1694-1701.
[http://dx.doi.org/10.1080/14786419.2018.1527839] [PMID: 30580616]
[http://dx.doi.org/10.1080/14786419.2018.1527839] [PMID: 30580616]
[23]
Yan, X.; Tang, B.; Liu, M. Phenanthrenes from Arundina graminifolia and in vitro evaluation of their antibacterial and anti-haemolytic properties. Nat. Prod. Res., 2018, 32(6), 707-710.
[http://dx.doi.org/10.1080/14786419.2017.1332606] [PMID: 28553728]
[http://dx.doi.org/10.1080/14786419.2017.1332606] [PMID: 28553728]
[24]
Klongkumnuankarn, P.; Busaranon, K.; Chanvorachote, P.; Sritularak, B.; Jongbunprasert, V.; Likhitwitayawuid, K. Cytotoxic and antimigratory activities of phenolic compounds from dendrobium brymerianum. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/350410] [PMID: 25685168]
[http://dx.doi.org/10.1155/2015/350410] [PMID: 25685168]
[25]
Guo, X.Y.; Wang, J.; Wang, N.L.; Kitanaka, S.; Yao, X.S. 9, 10-Dihydrophenanthrene derivatives from Pholidota yunnanensis and scavenging activity on DPPH free radical. J. Asian Nat. Prod. Res., 2007, 9(2), 165-174.
[http://dx.doi.org/10.1080/10286020500480522] [PMID: 17454314]
[http://dx.doi.org/10.1080/10286020500480522] [PMID: 17454314]
[26]
Hernández-Romero, Y.; Rojas, J.I.; Castillo, R.; Rojas, A.; Mata, R. Spasmolytic effects, mode of action, and structure-activity relationships of stilbenoids from Nidema boothii. J. Nat. Prod., 2004, 67(2), 160-167.
[http://dx.doi.org/10.1021/np030303h] [PMID: 14987052]
[http://dx.doi.org/10.1021/np030303h] [PMID: 14987052]
[27]
Tang, X.; Liao, Q.; Li, Q.; Jiang, L.; Wang, W.; Xu, J.; Li, W.; Xiong, A.; Wang, R.; Wang, Z.; Ding, L.; Yang, L. Lusianthridin ameliorates high fat diet-induced metabolic dysfunction-associated fatty liver disease via activation of FXR signaling pathway. Eur. J. Pharmacol., 2023, 176196.
[http://dx.doi.org/10.1016/j.ejphar.2023.176196] [PMID: 38006926]
[http://dx.doi.org/10.1016/j.ejphar.2023.176196] [PMID: 38006926]
[28]
Li, T.; Wang, W.; Li, S.; Gong, C. Lusianthridin exerts streptozotocin-induced gestational diabetes mellitus in female rats via alteration of TLR4/MyD88/NF-κB signaling pathway. J. Oleo Sci., 2023, 72(8), 775-785.
[http://dx.doi.org/10.5650/jos.ess23066] [PMID: 37468270]
[http://dx.doi.org/10.5650/jos.ess23066] [PMID: 37468270]
[29]
Bhummaphan, N.; Petpiroon, N.; Prakhongcheep, O.; Sritularak, B.; Chanvorachote, P. Lusianthridin targeting of lung cancer stem cells via Src-STAT3 suppression. Phytomedicine, 2019, 62, 152932.
[http://dx.doi.org/10.1016/j.phymed.2019.152932] [PMID: 31100681]
[http://dx.doi.org/10.1016/j.phymed.2019.152932] [PMID: 31100681]
[30]
Sanders, M.J.; Ratinaud, Y.; Neopane, K.; Bonhoure, N.; Day, E.A.; Ciclet, O.; Lassueur, S.; Naranjo Pinta, M.; Deak, M.; Brinon, B.; Christen, S.; Steinberg, G.R.; Barron, D.; Sakamoto, K. Natural (dihydro)phenanthrene plant compounds are direct activators of AMPK through its allosteric drug and metabolite–binding site. J. Biol. Chem., 2022, 298(5), 101852.
[http://dx.doi.org/10.1016/j.jbc.2022.101852] [PMID: 35331736]
[http://dx.doi.org/10.1016/j.jbc.2022.101852] [PMID: 35331736]
[31]
Kirchweger, B. In silico and in vitro approach to assess direct allosteric AMPK activators from nature. Planta Med., 2022, 88(09/10), 794-804.
[http://dx.doi.org/10.1055/a-1797-3030]
[http://dx.doi.org/10.1055/a-1797-3030]
[32]
Swe, H.N.; Sritularak, B.; Rojnuckarin, P.; Luechapudiporn, R. Inhibitory mechanisms of lusianthridin on human platelet aggregation. Int. J. Mol. Sci., 2021, 22(13), 6846.
[http://dx.doi.org/10.3390/ijms22136846] [PMID: 34202163]
[http://dx.doi.org/10.3390/ijms22136846] [PMID: 34202163]
[33]
Thant, S.W.; Morales, N.P.; Buranasudja, V.; Sritularak, B.; Luechapudiporn, R. Protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation. Pharmaceuticals, 2021, 14(6), 567.
[http://dx.doi.org/10.3390/ph14060567] [PMID: 34198641]
[http://dx.doi.org/10.3390/ph14060567] [PMID: 34198641]