Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Systematic Review Article

Carob (Ceratonia siliqua L.), Pharmacological and Phytochemical Activities of Neglected Legume of the Mediterranean Basin, as Functional Food

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 19, Issue 2, 2024

Published on: 26 January, 2024

Page: [127 - 142] Pages: 16

DOI: 10.2174/0115748871278128240109074506

Price: $65

Abstract

Carob (Ceratonia siliqua L.) has been widely cultivated in different parts of the world, particularly in the Mediterranean region, and the tree belongs to the family Leguminosae. Several studies have indicated that carobs and their products can improve human health and help prevent different specific chronic diseases. Carob can considered as functional food due to its high content in dietary fibers, low-fat content, and high content of minerals. Its fruit is a pod containing 10%-20% seeds, and the pods consist of sugars, proteins, crude fibers, minerals, vitamins, polyphenols, vitamins, and lipids. In many countries in the Middle east, carob is mainly used to prepare as a traditional drink and some kinds of confectioneries. The powders can be utilized to prepare carob juice concentrate. The systematic review of documents from clinical trials and scientific societies dedicated to traditional medicine in China has been carried out. The goal of this review article is a survey of chemical compounds, and pharmaceutical benefits of carob, especially by considering traditional medicinal sciences. Moreover, clinical trials research promotes studies to highlight and focus on the scope of application of traditional medicinal science in the growing system of medicine.

Graphical Abstract

[1]
Shahrajabian MH, Kuang Y, Cui H, Fu L, Sun W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr Org Chem 2023; 27(9): 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]
[2]
Shahrajabian MH, Sun W. Survey on multi-omics and multiomics data analysis, integration and application. Curr Pharm Anal 2023; 19(4): 267-81.
[http://dx.doi.org/10.2174/1573412919666230406100948]
[3]
Shahrajabian MH, Sun W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett Drug Des Discov 2023; 20(20): 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[4]
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021; 11(5): 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[5]
Shahrajabian MH, Sun W, Soleymani A, Cheng Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res 2020; 2020(1): 1-11.
[http://dx.doi.org/10.1002/ptr.6888] [PMID: 33350538]
[6]
Shahrajabian MH, Sun W. Using sumac (Rhus coriaria L.), as a miraculous spice with outstanding pharmacological activities. Not Sci Biol 2022; 14(1): 11118.
[http://dx.doi.org/10.15835/nsb14111118]
[7]
Shahrajabian MH, Sun W. Medicinal plants, economical and natural agents with antioxidant activity. Curr Nutr Food Sci 2023; 19(8): 763-84.
[http://dx.doi.org/10.2174/1573401318666221003110058]
[8]
Shahrajabian MH, Sun W. Asparagus (Asparagus officinalis L.) and pennyroyal (Mentha pulegium L.), impressive advantages with wondrous health-beneficial phytochemicals. Not Sci Biol 2022; 14(2): 11212.
[http://dx.doi.org/10.55779/nsb14211212]
[9]
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35(9): 4703-26.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[10]
Shahrajabian MH. Meicinal herbs with anti-inflammatory activities for natural and organic healing. Curr Org Chem 2021; 25(23): 2885-901.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[11]
Shahrajabian MH, Sun W. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Curr Org Synth 2023; 20.
[http://dx.doi.org/10.2174/1570179420666230803102253] [PMID: 37534487]
[12]
Shahrajabian MH, Sun W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023; 2(3): 290-308.
[http://dx.doi.org/10.3390/seeds2030022]
[13]
Shahrajabian MH, Sun W. Great health benefits of essential oils of pennyroyal (Mentha pulegium L.): A natural and organic medicine. Curr Nutr Food Sci 2023; 19(4): 340-5.
[http://dx.doi.org/10.2174/1573401318666220620145213]
[14]
Shahrajabian MH, Sun W. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett Drug Des Discov 2023; 19.
[http://dx.doi.org/10.2174/1570180819666220902115521]
[15]
Shahrajabian MH, Sun W, Cheng Q. Vitamin C and D supplements to prevent the risk of Covid-19. Nat Prod J 2023; 13(1): e140422203571.
[http://dx.doi.org/10.2174/2210315512666220414104141]
[16]
Cox PD. The suitability of dried fruits, almonds and carobs for the development of Ephestia figulilella Gregson, E. calidella (Guenee) and E. cautella (Walker) (Lepidoptera: Phycitidae). J Stored Prod Res 1975; 11(3-4): 229-33.
[http://dx.doi.org/10.1016/0022-474X(75)90035-1]
[17]
Cruz C, Lips SH, Martins-Louczao MA. Changes in the morphology of roots and leaves of carob seedlings induced by nitrogen source and atmospheric carbon dioxide. Ann Bot 1997; 80(6): 817-23.
[http://dx.doi.org/10.1006/anbo.1997.0524]
[18]
McCleary BV, Amado R, Waibel R, Neukom H. Effect of galactose content on the solution and interaction properties of guar and carob galactomannans. Carbohydr Res 1981; 92(2): 269-85.
[http://dx.doi.org/10.1016/S0008-6215(00)80398-5]
[19]
Rtibi K, Selmi S, Grami D, et al. Chemical constituents and pharmacological actions of carob pods and leaves (Ceratonia siliqua L.) on the gastrointestinal tract: A review. Biomed Pharmacother 2017; 93: 522-8.
[http://dx.doi.org/10.1016/j.biopha.2017.06.088] [PMID: 28686965]
[20]
Custódio L, Carneiro MF, Romano A. Microsporogenesis and anther culture in carob tree (Ceratonia siliqua L.). Sci Hortic 2005; 104(1): 65-77.
[http://dx.doi.org/10.1016/j.scienta.2004.08.001]
[21]
Carvalho M, Roca C, Reis MAM. Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z. Bioresour Technol 2014; 170: 491-8.
[http://dx.doi.org/10.1016/j.biortech.2014.07.117] [PMID: 25164341]
[22]
Vekiari SA, Ouzounidou G, Ozturk M, Görk G. Variation of quality characteristics in Greek and Turkish carob pods during fruit development. Procedia Soc Behav Sci 2011; 19: 750-5.
[http://dx.doi.org/10.1016/j.sbspro.2011.05.194]
[23]
Tsatsaragkou K, Gounaropoulos G, Mandala I. Development of gluten free bread containing carob flour and resistant starch. Lebensm Wiss Technol 2014; 58(1): 124-9.
[http://dx.doi.org/10.1016/j.lwt.2014.02.043]
[24]
Tuner H, Polat M. ESR detection of irradiated carob pods (Ceratoniasiliqua L.) and its dosimetric feature. Radiat Phys Chem 2017; 141: 196-9.
[http://dx.doi.org/10.1016/j.radphyschem.2017.07.016]
[25]
Bornstein S, Lipstein B, Alumot E. The metabolizable and productive energy of carobs for the growing chick. Poult Sci 1965; 44(2): 519-29.
[http://dx.doi.org/10.3382/ps.0440519] [PMID: 14340745]
[26]
Kratzer FH, Williams DE. The values of ground carob in rations for chicks. Poult Sci 1951; 30(1): 148-50.
[http://dx.doi.org/10.3382/ps.0300148]
[27]
Roukas T. Citric acid production from carob pod by solid-state fermentation. Enzyme Microb Technol 1999; 24(1-2): 54-9.
[http://dx.doi.org/10.1016/S0141-0229(98)00092-1]
[28]
Canatar M, Tufan HNG, Ünsal SBE, et al. Inulinase and fructooligosaccharide production from carob using Aspergillus niger A42 (ATCC 204447) under solid-state fermentation conditions. Int J Biol Macromol 2023; 245: 125520.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125520] [PMID: 37353118]
[29]
Eraslan H, Wehbeh J, Ermis E. Effect of sourdough prepared with the combination of chickpea and carob on bread properties. Int J Gastron Food Sci 2023; 32: 100753.
[http://dx.doi.org/10.1016/j.ijgfs.2023.100753]
[30]
Turfani V, Narducci V, Durazzo A, Galli V, Carcea M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. Lebensm Wiss Technol 2017; 78: 361-6.
[http://dx.doi.org/10.1016/j.lwt.2016.12.030]
[31]
Ercan Y, Irfan T, Mustafa K. Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour Technol 2013; 135: 365-71.
[http://dx.doi.org/10.1016/j.biortech.2012.09.006] [PMID: 23010212]
[32]
Caliskan A, Abdullah N, Ishak N, Caliskan IT. Physicochemical, microbial and sensory properties of wild carob bar: A shelf-life study. Int J Gastron Food Sci 2023; 31: 100668.
[http://dx.doi.org/10.1016/j.ijgfs.2023.100668]
[33]
Cui H, Shahrajabian MH, Kuang Y, Zhang HY, Sun W. Heterologous expression and function of cholesterol oxidase: A review. Protein Pept Lett 2023; 30(7): 531-40.
[http://dx.doi.org/10.2174/0929866530666230525162545] [PMID: 37231716]
[34]
Ghorbaninejad Z, Eghbali A, Ghorbaninejad M, et al. Carob extract induces spermatogenesis in an infertile mouse model via upregulation of Prm1, Plzf, Bcl-6b, Dazl, Ngn3, Stra8, and Smc1b. J Ethnopharmacol 2023; 301: 115760.
[http://dx.doi.org/10.1016/j.jep.2022.115760] [PMID: 36209951]
[35]
Pedret-Massanet C, López-Lago Ortiz L, Allen-Perkins D. From stigma to haute cuisine: Strategies, agents, and discourses in the revalorisation of Carob as a gourmet product. Int J Gastron Food Sci 2023; 31: 100677.
[http://dx.doi.org/10.1016/j.ijgfs.2023.100677]
[36]
Sun W, Shahrajabian MH, Cheng Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Appl Sci 2021; 11(17): 7889.
[http://dx.doi.org/10.3390/app11177889]
[37]
Sun W, Shahrajabian MH, Cheng Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr J Plant Sci 2021; 68(1-2): 61-71.
[http://dx.doi.org/10.1163/22238980-bja10019]
[38]
Sun W, Shahrajabian MH, Cheng Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev Med Chem 2021; 21(6): 724-30.
[http://dx.doi.org/10.2174/18755607MTEx4OTAn5] [PMID: 33245271]
[39]
Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023; 28(4): 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[40]
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023; 12(13): 2469.
[http://dx.doi.org/10.3390/plants12132469] [PMID: 37447031]
[41]
Sun W, Shahrajabian MH, Lin M. Research progress fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022; 8(12): 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[42]
Ilahi I, Vardar Y. Studies in the Turkish carob (Ceratonia siliqua L.) II. The level of growth regulatory substances and the sugar content at different stages of fruit development. Z Pflanzenphysiol 1975; 75(5): 422-6.
[http://dx.doi.org/10.1016/S0044-328X(75)80136-X]
[43]
Petit MD, Pinilla JM. Production and purification of a sugar syrup from carob pods. Lebensm Wiss Technol 1995; 28(1): 145-52.
[http://dx.doi.org/10.1016/S0023-6438(95)80027-1]
[44]
Moreira TC, Silva ATD, Fagundes C, et al. Elboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT- Food Sci Technol 2017; 76(Part B): 326-9.
[http://dx.doi.org/10.1016/j.lwt.2016.08.033]
[45]
Arribas C, Cabellos B, Cuadrado C, Guillamón E, Pedrosa MM. The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innov Food Sci Emerg Technol 2019; 52: 100-7.
[http://dx.doi.org/10.1016/j.ifset.2018.12.003]
[46]
Arribas C, Cabellos B, Cuadrado C, Guillamón E, Pedrosa MM. Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean. Lebensm Wiss Technol 2019; 111: 387-93.
[http://dx.doi.org/10.1016/j.lwt.2019.05.064]
[47]
Bissar S, Özcan MM. Determination of quality parameters and gluten free macaron production from carob fruit and sorghum. Int J Gastron Food Sci 2022; 27: 100460.
[http://dx.doi.org/10.1016/j.ijgfs.2021.100460]
[48]
Frühbauerová M, Červenka L, Hájek T, Pouzar M, Palarčík J. Bioaccessibility of phenolics from carob (Ceratonia siliqua L.) pod powder prepared by cryogenic and vibratory grinding. Food Chem 2022; 377: 131968.
[http://dx.doi.org/10.1016/j.foodchem.2021.131968] [PMID: 34995960]
[49]
Sebastian KT, McComb JA. A micropropagation system for carob (Ceratonia siliqua L.). Sci Hortic 1986; 28(1-2): 127-31.
[http://dx.doi.org/10.1016/0304-4238(86)90132-9]
[50]
Carvalho M, Roca C, Reis MAM. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresour Technol 2016; 218: 491-7.
[http://dx.doi.org/10.1016/j.biortech.2016.06.140] [PMID: 27394995]
[51]
Benković M, Bosiljkov T, Semić A, Ježek D, Srečec S. Influence of carob flour and carob bean gum on rheological properties of cocoa and carob pastry fillings. Foods 2019; 8(2): 66.
[http://dx.doi.org/10.3390/foods8020066] [PMID: 30759835]
[52]
Stavrou IJ, Christou A, Kapnissi-Christodoulou CP. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem 2018; 269: 355-74.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.152] [PMID: 30100447]
[53]
Yatmaz E, Turhan I. Carob as a carbon source for fermentation technology. Biocatal Agric Biotechnol 2018; 16: 200-8.
[http://dx.doi.org/10.1016/j.bcab.2018.08.006]
[54]
Boublenza I, El haitoum A, Ghezlaoui S, Mahdad M, Vasaï F, Chemat F. Algerian carob (Ceratonia siliqua L.) populations. Morphological and chemical variability of their fruits and seeds. Sci Hortic 2019; 256: 108537.
[http://dx.doi.org/10.1016/j.scienta.2019.05.064]
[55]
Rico D, Martín-Diana AB, Martínez-Villaluenga C, et al. In vitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (MetS). Heliyon 2019; 5(1): e01175.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01175] [PMID: 30775572]
[56]
Turhan I, Bialka KL, Demirci A, Karhan M. Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour Technol 2010; 101(14): 5290-6.
[http://dx.doi.org/10.1016/j.biortech.2010.01.146] [PMID: 20189805]
[57]
Karababa E, Coşkuner Y. Physical properties of carob bean (Ceratonia siliqua L.): An industrial gum yielding crop. Ind Crops Prod 2013; 42: 440-6.
[http://dx.doi.org/10.1016/j.indcrop.2012.05.006]
[58]
Shahrajabian MH, Sun W. Various techniques for molecular and rapid detection of infectious and epidemic diseases. Lett Org Chem 2023; 20(9): 779-801.
[http://dx.doi.org/10.2174/1570178620666230331095720]
[59]
Shahrajabian MH, Sun W. The important nutritional benefits and wonderful health benefits of Cashew (Anacardium occidentale L.). Nat Prod J 2023; 13(4): e270422204127.
[http://dx.doi.org/10.2174/2210315512666220427113702]
[60]
Shahrajabian MH, Sun W. Survey on medicinal plants and herbs in traditional Iranian medicine with antioxidant, anti-viral, anti-microbial, and anti-inflammation properties. Lett Drug Des Discov 2023; 20(11): 1707-43.
[http://dx.doi.org/10.2174/1570180819666220816115506]
[61]
Shahrajabian MH, Sun W. A friendly strategy for an organic life by considering Syrian bean caper (Zygophyllum fabago L.), and parsnip (Pastinaca sativa L.). Curr Nutr Food Sci 2023; 19(9): 870-4.
[http://dx.doi.org/10.2174/1573401319666230207093757]
[62]
Shahrajabian MH, Sun W. Kashk and doogh: The yogurt-based national Persian products. Curr Nutr Food Sci 2023; 19(9): 922-7.
[http://dx.doi.org/10.2174/1573401319666230228115432]
[63]
Shahrajabian MH, Sun W. Potential roles of longan as a natural remedy with tremendous nutraceutical values. Curr Nutr Food Sci 2023; 19(9): 888-95.
[http://dx.doi.org/10.2174/1573401319666230221111242]
[64]
Shahrajabian MH, Petropoulos SA, Sun W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023; 9(2): 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[65]
Shahrajabian MH. Powerful stress relieving medicinal plants for anger, anxiety, depression and stress during global pandemic. Recent Pat Biotechnol 2022; 16(4): 284-310.
[http://dx.doi.org/10.2174/1872208316666220321102216] [PMID: 35319401]
[66]
Shahrajabian MH. A candidate for health promotion, disease prevention and treatment, common rue (Ruta graveolens L.), an important medicinal plant in traditional medicine. Curr Clin Pharmacol 2022; 17.
[http://dx.doi.org/10.2174/2772432817666220510143902] [PMID: 35538827]
[67]
Shahrajabian MH, Sun W, Cheng Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev Org Chem 2022; 19(3): 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[68]
Christou A, Martinez-Piernas AB, Stavrou IJ, Garcia-Reyes JF, Kapnissi-Christodoulou CP. HPLC-ESI-HRMS and chemometric analysis of carobs polyphenols – Technological and geographical parameters affecting their phenolic composition. J Food Compos Anal 2022; 114: 104744.
[http://dx.doi.org/10.1016/j.jfca.2022.104744]
[69]
La Malfa S, Currò S, Bugeja Douglas A, Brugaletta M, Caruso M, Gentile A. Genetic diversity revealed by EST-SSR markers in carob tree (Ceratonia siliqua L.). Biochem Syst Ecol 2014; 55: 205-11.
[http://dx.doi.org/10.1016/j.bse.2014.03.022]
[70]
Hanoğlu A, Karaoğlu MM, Bedir Y. The effect of carob, orange and carrot pulps on physical, chemical and microbiological properties of Turkish delight. Int J Gastron Food Sci 2023; 32: 100709.
[http://dx.doi.org/10.1016/j.ijgfs.2023.100709]
[71]
Yousif A, Alghzawi HM. Processing and characterization of carob powder. Food Chem 2000; 69(3): 283-7.
[http://dx.doi.org/10.1016/S0308-8146(99)00265-4]
[72]
Matthaus B, Özcan MM. Lipid evaluation of cultivated and wild carob (Ceratonia siliqua L.) seed oil growing in Turkey. Sci Hortic 2011; 130(1): 181-4.
[http://dx.doi.org/10.1016/j.scienta.2011.06.034]
[73]
Smith AE, Fischer CC. The use of carob flour in the treatment of diarrhea in infants and children. J Pediatr 1949; 35(4): 422-6.
[http://dx.doi.org/10.1016/S0022-3476(49)80053-9] [PMID: 18143932]
[74]
Alsina-Restoy X, Torres-Castro R, Caballería E, et al. Is carob flour helpful in reducing diarrhoea associated with nintedanib? Arch Bronconeumol 2023; 59(5): 341-3.
[http://dx.doi.org/10.1016/j.arbres.2022.12.014] [PMID: 36658079]
[75]
Durazzo A, Turfani V, Narducci V, Azzini E, Maiani G, Carcea M. Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem 2014; 153: 109-13.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.045] [PMID: 24491707]
[76]
Bahry H, Pons A, Abdallah R, et al. Valorization of carob waste: Definition of a second-generation bioethanol production process. Bioresour Technol 2017; 235: 25-34.
[http://dx.doi.org/10.1016/j.biortech.2017.03.056] [PMID: 28351729]
[77]
Saitta F, Apostolidou A, Papageorgiou M, Signorelli M, Mandala I, Fessas D. Influence of carob flour ingredients on wheat-based systems. J Cereal Sci 2023; 111: 103655.
[http://dx.doi.org/10.1016/j.jcs.2023.103655]
[78]
Zemouri Z, Djabeur A, Frimehdi N, Khelil O, Kaid-Harche M. The seed diversity of Carob (Ceratonia siliqua L.) and the relationship between seeds color and coat dormancy. Sci Hortic 2020; 274: 109679.
[http://dx.doi.org/10.1016/j.scienta.2020.109679]
[79]
El Batal H, Hasib A, Ouatmane A, Dehbi F, Jaouad A, Boulli A. Sugar composition and yield of syrup production from the pulp of Moroccan carob pods (Ceratonia siliqua L.). Arab J Chem 2016; 9(2): S955-9.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.012]
[80]
Christou C, Agapiou A, Kokkinofta R. Use of FTIR spectroscopy and chemometrics for the classification of carobs origin. J Adv Res 2018; 10: 1-8.
[http://dx.doi.org/10.1016/j.jare.2017.12.001] [PMID: 30046470]
[81]
Benković M, Belščak-Cvitanović A, Bauman I, Komes D, Srečec S. Flow properties and chemical composition of carob (Ceratonia siliqua L.) flours as related to particle size and seed presence. Food Res Int 2017; 100(Pt 2): 211-8.
[http://dx.doi.org/10.1016/j.foodres.2017.08.048] [PMID: 28888443]
[82]
Bottegal DN, Álvarez-Rodríguez J, Latorre MA, Espinal J, Verdú M, Lobón S. O139 Carob pulp and high levels of Vitamin E do not affect performance trait and metabolic profile in fattening lambs. Animal - Sci Proceed 2022; 13(3): 414-5.
[http://dx.doi.org/10.1016/j.anscip.2022.07.149]
[83]
Zhu BJ, Zayed MZ, Zhu HX, Zhao J, Li SP. Functional polysaccharides of carob fruit: a review. Chin Med 2019; 14(1): 40.
[http://dx.doi.org/10.1186/s13020-019-0261-x] [PMID: 31583011]
[84]
Inserra L, Luciano G, Bella M, et al. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork. Meat Sci 2015; 100: 256-61.
[http://dx.doi.org/10.1016/j.meatsci.2014.09.146] [PMID: 25460134]
[85]
Ioannou GD, Savva IK, Christou A, Stavrou IJ, Kapnissi-Christodoulou CP. Phenolic profile, antioxidant activity, and chemometric classification of carob pulp and products. Molecules 2023; 28(5): 2269.
[http://dx.doi.org/10.3390/molecules28052269] [PMID: 36903513]
[86]
Nishira H, Joslyn MA. The galloyl glucose compounds in green carob pods (Ceratonia siliqua). Phytochemistry 1968; 7(12): 2147-56.
[http://dx.doi.org/10.1016/S0031-9422(00)85671-X]
[87]
Saratsi K, Hoste H, Voutzourakis N, et al. Feeding of carob (Ceratonia siliqua) to sheep infected with gastrointestinal nematodes reduces faecal egg counts and worm fecundity. Vet Parasitol 2020; 284: 109200.
[http://dx.doi.org/10.1016/j.vetpar.2020.109200] [PMID: 32871390]
[88]
Tamir M, Nachtomi E, Alumot E. Degradation of tannins from carob pods (Ceratonia siliqua) by thioglycolic acid. Phytochemistry 1971; 10(11): 2769-74.
[http://dx.doi.org/10.1016/S0031-9422(00)97277-7]
[89]
Siano F, Mamone G, Vasca E, Puppo MC, Picariello G. Pasta fortified with C-glycosides-rich carob (Ceratonia siliqua L.) seed germ flour: Inhibitory activity against carbohydrate digesting enzymes. Food Res Int 2023; 170: 112962.
[http://dx.doi.org/10.1016/j.foodres.2023.112962] [PMID: 37316051]
[90]
Fidan H, Stankov S, Petkova N, et al. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J Food Sci Technol 2020; 57(7): 2404-13.
[http://dx.doi.org/10.1007/s13197-020-04274-z] [PMID: 32549590]
[91]
Goulas V, Stylos E, Chatziathanasiadou M, Mavromoustakos T, Tzakos A. Functional components of carob fruit: Linking the chemical and biological space. Int J Mol Sci 2016; 17(11): 1875.
[http://dx.doi.org/10.3390/ijms17111875] [PMID: 27834921]
[92]
Avallone R, Plessi M, Baraldi M, Monzani A. Determination of chemical composition of carob (Ceratonia siliqua): Protein, fat, carbohydrates, and tannins. J Food Compos Anal 1997; 10(2): 166-72.
[http://dx.doi.org/10.1006/jfca.1997.0528]
[93]
Fadel AHI, Kamarudin MS, Romano N, Ebrahimi M, Saad CR, Samsudin AA. Carob seed germ meal as a partial soybean meal replacement in the diets of red hybrid tilapia. Egypt J Aquat Res 2017; 43(4): 337-43.
[http://dx.doi.org/10.1016/j.ejar.2017.09.007]
[94]
Vohra P, Kratzer FH. The use of ground carobs in chicken diets. Poult Sci 1964; 43(3): 790-2.
[http://dx.doi.org/10.3382/ps.0430790]
[95]
Gravador RS, Luciano G, Jongberg S, et al. Fatty acids and oxidative stability of meat from lambs fed carob-containing diets. Food Chem 2015; 182: 27-34.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.094] [PMID: 25842304]
[96]
Mcleod G, Forcen M. Analysis of volatile components derived from the carob bean Ceratonia siliqua. Phytochemistry 1992; 31(9): 3113-9.
[http://dx.doi.org/10.1016/0031-9422(92)83456-9]
[97]
Naghmouchi S, Khouja ML, Romero A, Tous J, Boussaid M. Tunisian carob (Ceratonia siliqua L.) populations: Morphological variability of pods and kernel. Sci Hortic 2009; 121(2): 125-30.
[http://dx.doi.org/10.1016/j.scienta.2009.02.026]
[98]
Azab A. D-Pintol-Active natural product from carob with notable insulin regulations. Nutrients 2022; 14(7): 1453.
[http://dx.doi.org/10.3390/nu14071453] [PMID: 35406064]
[99]
Sidina MM, El Hansali M, Wahid N, Ouatmane A, Boulli A, Haddioui A. Fruit and seed diversity of domesticated carob (Ceratonia siliqua L.) in Morocco. Sci Hortic 2009; 123(1): 110-6.
[http://dx.doi.org/10.1016/j.scienta.2009.07.009]
[100]
Rodríguez-Solana R, Romano A, Moreno-Rojas JM. Carob pulp: A nutritional and functional by-product worldwide spread in the formulation of different food products and beverages, a review. Processes 2021; 9(7): 1146.
[http://dx.doi.org/10.3390/pr9071146]
[101]
Edwards CA, Havlik J, Cong W, et al. Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutr Bull 2017; 42(4): 356-60.
[http://dx.doi.org/10.1111/nbu.12296] [PMID: 29200959]
[102]
Saura-Calixto F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J Agric Food Chem 2011; 59(1): 43-9.
[http://dx.doi.org/10.1021/jf1036596] [PMID: 21142013]
[103]
Dakia PA, Blecker C, Robert C, Wathelet B, Paquot M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll 2008; 22(5): 807-18.
[http://dx.doi.org/10.1016/j.foodhyd.2007.03.007]
[104]
Mubarak AE. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem 2005; 89(4): 489-95.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.007]
[105]
Sathe SK. The nutritional value of selected Asiatic pulses: Chickpea, black gram, mung bean, and pigeon pea. In: Nwokolo E, Smartt J, Eds. Food and Feed from Legumes and Oilseeds. Boston, MA: Springer 1996.
[http://dx.doi.org/10.1007/978-1-4613-0433-3_2]
[106]
Bähr M, Fechner A, Hasenkopf K, Mittermaier S, Jahreis G. Chemical composition of dehulled seeds of selected lupin cultivars in comparison to pea and soya bean. Lebensm Wiss Technol 2014; 59(1): 587-90.
[http://dx.doi.org/10.1016/j.lwt.2014.05.026]
[107]
Bhartiya A, Aditya JP, Kant L. Nutritional and remedial potential of an underutilized food legume horsegram (Macrotyloma uniflorum): A review. J Anim Plant Sci 2015; 25(4)
[108]
Sharma P, Goudar G, Kumar CA, et al. Assessment of diversity in anti-nutrient profile, resistant starch, minerals and carbohydrate components in different ricebean (Vigna umbellata) accessions. Food Chem 2023; 405(Pt A): 134835.
[http://dx.doi.org/10.1016/j.foodchem.2022.134835] [PMID: 36356361]
[109]
Janardhanan VVK, Janardhanan K. Nutritional and anti-nutritional composition of velvet bean: an under-utilized food legume in South India. Int J Food Sci Nutr 2000; 51(4): 279-87.
[http://dx.doi.org/10.1080/09637480050077167] [PMID: 11027039]
[110]
Amessis-Ouchemoukh N, Ouchemoukh S, Meziant N, et al. Bioactive metabolites involved in the antioxidant, anticancer and anticalpain activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. extracts. Ind Crops Prod 2017; 95: 6-17.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.007]
[111]
Mamone G, Sciammaro L, De Caro S, et al. Comparative analysis of protein composition and digestibility of Ceratonia siliqua L. and Prosopis spp. seed germ flour. Food Res Int 2019; 120: 188-95.
[http://dx.doi.org/10.1016/j.foodres.2019.02.035] [PMID: 31000229]
[112]
Gregoriou G, Neophytou CM, Vasincu A, et al. Anti-cancer activity and phenolic content of extracts derived from Cypriot carob (Ceratonia siliqua L.) pods using different solvents. Molecules 2021; 26(16): 5017.
[http://dx.doi.org/10.3390/molecules26165017] [PMID: 34443605]
[113]
Issaoui M, Flamini G, Delgado A. Sustainability opportunities for Mediterranean food products through new formulations based on carob flour (Ceratonia siliqua L.). Sustainability 2021; 13(14): 8026.
[http://dx.doi.org/10.3390/su13148026]
[114]
Roseiro LB, Duarte LC, Oliveira DL, et al. Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Ind Crops Prod 2013; 47: 132-8.
[http://dx.doi.org/10.1016/j.indcrop.2013.02.026]
[115]
Macho-González A, Garcimartín A, López-Oliva ME, et al. Carob-fruit-enriched meat ameliorates non-alcoholic streatohepatitis in late-stage T2DM rats. Metabolism 2021; 116: 154620.
[http://dx.doi.org/10.1016/j.metabol.2020.154620]
[116]
Macho-González A, Garcimartín A, Redondo N, et al. Carob fruit extract-enriched meat, as preventive and curative treatments, improves gut microbiota and colonic barrier integrity in a late-stage T2DM model. Food Res Int 2021; 141: 110124.
[http://dx.doi.org/10.1016/j.foodres.2021.110124] [PMID: 33641991]
[117]
García-Díez E, López-Oliva ME, Caro-Vadillo A, et al. Supplementation with a cocoa-carob blend, alone or in combination with metformin, attenuates diabetic cardiomyopathy, cardiac oxidative stress and inflammation in zucker diabetic rats. Antioxidants 2022; 11(2): 432.
[http://dx.doi.org/10.3390/antiox11020432] [PMID: 35204314]
[118]
Macho-González A, Garcimartín A, López-Oliva ME, et al. Carob-fruit-extract-enriched meat modulates lipoprotein metabolism and insulin signaling in diabetic rats induced by high-saturated-fat diet. J Funct Foods 2020; 64: 103600.
[http://dx.doi.org/10.1016/j.jff.2019.103600]
[119]
Macho-González A, López-Oliva ME, Merino JJ, et al. Carob fruit extract-enriched meat improves pancreatic beta-cell dysfunction, hepatic insulin signaling and lipogenesis in latestage type 2 diabetes mellitus model. J Nutr Biochem 2020; 84: 108461.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108461] [PMID: 32739787]
[120]
Kavvoura DA, Stefanakis MK, Kletsas D, Katerinopoulos HE, Pratsinis H. Biological activities of Ceratonia siliqua pod and seed extracts: A comparative analysis of two cretan cultivars. Int J Mol Sci 2023; 24(15): 12104.
[http://dx.doi.org/10.3390/ijms241512104] [PMID: 37569477]
[121]
Sęczyk Ł, Świeca M, Gawlik-Dziki U. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem 2016; 194: 637-42.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.086] [PMID: 26471602]
[122]
Benchikh Y, Louaileche H, George B, Merlin A. Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratonia siliqua L.) as influenced by fruit ripening. Ind Crops Prod 2014; 60: 298-303.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.048]
[123]
Brassesco ME, Brandão TRS, Silva CLM, Pintado M. Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends Food Sci Technol 2021; 114: 310-22.
[http://dx.doi.org/10.1016/j.tifs.2021.05.037]
[124]
Roseiro LB, Tavares CS, Roseiro JC, Rauter AP. Antioxidants from aqueous decoction of carob pods biomass (Ceretonia siliqua L.): Optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind Crops Prod 2013; 44: 119-26.
[http://dx.doi.org/10.1016/j.indcrop.2012.11.006]
[125]
Ünal E, Sulukan E, Şenol O, et al. Antioxidant/protective effects of carob pod (Ceratonia siliqua L.) water extract against deltamethrin-induced oxidative stress/toxicity in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267: 109584.
[http://dx.doi.org/10.1016/j.cbpc.2023.109584] [PMID: 36822298]
[126]
Vitali Čepo D, Mornar A, Nigović B, Kremer D, Radanović D, Vedrina Dragojević I. Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. Lebensm Wiss Technol 2014; 58(2): 578-86.
[http://dx.doi.org/10.1016/j.lwt.2014.04.004]
[127]
Goulas V, Hadjisolomou A. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. Lebensm Wiss Technol 2019; 101: 269-75.
[http://dx.doi.org/10.1016/j.lwt.2018.11.003]
[128]
Albertos I, Jaime I, Diez AM, González-Arnáiz L, Rico D. Carob seed peel as natural antioxidant in minced and refrigerated (4°C) Atlantic horse mackerel (Trachurus trachurus). Lebensm Wiss Technol 2015; 64(2): 650-6.
[http://dx.doi.org/10.1016/j.lwt.2015.06.037]
[129]
Arribas C, Pereira E, Barros L, et al. Healthy novel gluten-free formulations based on beans, carob fruit and rice: Extrusion effect on organic acids, tocopherols, phenolic compounds and bioactivity. Food Chem 2019; 292: 304-13.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.074] [PMID: 31054679]
[130]
Biernacka B, Dziki D, Gawlik-Dziki U, Różyło R, Siastała M. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. Lebensm Wiss Technol 2017; 77: 186-92.
[http://dx.doi.org/10.1016/j.lwt.2016.11.042]
[131]
Santonocito D, Granata G, Geraci C, et al. Carob seeds: Food waste or source of bioactive compounds? Pharmaceutics 2020; 12(11): 1090.
[http://dx.doi.org/10.3390/pharmaceutics12111090] [PMID: 33202757]
[132]
El-haskoury R, Al-Waili N, Kamoun Z, Makni M, Al-Waili H, Lyoussi B. Antioxidant activity and protective effect f carob honey in CCl4-induced kidney and liver injury. Arch Med Res 2018; 49(5): 306-13.
[http://dx.doi.org/10.1016/j.arcmed.2018.09.011] [PMID: 30342848]
[133]
Abidar S, Boiangiu R, Dumitru G, et al. The aqueous extract from Ceratonia siliqua leaves protects against 6-Hydroxydopaine in Zebrafish: Understanding the underlying mechanism. Antioxidants 2020; 9(4): 304.
[http://dx.doi.org/10.3390/antiox9040304] [PMID: 32276477]
[134]
Abdel-Rahman M, Bauomy AA, Salem FEH, Ahmed Khalifa M. Carob extract attenuates brain and lung injury in rats exposed to waterpipe smoke. Egypt J Basic Appl Sci 2018; 5(1): 31-40.
[http://dx.doi.org/10.1016/j.ejbas.2018.01.004]
[135]
Lakkab I, El Hajaji H, Lachkar N, et al. Ceratonia siliqua L. seed peels: Phytochemical profile, antioxidant activity, and effect on mood disorders. J Funct Foods 2019; 54: 457-65.
[http://dx.doi.org/10.1016/j.jff.2019.01.041]
[136]
Goulas V, Georgiou E. Utilization of carob fruit as sources of phenolic compounds with antioxidant potential: Extraction optimization and application in food models. Foods 2019; 9(1): 20.
[http://dx.doi.org/10.3390/foods9010020] [PMID: 31878230]
[137]
Aboura I, Nani A, Belarbi M, et al. Protective effects of polyphenol-rich infusions from carob (Ceratonia siliqua) leaves and cladodes of Opuntia ficus-indica against inflammation associated with diet-induced obesity and DSS-induced colitis in Swiss mice. Biomed Pharmacother 2017; 96: 1022-35.
[http://dx.doi.org/10.1016/j.biopha.2017.11.125] [PMID: 29221725]
[138]
Oziyci HR, Tetik N, Turhan I, et al. Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Sci Hortic 2014; 167: 149-52.
[http://dx.doi.org/10.1016/j.scienta.2014.01.005]
[139]
Alqudah A, Qnais EY, Wedyan MA, et al. Ceratonia siliqua leaves ethanol extracts exert anti-nociceptive and anti-inflammatory effects. Heliyon 2022; 8(8): e10400.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10400] [PMID: 36090223]
[140]
Ben Ayache S, Reis FS, Inês Dias M, et al. Chemical characterization of carob seeds (Ceratonia siliqua L.) and use of different extraction techniques to promote its bioactivity. Food Chem 2021; 351: 129263.
[http://dx.doi.org/10.1016/j.foodchem.2021.129263] [PMID: 33631614]
[141]
Dammak A, Ben Slima S, Gomes da Silva MDR, et al. Antioxidant and antibacterial activities of a purified polysaccharide extracted from Ceratonia siliqua L. and its involvement in the enhancement performance of whipped cream. Separations 2022; 9(5): 117.
[http://dx.doi.org/10.3390/separations9050117]
[142]
Karmous I, Taheur FB, Zuverza-Mena N, et al. Phytosynthesis of zinc oxide nanoparticles using Ceratonia siliqua L. and evidence of antimicrobial activity. Plants 2022; 11(22): 3079.
[http://dx.doi.org/10.3390/plants11223079] [PMID: 36432809]
[143]
Alayed HS, Devanesan S, AlSalhi MS, Alkindi MG, Alghamdi OG, Alqhtani NR. Investigation of antibacterial activity of carob-mediated calcium hydroxide nanoparticles against different aerobic and anaerobic bacteria. Appl Sci 2022; 12(24): 12624.
[http://dx.doi.org/10.3390/app122412624]
[144]
Meziani S, Oomah BD, Zaidi F, Simon-Levert A, Bertrand C, Zaidi-Yahiaoui R. Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb Pathog 2015; 78: 95-102.
[http://dx.doi.org/10.1016/j.micpath.2014.12.001] [PMID: 25489722]
[145]
Elbouzidi A, Taibi M, Ouassou H, et al. Exploring the multi-faceted potential of carob (Ceratonia siliqua var. Rahma) leaves from Morocco: A comprehensive analysis of polyphenols profile, antimicrobial activity, cytotoxicity against breast cancer cell lines, and genotoxicity. Pharmaceuticals 2023; 16(6): 840.
[http://dx.doi.org/10.3390/ph16060840] [PMID: 37375787]
[146]
Valero-Muñoz M, Martín-Fernández B, Ballesteros S, Lahera V, de las Heras N. Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through sirtuin-1 and peroxisome proliferator-activated receptor-γ coactivator-1α. J Nutr 2014; 144(9): 1378-84.
[http://dx.doi.org/10.3945/jn.114.196113] [PMID: 25031331]
[147]
Valero-Muñoz M, Ballesteros S, Ruiz-Roso B, et al. Supplementation with an insoluble fiber obtained from carob pod (Ceratonia siliqua L.) rich in polyphenols prevents dyslipidemia in rabbits through SIRT1/PGC-1α pathway. Eur J Nutr 2019; 58(1): 357-66.
[http://dx.doi.org/10.1007/s00394-017-1599-4] [PMID: 29274033]
[148]
Evans AJ, Hood RL, Oakenfull DG, Sidhu GS. Relationship between structure and function of dietary fibre: A comparative study of the effects of three galactomannans on cholesterol metabolism in the rat. Br J Nutr 1992; 68(1): 217-29.
[http://dx.doi.org/10.1079/BJN19920079] [PMID: 1327099]
[149]
Zavoral JH, Hannan P, Fields DJ, et al. The hypolipidemic effect of locust bean gum food products in familial hypercholesterolemic adults and children. Am J Clin Nutr 1983; 38(2): 285-94.
[http://dx.doi.org/10.1093/ajcn/38.2.285] [PMID: 6308996]
[150]
Gökçe C, Bozkurt H, Maskan M. The use of carob flour and stevia as sugar substitutes in sponge cake: Optimization for reducing sugar and wheat flour in cake formulation. Int J Gastron Food Sci 2023; 32: 100732.
[http://dx.doi.org/10.1016/j.ijgfs.2023.100732]
[151]
Yazar G, Kokini JL, Smith B. Comparison of mixing and non-linear viscoelastic properties of carob germ glutelins and wheat glutenin. Food Hydrocoll 2023; 143: 108922.
[http://dx.doi.org/10.1016/j.foodhyd.2023.108922]
[152]
Pelegrin-Valls J, Álvarez-Rodríguez J, Martín-Alonso MJ, Aquilué B, Serrano-Pérez B. Impact of carob (Ceratonia siliqua L.) pulp inclusion and warm season on gastrointestinal morphological parameters, immune-redox defences and coccidiosis in concentrate-fed light lambs. Res Vet Sci 2023; 163: 104969.
[http://dx.doi.org/10.1016/j.rvsc.2023.104969] [PMID: 37639805]
[153]
Mahmoudi S, Mahmoudi N, Benamirouche K, et al. Effect of feeding carob (Ceratonia siliqua L.) pulp powder to broiler chicken on growth performance, intestinal microbiota, carcass traits, and meat quality. Poult Sci 2022; 101(12): 102186.
[http://dx.doi.org/10.1016/j.psj.2022.102186] [PMID: 36252501]
[154]
Priolo A, Lanza M, Biondi L, Pappalardo P, Young OA. Effect of partially replacing dietary barley with 20% carob pulp on post-weaning growth, and carcass and meat characteristics of Comisana lambs. Meat Sci 1998; 50(3): 355-63.
[http://dx.doi.org/10.1016/S0309-1740(98)00041-2] [PMID: 22061154]
[155]
Abella PU. Treatment of acute infantile diarrhea with carob flour (Arobon). J Pediatr 1952; 41(2): 182-7.
[http://dx.doi.org/10.1016/S0022-3476(52)80054-X] [PMID: 14955743]
[156]
Tamir M, Nachtomi E, Alumot E. Urinary phenolic metabolites of rats fed carobs (Ceratonia siliqua) and carob fractions. Int J Biochem 1972; 3(13): 123-4.
[http://dx.doi.org/10.1016/0020-711X(72)90035-3]
[157]
Würsch P. Influence of tannin-rich carob pod fiber on the cholesterol metabolism in the rat. J Nutr 1979; 109(4): 685-92.
[http://dx.doi.org/10.1093/jn/109.4.685] [PMID: 430267]
[158]
Ammar I, Sebii H, Aloui T, Attia H, Hadrich B, Felfoul I. Optimization of a novel, gluten-free bread’s formulation based on chickpea, carob and rice flours using response surface design. Heliyon 2022; 8(12): e12164.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12164] [PMID: 36582690]
[159]
de la Fuente-Fernández M, González-Hedström D, Amor S, et al. Supplementation with a carob (Ceratonia siliqua L.) fruit extract attenuates the cardiometabolic alterations associated with metabolic syndrome in mice. Antioxidants 2020; 9(4): 339.
[http://dx.doi.org/10.3390/antiox9040339] [PMID: 32326269]
[160]
Abolghasemi M, Aghajani MMR, Mojab F, Gorji NM, Zakariayi SJ, Mirabi P. Carob effects on antioxidant enzyme and elements level in infertile men: Secondary data analysis from a randomized controlled trial. J Herb Med 2022; 36: 100596.
[http://dx.doi.org/10.1016/j.hermed.2022.100596]
[161]
Chait YA, Gunenc A, Bendali F, Hosseinian F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. Lebensm Wiss Technol 2020; 117: 108623.
[http://dx.doi.org/10.1016/j.lwt.2019.108623]
[162]
Nemati Z, Dehgani P, Besharati M, Amirdahri S. Dietary carob fruit (Ceratonia siliqua L.) supplementation improves spermatogenesis, semen quality and embryonic death via antioxidant effect in aging broiler breeder roosters. Anim Reprod Sci 2022; 239: 106967.
[http://dx.doi.org/10.1016/j.anireprosci.2022.106967] [PMID: 35299115]
[163]
Ghanemi FZ, Belarbi M, Fluckiger A, et al. Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells. J Funct Foods 2017; 33: 112-21.
[http://dx.doi.org/10.1016/j.jff.2017.03.032]
[164]
Gioxari A, Amerikanou C, Nestoridi I, et al. Carob: A sustainable opportunity for metabolic health. Foods 2022; 11(14): 2154.
[http://dx.doi.org/10.3390/foods11142154] [PMID: 35885396]
[165]
Silanikove N, Landau S, Or D, Kababya D, Bruckental I, Nitsan Z. Analytical approach and effects of condensed tannins in carob pods (Ceratonia siliqua) on feed intake, digestive and metabolic responses of kids. Livest Sci 2006; 99(1): 29-38.
[http://dx.doi.org/10.1016/j.livprodsci.2005.05.018]
[166]
Sun W, Shahrajabian MH. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023; 12(17): 3101.
[http://dx.doi.org/10.3390/plants12173101] [PMID: 37687348]
[167]
Shahrajabian MH, Sun W. The importance of traditional Chinese medicine in the intervention and treatment of HIV while considering its safety and efficacy. Curr HIV Res 2023; 21.
[http://dx.doi.org/10.2174/011570162X271199231128092621] [PMID: 38047360]
[168]
Shahrajabian MH, Sun W. Iranian Traditional Medicine (ITM) and natural remedies for treatment of the common cold and flu. Rev Recent Clin Trials 2023; 18.
[http://dx.doi.org/10.2174/0115748871275500231127065053] [PMID: 38047364]
[169]
Shahrajabian MH, Shahrajabian N, Sun W. The beneficial effects of traditional Iranian medicine for cancer therapy. Biol Life Sci Forum 2023; 26(28): 1-4.
[http://dx.doi.org/10.3390/Foods2023-15067]
[170]
Shahrajabian MH, Sun W. Chinese medicinal plants with antiviral activities for treatment of the common cold and flu. Biol Life Sci Forum 2023; 26(27): 1-4.
[http://dx.doi.org/10.3390/Foods2023-15058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy