Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Cordycepin against Pulmonary Arterial Hypertension in Rats

Author(s): Jiangpeng Lin, Yuzhuo Zhang, Shuangfeng Lin, Haiming Ding and Weihua Liu*

Volume 27, Issue 18, 2024

Published on: 30 January, 2024

Page: [2776 - 2789] Pages: 14

DOI: 10.2174/0113862073267432230925112002

Price: $65

Abstract

Background: Pulmonary Arterial Hypertension (PAH) is a fatal disease with high morbidity and mortality. Cordycepin has anti-inflammatory, antioxidant and immune enhancing effects. However, the role of Cordycepin in the treatment of PAH and its mechanism is not clear.

Methods: The Cordycepin structure and PAH-related gene targets were obtained from public databases. The KEGG and GO enrichment analysis of common targets was performed in DAVID. PPI networks were also mapped using the STRING platform. AutoDock Vina, AutoDockTools, ChemBio3D and Pymol tools were selected for molecular docking of key targets. The therapeutic effects of Cordycepin on PAH were observed in Monocrotaline (MCT)-induced PAH rats and platelet-derived growth factor BB (PDGFBB)-induced rat pulmonary artery smooth muscle cells (PASMCs). The right ventricular systolic pressure (RVSP) was detected. HE staining, Western Blot, Scratch assay, EDU and TUNEL assays were used, respectively.

Results: Through Network Pharmacology and molecular docking, the Cordycepin-PAH core genes were found to be TP53, AKT1, CASP3, BAX and BCL2L1. In MCT-induced PAH rats, the administration of Cordycepin significantly reduced RVSP, and inhibited pulmonary vascular remodeling. In PDGFBB-induced PASMCs, Cordycepin reduced the migration and proliferation of PASMCs and promoted apoptosis. After the Cordycepin treatment, the protein expressions of TP53, Cleaved CASP3 and BAX were significantly increased, while the protein expressions of p-AKT1 and BCL2L1 were significantly decreased in MCT-PAH rats and PDGFBB-induced PASMCs.

Conclusion: This study identified that TP53, AKT1, CASP3, BAX, and BCL2L1 were the potential targets of Cordycepin against PAH by ameliorating pulmonary vascular remodeling, inhibiting the abnormal proliferation and migration of PASMCs and increasing apoptosis of PASMCs. which provided a new understanding of the pharmacological mechanisms of Cordycepin in the treatment of PAH.

« Previous
[1]
Hassoun, P.M. Pulmonary arterial hypertension. N. Engl. J. Med., 2021, 385(25), 2361-2376.
[http://dx.doi.org/10.1056/NEJMra2000348] [PMID: 34910865]
[2]
Beik, A.; Najafipour, H.; Joukar, S.; Rajabi, S.; Iranpour, M.; Kordestani, Z. Perillyl alcohol suppresses monocrotaline-induced pulmonary arterial hypertension in rats via anti-remodeling, anti-oxidant, and anti-inflammatory effects. Clin. Exp. Hypertens., 2021, 43(3), 270-280.
[http://dx.doi.org/10.1080/10641963.2020.1860080] [PMID: 33322932]
[3]
Coons, J.C.; Pogue, K.; Kolodziej, A.R.; Hirsch, G.A.; George, M.P. Pulmonary arterial hypertension: A pharmacotherapeutic update. Curr. Cardiol. Rep., 2019, 21(11), 141.
[http://dx.doi.org/10.1007/s11886-019-1235-4] [PMID: 31758342]
[4]
Kylhammar, D.; Kjellström, B.; Hjalmarsson, C.; Jansson, K.; Nisell, M.; Söderberg, S.; Wikström, G.; Rådegran, G. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur. Heart J., 2018, 39(47), 4175-4181.
[http://dx.doi.org/10.1093/eurheartj/ehx257] [PMID: 28575277]
[5]
Rafikova, O.; Al Ghouleh, I.; Rafikov, R. Focus on early events: Pathogenesis of pulmonary arterial hypertension development. Antioxid. Redox Signal., 2019, 31(13), 933-953.
[http://dx.doi.org/10.1089/ars.2018.7673] [PMID: 31169021]
[6]
Mandras, S.A.; Mehta, H.S.; Vaidya, A. Pulmonary hypertension: A brief guide for clinicians. Mayo Clin. Proc., 2020, 95(9), 1978-1988.
[http://dx.doi.org/10.1016/j.mayocp.2020.04.039] [PMID: 32861339]
[7]
An, Y.; Li, Y.; Wang, X.; Chen, Z.; Xu, H.; Wu, L.; Li, S.; Wang, C.; Luan, W.; Wang, X.; Liu, M.; Tang, X.; Yu, L. Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids Health Dis., 2018, 17(1), 276.
[http://dx.doi.org/10.1186/s12944-018-0910-6] [PMID: 30522511]
[8]
Chen, Y.Y.; Chen, C.H.; Lin, W.C.; Tung, C.W.; Chen, Y.C.; Yang, S.H.; Huang, B.M.; Chen, R.J. The role of autophagy in anti-cancer and health promoting effects of cordycepin. Molecules, 2021, 26(16), 4954.
[http://dx.doi.org/10.3390/molecules26164954] [PMID: 34443541]
[9]
Yang, S.W.; Lim, L.; Ju, S.; Choi, D.H.; Song, H. Effects of matrix metalloproteinase 13 on vascular smooth muscle cells migration via Akt–ERK dependent pathway. Tissue Cell, 2015, 47(1), 115-121.
[http://dx.doi.org/10.1016/j.tice.2014.12.004] [PMID: 25595313]
[10]
Zheng, Q.; Sun, J.; Li, W.; Li, S.; Zhang, K. Cordycepin induces apoptosis in human tongue cancer cells in vitro and has antitumor effects in vivo. Arch. Oral Biol., 2020, 118, 104846.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104846] [PMID: 32730909]
[11]
Ge, B.; Guo, C.; Liang, Y.; Liu, M.; Wu, K. Network analysis, and human and animal studies disclose the anticystitis glandularis effects of vitamin C. Biofactors, 2019, 45(6), 912-919.
[http://dx.doi.org/10.1002/biof.1558] [PMID: 31469455]
[12]
Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144, 105389.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105389] [PMID: 35303581]
[13]
Xiao, Y.; Chen, P.P.; Zhou, R.L.; Zhang, Y.; Tian, Z.; Zhang, S.Y. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: A review. Aging Dis., 2020, 11(6), 1623-1639.
[http://dx.doi.org/10.14336/AD.2020.0111] [PMID: 33269111]
[14]
Aldred, M.A.; Morrell, N.W.; Guignabert, C. New mutations and pathogenesis of pulmonary hypertension: Progress and puzzles in disease pathogenesis. Circ. Res., 2022, 130(9), 1365-1381.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.320084] [PMID: 35482831]
[15]
Xu, J.C.; Zhou, X.P.; Wang, X.A.; Xu, M.D.; Chen, T.; Chen, T.Y.; Zhou, P.H.; Zhang, Y.Q. Cordycepin induces apoptosis and G2/M phase arrest through the ERK pathways in esophageal cancer cells. J. Cancer, 2019, 10(11), 2415-2424.
[http://dx.doi.org/10.7150/jca.32071] [PMID: 31258746]
[16]
Liu, T.; Zhu, G.; Yan, W.; Lv, Y.; Wang, X.; Jin, G.; Cui, M.; Lin, Z.; Ren, X. Cordycepin inhibits cancer cell proliferation and angiogenesis through a DEK interaction via ERK signaling in cholangiocarcinoma. J. Pharmacol. Exp. Ther., 2020, 373(2), 279-289.
[http://dx.doi.org/10.1124/jpet.119.263202] [PMID: 32102917]
[17]
Kong, W.; Liu, W.; Wang, M.; Hui, W.; Feng, Y.; Lu, J.; Miranbieke, B.; Liu, H.; Gao, F. Cordycepin exhibits anti-bacterial and anti-inflammatory effects against gastritis in Helicobacter pylori-infected mice. Pathog. Dis., 2022, 80(1), ftac005.
[http://dx.doi.org/10.1093/femspd/ftac005] [PMID: 35191475]
[18]
Hennigs, J.K.; Cao, A.; Li, C.G.; Shi, M.; Mienert, J.; Miyagawa, K.; Körbelin, J.; Marciano, D.P.; Chen, P.I.; Roughley, M.; Elliott, M.V.; Harper, R.L.; Bill, M.A.; Chappell, J.; Moonen, J.R.; Diebold, I.; Wang, L.; Snyder, M.P.; Rabinovitch, M. PPARγ-p53-mediated vasculoregenerative program to reverse pulmonary hypertension. Circ. Res., 2021, 128(3), 401-418.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316339] [PMID: 33322916]
[19]
Yamanaka, R.; Hoshino, A.; Fukai, K.; Urata, R.; Minami, Y.; Honda, S.; Fushimura, Y.; Hato, D.; Iwai-Kanai, E.; Matoba, S. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(5), H1087-H1096.
[http://dx.doi.org/10.1152/ajpheart.00314.2020] [PMID: 32946259]
[20]
Wu, P.; Xie, X.; Chen, M.; Sun, J.; Cai, L.; Wei, J.; Yang, L.; Huang, X.; Wang, L. Elucidation of the mechanisms and molecular targets of qishen yiqi formula for the treatment of pulmonary arterial hypertension using a bioinformatics/network topology-based strategy. Comb. Chem. High Throughput Screen., 2021, 24(5), 701-715.
[http://dx.doi.org/10.2174/1386207323666201019145354] [PMID: 33076804]
[21]
da Silva, S.L.P.; Thomé, C.A.M.; da Silva Neto, T.L.A.; Mencalha, A.L.; de Souza da Fonseca, A.; de Paoli, F. Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochem. Photobiol. Sci., 2018, 17(7), 975-983.
[http://dx.doi.org/10.1039/c8pp00109j] [PMID: 29922788]
[22]
Shi, R.; Wei, Z.; Zhu, D.; Fu, N.; Wang, C.; Yin, S.; Liang, Y.; Xing, J.; Wang, X.; Wang, Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting vascular remodeling in rats. Pulm. Pharmacol. Ther., 2018, 48, 124-135.
[http://dx.doi.org/10.1016/j.pupt.2017.11.003] [PMID: 29133079]
[23]
Yang, Y.; Yin, L.; Zhu, M.; Song, S.; Sun, C.; Han, X.; Xu, Y.; Zhao, Y.; Qi, Y.; Xu, L.; Peng, J.Y. Protective effects of dioscin on vascular remodeling in pulmonary arterial hypertension via adjusting GRB2/ERK/PI3K-AKT signal. Biomed. Pharmacother., 2021, 133, 111056.
[http://dx.doi.org/10.1016/j.biopha.2020.111056] [PMID: 33378960]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy