Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Cervical Cancer Therapeutics: An In-depth Significance of Herbal and Chemical Approaches of Nanoparticles

Author(s): Istuti Saraswat and Anjana Goel*

Volume 24, Issue 8, 2024

Published on: 31 January, 2024

Page: [627 - 636] Pages: 10

DOI: 10.2174/0118715206289468240130051102

Price: $65

conference banner
Abstract

Cervical cancer emerges as a prominent health issue, demanding attention on a global level for women's well-being, which frequently calls for more specialized and efficient treatment alternatives. Traditional therapies may have limited tumour targeting and adverse side effects. Recent breakthroughs have induced a transformative shift in the strategies employed against cervical cancer. biocompatible herbal nanoparticles and metallic particles made of gold, silver, and iron have become promising friends in the effort to fight against this serious disease and understand the possibility of these nanoparticles for targeted medication administration. this review article delves into the latest advancements in cervical cancer research. The safety and fabrication of these nanomaterials and their remarkable efficacy against cervical tumour spots are addressed. This review study, in short, provides an extensive introduction to the fascinating field of metallic and herbal nanoparticles in cervical cancer treatment. The information that has been examined points to a bright future in which women with cervical cancer may experience fewer side effects, more effective therapy, and an improved quality of life. This review holds promise and has the potential to fundamentally reshape the future of cervical cancer treatment by addressing urgent issues and unmet needs in the field.

Graphical Abstract

[1]
Cabral, B.P.; da Graça, D.F.M.; Mota, F.B. The recent landscape of cancer research worldwide: A bibliometric and network analysis. Oncotarget, 2018, 9(55), 30474-30484.
[http://dx.doi.org/10.18632/oncotarget.25730] [PMID: 30093962]
[2]
Wu, M.S.; Aquino, L.B.B.; Barbaza, M.Y.U.; Hsieh, C.L.; De Castro-Cruz, K.A.; Yang, L.L.; Tsai, P.W. Anti-inflammatory and anticancer properties of bioactive compounds from Sesamum indicum L.—A review. Molecules, 2019, 24(24), 4426.
[http://dx.doi.org/10.3390/molecules24244426] [PMID: 31817084]
[3]
Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9.
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[4]
Giana, F.E.; Bonetto, F.J.; Bellotti, M.I. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells. Phys. Rev. E, 2018, 97(3), 032410.
[http://dx.doi.org/10.1103/PhysRevE.97.032410] [PMID: 29776129]
[5]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[6]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[7]
Sathishkumar, K.; Chaturvedi, M.; Das, P.; Stephen, S.; Mathur, P. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer registry programme, India. Indian J. Med. Res., 2022, 156(4&5), 598-607.
[PMID: 36510887]
[8]
Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob. Oncol., 2020, 6(6), 1063-1075.
[http://dx.doi.org/10.1200/GO.20.00122] [PMID: 32673076]
[9]
Vaccarella, S.; Laversanne, M.; Ferlay, J.; Bray, F. Cervical cancer in Africa, Latin America and the Caribbean and Asia: Regional inequalities and changing trends. Int. J. Cancer, 2017, 141(10), 1997-2001.
[http://dx.doi.org/10.1002/ijc.30901] [PMID: 28734013]
[10]
Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res., 2020, 32(6), 720-728.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.06.05] [PMID: 33446995]
[11]
Brüggmann, D.; Quinkert-Schmolke, K.; Jaque, J.M.; Quarcoo, D.; Bohlmann, M.K.; Klingelhöfer, D.; Groneberg, D.A. Global cervical cancer research: A scientometric density equalizing mapping and socioeconomic analysis. PLoS One, 2022, 17(1), e0261503.
[http://dx.doi.org/10.1371/journal.pone.0261503] [PMID: 34990465]
[12]
Castle, P.E.; Einstein, M.H.; Sahasrabuddhe, V.V. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA Cancer J. Clin., 2021, 71(6), 505-526.
[http://dx.doi.org/10.3322/caac.21696] [PMID: 34499351]
[13]
Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[14]
Cubie, H.A.; Campbell, C. Cervical cancer screening – The challenges of complete pathways of care in low-income countries: Focus on Malawi. Womens Health, 2020, 16, 1745506520914804.
[http://dx.doi.org/10.1177/1745506520914804] [PMID: 32364058]
[15]
Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management. Nat. Rev. Clin. Oncol., 2022, 19(5), 306-327.
[http://dx.doi.org/10.1038/s41571-022-00603-7] [PMID: 35105976]
[16]
Namdari, M.; Eatemadi, A.; Soleimaninejad, M.; Hammed, A.T. A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed. Pharmacother., 2017, 87, 321-331.
[http://dx.doi.org/10.1016/j.biopha.2016.12.099] [PMID: 28064105]
[17]
Shafey, A.M.E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Proc. Syn., 2020, 9(1), 304-339.
[http://dx.doi.org/10.1515/gps-2020-0031]
[18]
Gorain, B.; Pandey, M.; Leng, N.H.; Yan, C.W.; Nie, K.W.; Kaur, S.J.; Marshall, V.; Sisinthy, S.P.; Panneerselvam, J.; Molugulu, N.; Kesharwani, P.; Choudhury, H. Advanced drug delivery systems containing herbal components for wound healing. Int. J. Pharm., 2022, 617, 121617.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121617] [PMID: 35218900]
[19]
Chavda, V.P.; Patel, A.B.; Mistry, K.J.; Suthar, S.F.; Wu, Z.X.; Chen, Z.S.; Hou, K. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: Recent progress and future challenges. Front. Oncol., 2022, 12, 867655.
[http://dx.doi.org/10.3389/fonc.2022.867655] [PMID: 35425710]
[20]
Tiwari, R.; Latheef, S.K.; Ahmed, I.; Iqbal, H.M.N.; Bule, M.H.; Dhama, K.; Samad, H.A.; Karthik, K.; Alagawany, M.; El-Hack, M.E.A.; Yatoo, M.I.; Farag, M.R. Herbal immunomodulators-a remedial panacea for designing and developing effective drugs and medicines: current scenario and future prospects. Curr. Drug Metab., 2018, 19(3), 264-301.
[http://dx.doi.org/10.2174/1389200219666180129125436] [PMID: 29380694]
[21]
Martínez, R.C.J.; Tarhini, M.; Badri, W.; Miladi, K.; Greige-Gerges, H.; Nazari, Q.A.; Galindo, R.S.A.; Román, R.Á.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm., 2017, 532(1), 66-81.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.064] [PMID: 28801107]
[22]
Jalili, A.; Bagherifar, R.; Nokhodchi, A.; Conway, B.; Javadzadeh, Y. Current advances in nanotechnology-mediated delivery of herbal and plant-derived medicines. Adv. Pharm. Bull., 2023, 13(4), 712-722.
[http://dx.doi.org/10.34172/apb.2023.087] [PMID: 38022806]
[23]
Rodrigues, F.C.; Devi, N.G.; Thakur, G. Role of targeted drug delivery in cancer therapeutics. In: Advances and Challenges in Pharmaceutical Technology; , 2021; p. 327-354.
[http://dx.doi.org/10.1016/B978-0-12-820043-8.00008-6]
[24]
Gujar, K.; Wairkar, S. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine, 2020, 71, 153240.
[http://dx.doi.org/10.1016/j.phymed.2020.153240] [PMID: 32450461]
[25]
Shruthi, V. Formulation and charecterization of artemisinin nanoparticles doctoral dissertation. Jaya College of Paramedical Sciences; Thiruninravur, Chennai, 2019.
[26]
Takke, A.; Shende, P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. Nanomedicine, 2019, 21, 102057.
[http://dx.doi.org/10.1016/j.nano.2019.102057] [PMID: 31340181]
[27]
Paul, A.T.; Jindal, A. Nano-natural products as anticancer agents. Anticancer Plants: Clinical Trials and Nanotec., 2017, 3, 27-50.
[28]
Zafar, S.; Jain, G.K.; Ahmad, F.J. Nanomedicine approaches for the delivery of herbal anticancer drugs. Nanomed. Bioactives: Healthcare Appl., 2020, 201-229.
[29]
Patil, A.V. Development and characterization of nanoparticulate formulations of water-insoluble anticancer drug. In: Doctoral dissertation; Rajiv Gandhi University of Health Sciences India, 2011.
[30]
Noor, N.S.; Kaus, N.H.M.; Szewczuk, M.R.; Hamid, S.B.S. Formulation, characterization and cytotoxicity effects of novel thymoquinone-PLGA-PF68 nanoparticles. Int. J. Mol. Sci., 2021, 22(17), 9420.
[http://dx.doi.org/10.3390/ijms22179420] [PMID: 34502328]
[31]
Mathur, M. Achievements, constraints and gaps of nano-techniques per tains to augmenting herbal drug efficacy. Medicinal Plants – Int. J. Phytomed. Related Industries, 2016, 8(3), 171-198.
[http://dx.doi.org/10.5958/0975-6892.2016.00031.9]
[32]
Jahangir, M.A.; Zafar, A.; Khan, S.; Kala, C.; Muheem, A.; Taleuzzaman, M. Phytonutrients and technological development in formulations. J. Pharm. Res. Sci. Tech., 2022, 6(1), 38-66.
[http://dx.doi.org/10.31531/jprst.1000159]
[33]
Murthy, K.C.; Monika, P.; Jayaprakasha, G.K.; Patil, B.S. Nanoencapsulation: An advanced nanotechnological approach to enhance the biological efficacy of curcumin. American Chemical Society, In Advances in plant Phenolics: From chemistry to human health, 2018, 383-405.
[34]
Sharma, S.; Hafeez, A.; Usmani, S.A. Nanoformulation approaches of naringenin- an updated review on leveraging pharmaceutical and preclinical attributes from the bioactive. J. Drug Deliv. Sci. Technol., 2022, 76, 103724.
[http://dx.doi.org/10.1016/j.jddst.2022.103724]
[35]
Gajbhiye, K.R.; Salve, R.; Narwade, M.; Sheikh, A.; Kesharwani, P.; Gajbhiye, V. Lipid polymer hybrid nanoparticles: A custom-tailored next-generation approach for cancer therapeutics. Mol. Cancer, 2023, 22(1), 160.
[http://dx.doi.org/10.1186/s12943-023-01849-0] [PMID: 37784179]
[36]
Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[37]
Parmar, G.R.; Sailor, G.U. Nanotechnological approach for design and delivery of phytopharmaceuticals. Nanocarriers: Drug Delivery System: An Evidence Based Approach, 2021, 281-301.
[38]
Saraf, S.; Gupta, A.; Alexander, A.; Khan, J.; Jangde, M.; Saraf, S. Advancements and avenues in nanophytomedicines for better pharmacological responses. J. Nanosci. Nanotechnol., 2015, 15(6), 4070-4079.
[http://dx.doi.org/10.1166/jnn.2015.10333] [PMID: 26369014]
[39]
Li, Z.; Zheng, W.; Wang, H.; Cheng, Y.; Fang, Y.; Wu, F.; Sun, G.; Sun, G.; Lv, C.; Hui, B. Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag. Res., 2021, 13, 2455-2475.
[http://dx.doi.org/10.2147/CMAR.S302565] [PMID: 33758544]
[40]
Blidisel, A.; Marcovici, I.; Coricovac, D.; Hut, F.; Dehelean, C.A.; Cretu, O.M. Experimental models of hepatocellular carcinoma. Cancers, 2021, 13(15), 3651.
[http://dx.doi.org/10.3390/cancers13153651] [PMID: 34359553]
[41]
Gaspar, T.B.; Lopes, J.M.; Soares, P.; Vinagre, J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer, 2022, 29(12), R191-R208.
[http://dx.doi.org/10.1530/ERC-22-0166] [PMID: 36197786]
[42]
Sur, S.; Ray, R.B. Bitter melon (momordica charantia), a nutraceutical approach for cancer prevention and therapy. Cancers, 2020, 12(8), 2064.
[http://dx.doi.org/10.3390/cancers12082064] [PMID: 32726914]
[43]
Seltzer, E.S.; Watters, A.K.; MacKenzie, D., Jr; Granat, L.M.; Zhang, D. Cannabidiol (CBD) as a promising anti-cancer drug. Cancers, 2020, 12(11), 3203.
[http://dx.doi.org/10.3390/cancers12113203] [PMID: 33143283]
[44]
Han, C.C.; Wang, Y. Anti-inflammation effects of Sophora flavescens nanoparticles. Inflammation, 2012, 35(4), 1262-1268.
[http://dx.doi.org/10.1007/s10753-012-9437-6] [PMID: 22327863]
[45]
Sivakumar, S.; Subban, M.; Chinnasamy, R.; Chinnaperumal, K.; Nakouti, I.; El-Sheikh, M.A.; Shaik, J.P. Green synthesized silver nanoparticles using Andrographis macrobotrys Nees leaf extract and its potential to antibacterial, antioxidant, anti-inflammatory and lung cancer cells cytotoxicity effects. Inorg. Chem. Commun., 2023, 153, 110787.
[http://dx.doi.org/10.1016/j.inoche.2023.110787]
[46]
Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci., 2020, 10(11), 3824.
[http://dx.doi.org/10.3390/app10113824]
[47]
Shen, Z.; Wu, A.; Chen, X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm., 2017, 14(5), 1352-1364.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00839] [PMID: 27776215]
[48]
Tyagi, P.K.; Arya, A.; Mazumder, A.M.; Tyagi, S. Development of copper nanoparticles and their prospective uses as antioxidants, antimicrobials, anticancer agents in the pharmaceutical sector. Precis. Nanomed., 2023, 6(2), 1048-1065.
[http://dx.doi.org/10.33218/001c.83932]
[49]
Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 2021, 13(18), 4570.
[http://dx.doi.org/10.3390/cancers13184570] [PMID: 34572797]
[50]
Tinajero-Díaz, E.; Salado-Leza, D.; Gonzalez, C.; Martínez Velázquez, M.; López, Z.; Bravo-Madrigal, J.; Knauth, P.; Flores-Hernández, F.Y.; Herrera-Rodríguez, S.E.; Navarro, R.E.; Cabrera-Wrooman, A.; Krötzsch, E.; Carvajal, Z.Y.G.; Hernández-Gutiérrez, R. Green metallic nanoparticles for cancer therapy: Evaluation models and cancer applications. Pharmaceutics, 2021, 13(10), 1719.
[http://dx.doi.org/10.3390/pharmaceutics13101719] [PMID: 34684012]
[51]
Păduraru, D.N.; Ion, D.; Niculescu, A.G.; Mușat, F.; Andronic, O.; Grumezescu, A.M.; Bolocan, A. Recent developments in metallic nanomaterials for cancer therapy, diagnosing and imaging applications. Pharmaceutics, 2022, 14(2), 435.
[http://dx.doi.org/10.3390/pharmaceutics14020435] [PMID: 35214167]
[52]
Huang, Y.; Xiao, D.; Burton-Freeman, B.M.; Edirisinghe, I. Chemical changes of bioactive phytochemicals during thermal processing. Shipin Kexue, 2016, 1-9.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.03055-9]
[53]
Ahmad, F.; Ashraf, N.; Ashraf, T.; Zhou, R.B.; Yin, D.C. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: Their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol., 2019, 103(7), 2913-2935.
[http://dx.doi.org/10.1007/s00253-019-09675-5] [PMID: 30778643]
[54]
Ullah Khan, S.; Saleh, T.A.; Wahab, A.; Ullah Khan, M.H.; Khan, D.; Ullah Khan, W.; Rahim, A.; Kamal, S.; Ullah Khan, F.; Fahad, S. Nanosilver: New ageless and versatile biomedical therapeutic scaffold. Int. J. Nanomed., 2018, 13, 733-762.
[http://dx.doi.org/10.2147/IJN.S153167] [PMID: 29440898]
[55]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[56]
Jeyaraj, M.; Arun, R.; Sathishkumar, G. MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). Mater. Res. Bull., 2014, 52, 15-24.
[http://dx.doi.org/10.1016/j.materresbull.2013.12.060]
[57]
Ratan, Z.A.; Haidere, M.F.; Nurunnabi, M.; Shahriar, S.M.; Ahammad, A.J.S.; Shim, Y.Y.; Reaney, M.J.T.; Cho, J.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers, 2020, 12(4), 855.
[http://dx.doi.org/10.3390/cancers12040855] [PMID: 32244822]
[58]
Dey, A.; Yogamoorthy, A.; Sundarapandian, S.M. Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 2018, 4, 1-17.
[59]
Cheeseman, S.; Christofferson, A.J.; Kariuki, R.; Cozzolino, D.; Daeneke, T.; Crawford, R.J.; Truong, V.K.; Chapman, J.; Elbourne, A. Antimicrobial metal nanomaterials: From passive to stimuli‐activated applications. Adv. Sci., 2020, 7(10), 1902913.
[http://dx.doi.org/10.1002/advs.201902913] [PMID: 32440470]
[60]
Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci., 2020, 7, 587012.
[http://dx.doi.org/10.3389/fmolb.2020.587012] [PMID: 33324678]
[61]
Ke, Y.; Al Aboody, M.S.; Alturaiki, W.; Alsagaby, S.A.; Alfaiz, F.A.; Veeraraghavan, V.P.; Mickymaray, S. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1938-1946.
[http://dx.doi.org/10.1080/21691401.2019.1614017] [PMID: 31099261]
[62]
Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl., 2018, 2018, 1-18.
[http://dx.doi.org/10.1155/2018/1062562] [PMID: 30073019]
[63]
Khandel, P.; Yadaw, R.K.; Soni, D.K.; Kanwar, L.; Shahi, S.K. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostructure Chem., 2018, 8(3), 217-254.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[64]
Selim, Y.A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverratortuosa and their cytotoxic activities. Sci. Rep., 2020, 10(1), 3445.
[http://dx.doi.org/10.1038/s41598-020-60541-1] [PMID: 32103090]
[65]
Siddiqi, K.S.; Husen, A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: A review. Biomater. Res., 2020, 24(1), 11.
[http://dx.doi.org/10.1186/s40824-020-00188-1] [PMID: 32514371]
[66]
Cuong, H.N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Thanh Hai, N.T.; Viet, N.M.; Nguyen, V.H. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res., 2022, 203, 111858.
[http://dx.doi.org/10.1016/j.envres.2021.111858] [PMID: 34389352]
[67]
Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innovation, 2022, 26, 102336.
[http://dx.doi.org/10.1016/j.eti.2022.102336]
[68]
Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol., 2020, 24, 101518.
[http://dx.doi.org/10.1016/j.bcab.2020.101518]
[69]
Jain, S.; Saxena, N.; Sharma, M.K.; Chatterjee, S. Metal nanoparticles and medicinal plants: Present status and future prospects in cancer therapy. Mater. Today Proc., 2020, 31, 662-673.
[http://dx.doi.org/10.1016/j.matpr.2020.06.602]
[70]
S M. S.; Naveen, N.R.; Rao, G.K.; Gopan, G.; Chopra, H.; Park, M.N.; Alshahrani, M.M.; Jose, J.; Emran, T.B.; Kim, B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front. Oncol., 2022, 12, 994155.
[http://dx.doi.org/10.3389/fonc.2022.994155] [PMID: 36330493]
[71]
Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 2019, 24(14), 2558-2580.
[http://dx.doi.org/10.3390/molecules24142558] [PMID: 31337070]
[72]
Ramezani Farani, M.; Azarian, M.; Heydari Sheikh Hossein, H.; Abdolvahabi, Z.; Mohammadi Abgarmi, Z.; Moradi, A.; Mousavi, S.M.; Ashrafizadeh, M.; Makvandi, P.; Saeb, M.R.; Rabiee, N. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer. ACS Appl. Bio Mater., 2022, 5(3), 1305-1318.
[http://dx.doi.org/10.1021/acsabm.1c01311] [PMID: 35201760]
[73]
Zhao, Z.; Anselmo, A.C.; Mitragotri, S. Viral vector‐based gene therapies in the clinic. Bioeng. Transl. Med., 2022, 7(1), e10258.
[http://dx.doi.org/10.1002/btm2.10258] [PMID: 35079633]
[74]
Santiago-Ortiz, J.L.; Schaffer, D.V. Adeno-associated virus (AAV) vectors in cancer gene therapy. J. Control. Release, 2016, 240, 287-301.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.001] [PMID: 26796040]
[75]
Kaiser, J. How safe is a popular gene therapy vector? Science, 2020, 367(6474), 131.
[http://dx.doi.org/10.1126/science.367.6474.131] [PMID: 31919200]
[76]
Kaeppel, C.; Beattie, S.G.; Fronza, R.; van Logtenstein, R.; Salmon, F.; Schmidt, S.; Wolf, S.; Nowrouzi, A.; Glimm, H.; von Kalle, C.; Petry, H.; Gaudet, D.; Schmidt, M. A largely random AAV integration profile after LPLD gene therapy. Nat. Med., 2013, 19(7), 889-891.
[http://dx.doi.org/10.1038/nm.3230] [PMID: 23770691]
[77]
Chowdhury, E.A.; Meno-Tetang, G.; Chang, H.Y.; Wu, S.; Huang, H.W.; Jamier, T.; Chandran, J.; Shah, D.K. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv. Drug Deliv. Rev., 2021, 170, 214-237.
[http://dx.doi.org/10.1016/j.addr.2021.01.017] [PMID: 33486008]
[78]
Stanicki, D.; Vangijzegem, T.; Ternad, I.; Laurent, S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin. Drug Deliv., 2022, 19(3), 321-335.
[http://dx.doi.org/10.1080/17425247.2022.2047020] [PMID: 35202551]
[79]
Luther, D.C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y.W.; Nagaraj, H.; Rotello, V.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv. Drug Deliv. Rev., 2020, 156, 188-213.
[http://dx.doi.org/10.1016/j.addr.2020.06.020] [PMID: 32610061]
[80]
Tong, S.; Zhu, H.; Bao, G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater. Today, 2019, 31, 86-99.
[http://dx.doi.org/10.1016/j.mattod.2019.06.003] [PMID: 32831620]
[81]
Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv., 2015, 33(6), 1162-1176.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.003] [PMID: 25689073]
[82]
Luo, X.; Zhao, W.; Li, B.; Zhang, X.; Zhang, C.; Bratasz, A.; Deng, B.; McComb, D.W.; Dong, Y. Co-delivery of mRNA and SPIONs through amino-ester nanomaterials. Nano Res., 2018, 11(10), 5596-5603.
[http://dx.doi.org/10.1007/s12274-018-2082-0] [PMID: 31737222]
[83]
Zhang, Y.; Fu, X.; Jia, J.; Wikerholmen, T.; Xi, K.; Kong, Y.; Wang, J.; Chen, H.; Ma, Y.; Li, Z.; Wang, C.; Qi, Q.; Thorsen, F.; Wang, J.; Cui, J.; Li, X.; Ni, S. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl. Mater. Interfaces, 2020, 12(39), 43408-43421.
[http://dx.doi.org/10.1021/acsami.0c12042] [PMID: 32885649]
[84]
Yang, Z.; Duan, J.; Wang, J.; Liu, Q.; Shang, R.; Yang, X.; Lu, P.; Xia, C.; Wang, L.; Dou, K. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int. J. Nanomedicine, 2018, 13, 1851-1865.
[http://dx.doi.org/10.2147/IJN.S155537] [PMID: 29618926]
[85]
Revia, R.A.; Stephen, Z.R.; Zhang, M. Theranostic nanoparticles for RNA-Based cancer treatment. Acc. Chem. Res., 2019, 52(6), 1496-1506.
[http://dx.doi.org/10.1021/acs.accounts.9b00101] [PMID: 31135134]
[86]
Song, Y.; Li, D.; Lu, Y.; Jiang, K.; Yang, Y.; Xu, Y.; Dong, L.; Yan, X.; Ling, D.; Yang, X.; Yu, S.H. Ferrimagnetic mPEG- b -PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia–chemotherapy. Natl. Sci. Rev., 2020, 7(4), 723-736.
[http://dx.doi.org/10.1093/nsr/nwz201] [PMID: 34692091]
[87]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[88]
Lee, G.Y.; Qian, W.P.; Wang, L.; Wang, Y.A.; Staley, C.A.; Satpathy, M.; Nie, S.; Mao, H.; Yang, L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 2013, 7(3), 2078-2089.
[http://dx.doi.org/10.1021/nn3043463] [PMID: 23402593]
[89]
Lee, N.; Yoo, D.; Ling, D.; Cho, M.H.; Hyeon, T.; Cheon, J. Iron oxide-based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev., 2015, 115(19), 10637-10689.
[http://dx.doi.org/10.1021/acs.chemrev.5b00112] [PMID: 26250431]
[90]
Gavilán, H.; Avugadda, S.K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B.T.; Chantrell, R.; Pellegrino, T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev., 2021, 50(20), 11614-11667.
[http://dx.doi.org/10.1039/D1CS00427A] [PMID: 34661212]
[91]
Li, Y.; Chen, W.; Qi, Y.; Wang, S.; Li, L.; Li, W.; Xie, T.; Zhu, H.; Tang, Z.; Zhou, M. H2S-Scavenged and activated iron oxide−hydroxide nanospindles for MRI−guided photothermal therapy and ferroptosis in colon cancer. Small, 2020, 16(37), 2001356.
[http://dx.doi.org/10.1002/smll.202001356] [PMID: 32789963]
[92]
Laurent, S.; Saei, A.A.; Behzadi, S.; Panahifar, A.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opin. Drug Deliv., 2014, 11(9), 1449-1470.
[http://dx.doi.org/10.1517/17425247.2014.924501] [PMID: 24870351]
[93]
Vázquez-Núñez, E.; Molina-Guerrero, C.E.; Peña-Castro, J.M.; Fernández-Luqueño, F.; de la Rosa-Álvarez, M.G. Use of nanotechnology for the bioremediation of contaminants: A review. Processes, 2020, 8(7), 826.
[http://dx.doi.org/10.3390/pr8070826]
[94]
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Wender, R.C. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2019, 69(3), 184-210.
[http://dx.doi.org/10.3322/caac.21557] [PMID: 30875085]
[95]
Benelmekki, M. An introduction to nanoparticles and nanotechnology. In: Designing hybrid nanoparticles; Morgan & Claypool Publishers, 2015.
[http://dx.doi.org/10.1088/978-1-6270-5469-0ch1]
[96]
Shipunova, V.O.; Belova, M.M.; Kotelnikova, P.A.; Shilova, O.N.; Mirkasymov, A.B.; Danilova, N.V.; Komedchikova, E.N.; Popovtzer, R.; Deyev, S.M.; Nikitin, M.P. Photothermal therapy with HER2-targeted silver nanoparticles leading to cancer remission. Pharmaceutics, 2022, 14(5), 1013.
[http://dx.doi.org/10.3390/pharmaceutics14051013] [PMID: 35631598]
[97]
Chaudhary, V. Sonu; Chowdhury, R.; Thukral, P.; Pathania, D.; Saklani, S.; Lucky; Rustagi, S.; Gautam, A.; Mishra, Y.K.; Singh, P.; Kaushik, A. Biogenic green metal nano systems as efficient anti-cancer agents. Environ. Res., 2023, 229, 115933.
[http://dx.doi.org/10.1016/j.envres.2023.115933] [PMID: 37080272]
[98]
Li, X.; Chen, L.; Luan, S.; Zhou, J.; Xiao, X.; Yang, Y.; Mao, C.; Fang, P.; Chen, L.; Zeng, X.; Gao, H. The development and progress of nanomedicine for oesophagal cancer diagnosis and treatment. In: Seminars in cancer biology; Academic Press, 2022; Vol. 86, pp. 873-885.
[99]
Muhamad, M.; Ab Rahim, N.; Wan Omar, W.A.; Nik Mohamed Kamal, N.N.S. Cytotoxicity, and genotoxicity of biogenic silver nanoparticles in A549 and BEAS-2B cell lines. Bioinorg. Chem. Appl., 2022, 2022, 8546079.
[http://dx.doi.org/10.1155/2022/8546079] [PMID: 36193250]
[100]
Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Singh Dhanjal, D.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials, 2020, 10(7), 1334.
[http://dx.doi.org/10.3390/nano10071334] [PMID: 32650608]
[101]
Baranwal, A.; Mahato, K.; Srivastava, A.; Maurya, P.K.; Chandra, P. Phytofabricated metallic nanoparticles and their clinical applications. RSC Advances, 2016, 6(107), 105996-106010.
[http://dx.doi.org/10.1039/C6RA23411A]
[102]
Rasool, M.; Malik, A.; Waquar, S.; Arooj, M.; Zahid, S.; Asif, M.; Shaheen, S.; Hussain, A.; Ullah, H.; Gan, S.H. New challenges in the use of nanomedicine in cancer therapy. Bioengineered, 2022, 13(1), 759-773.
[http://dx.doi.org/10.1080/21655979.2021.2012907] [PMID: 34856849]
[103]
Shamaila, S.; Sajjad, A.K.L.; Ryma, N-A.; Farooqi, S.A.; Jabeen, N.; Majeed, S.; Farooq, I. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today, 2016, 5, 150-199.
[http://dx.doi.org/10.1016/j.apmt.2016.09.009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy