Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery

Author(s): Neha Rana*, Parul Grover and Hridayanand Singh

Volume 24, Issue 6, 2024

Published on: 26 January, 2024

Page: [541 - 579] Pages: 39

DOI: 10.2174/0115680266290152240110074034

Price: $65

Abstract

Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites.

The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.

« Previous
Graphical Abstract

[1]
Congiu, C.; Cocco, M.T.; Onnis, V. Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues. Bioorg. Med. Chem. Lett., 2008, 18(3), 989-993.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.023] [PMID: 18164978]
[2]
Schmidt, A.P.; Lara, D.R.; Souza, D.O. Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol. Ther., 2007, 116(3), 401-416.
[http://dx.doi.org/10.1016/j.pharmthera.2007.07.004] [PMID: 17884172]
[3]
Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. Chem. Biodivers., 2004, 1(3), 361-401.
[http://dx.doi.org/10.1002/cbdv.200490033] [PMID: 17191854]
[4]
Chaskar, P.; Chaudhari, S.; Dighe, S.; More, N. Biological and medicinal significance of purines. Mini Rev. Med. Chem., 2012.
[PMID: 22931527]
[5]
Sridhara, M.B.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Vivek, H.K.; Kumara, H.K.; Mohammed, Y.H.E.; Gowda, D.C. Synthesis of dihydrazones as potential anticancer and DNA binding candidates: A validation by molecular docking studies. Anticancer. Agents Med. Chem., 2020, 20(7), 845-858.
[http://dx.doi.org/10.2174/1871520620666200225104558] [PMID: 32096753]
[6]
Rakesh, K.P.; Wang, S.M.; Leng, J.; Ravindar, L.; Asiri, A.M.; Marwani, H.M.; Qin, H.L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2018, 18(4), 488-505.
[http://dx.doi.org/10.2174/1871520617666171103140749] [PMID: 29110622]
[7]
Rakesh, K.P.; Shantharam, C.S.; Sridhara, M.B.; Manukumar, H.M.; Qin, H.L. Benzisoxazole: A privileged scaffold for medicinal chemistry. MedChemComm, 2017, 8(11), 2023-2039.
[http://dx.doi.org/10.1039/C7MD00449D] [PMID: 30108720]
[8]
Zhang, X.; Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M.; Asiri, A.M.; Marwani, H.M.; Qin, H.L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem., 2018, 26(2), 340-355.
[http://dx.doi.org/10.1016/j.bmc.2017.11.026] [PMID: 29269253]
[9]
Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Almassy, R.; Lu, J.; Averill, A.; Yager, K.M.; Chu, S. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorg. Med. Chem. Lett., 2007, 17(15), 4191-4195.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.041] [PMID: 17540560]
[10]
Jorda, R.; Paruch, K.; Krystof, V. Cyclin-dependent kinase inhibitors inspired by roscovitine: purine bioisosteres. Curr. Pharm. Des., 2012, 18(20), 2974-2980.
[http://dx.doi.org/10.2174/138161212800672804] [PMID: 22571665]
[11]
Bettayeb, K.; Sallam, H.; Ferandin, Y.; Popowycz, F.; Fournet, G.; Hassan, M.; Echalier, A.; Bernard, P.; Endicott, J.; Joseph, B.; Meijer, L. N-&-N, a new class of cell death-inducing kinase inhibitors derived from the purine roscovitine. Mol. Cancer Ther., 2008, 7(9), 2713-2724.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0080] [PMID: 18790752]
[12]
Popowycz, F.; Fournet, G.; Schneider, C.; Bettayeb, K. Pyrazolo[1,5-A]-1,3,5-Triazine as a purine bioisostere: Access to potent cyclin-dependent kinase inhibitor (R)-roscovitine analogues. J. Med. Chem., 2009, 52(3), 655-663.
[http://dx.doi.org/10.1021/jm801340z] [PMID: 19128055]
[13]
Noell, C.W.; Robins, R.K. The antitumor activity of 2-Amino-6-alkylthio-9-(β-D-ribofuranosylpurines and related derivatives of 2-Amino-6-purinethiol (Thioguanine). J. Med. Pharm. Chem., 1962, 5(6), 1074-1085.
[http://dx.doi.org/10.1021/jm01241a002] [PMID: 14056444]
[14]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[15]
Jensen, L.H.; Thougaard, A.V.; Grauslund, M.; Søkilde, B.; Carstensen, E.V.; Dvinge, H.K.; Scudiero, D.A.; Jensen, P.B.; Shoemaker, R.H.; Sehested, M. Substituted purine analogues define a novel structural class of catalytic topoisomerase II inhibitors. Cancer Res., 2005, 65(16), 7470-7477.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0707] [PMID: 16103101]
[16]
Karran, P.; Attard, N. Thiopurines in current medical practice: Molecular mechanisms and contributions to therapy-related cancer. Nat. Rev. Cancer, 2008, 8(1), 24-36.
[http://dx.doi.org/10.1038/nrc2292] [PMID: 18097462]
[17]
Kuo, T.C.; Li, L.W.; Pan, S.H.; Fang, J.M.; Liu, J.H.; Cheng, T.J.; Wang, C.J.; Hung, P.F.; Chen, H.Y.; Hong, T.M.; Hsu, Y.L.; Wong, C.H.; Yang, P.C. Purine-type compounds induce microtubule fragmentation and lung cancer cell death through interaction with katanin. J. Med. Chem., 2016, 59(18), 8521-8534.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00797] [PMID: 27536893]
[18]
Yang, J.; Wang, L.J.; Liu, J.J.; Zhong, L.; Zheng, R.L.; Xu, Y.; Ji, P.; Zhang, C.H.; Wang, W.J.; Lin, X.D.; Li, L.L.; Wei, Y.Q.; Yang, S.Y. Structural optimization and structure-activity relationships of N2-(4-(4-Methylpiperazin-1-yl)phenyl)-N8-phenyl-9H-purine-2,8-diamine derivatives, a new class of reversible kinase inhibitors targeting both EGFR-activating and resistance mutations. J. Med. Chem., 2012, 55(23), 10685-10699.
[http://dx.doi.org/10.1021/jm301365e] [PMID: 23116168]
[19]
Fu, S.; Jiang, H.; Deng, Y.; Zeng, W. Palladium-catalyzed intramolecular sulfonamidation/oxidation of imines: access to multifunctional benzimidazoles. Adv. Synth. Catal., 2011, 353(14-15), 2795-2804.
[http://dx.doi.org/10.1002/adsc.201100370]
[20]
Liu, J.; Patch, R.J.; Schubert, C.; Player, M.R. Single-step syntheses of 2-amino-7-chlorothiazolo[5,4-d]pyrimidines: intermediates for bivalent thiazolopyrimidines. J. Org. Chem., 2005, 70(24), 10194-10197.
[http://dx.doi.org/10.1021/jo0517702] [PMID: 16292872]
[21]
Di Virgilio, F. Purines, purinergic receptors, and cancer. Cancer Res., 2012, 72(21), 5441-5447.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1600] [PMID: 23090120]
[22]
Pathak, A.K.; Pathak, V.; Seitz, L.E.; Suling, W.J.; Reynolds, R.C. 6-Oxo and 6-thio purine analogs as antimycobacterial agents. Bioorg. Med. Chem., 2013, 21(7), 1685-1695.
[http://dx.doi.org/10.1016/j.bmc.2013.01.054] [PMID: 23434367]
[23]
Caba, O.; Díaz-Gavilán, M.; Rodríguez-Serrano, F.; Boulaiz, H.; Aránega, A.; Gallo, M.A.; Marchal, J.A.; Campos, J.M. Anticancer activity and cDNA microarray studies of a (RS)-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-6-chloro-9H-purine, and an acyclic (RS)-O,N-acetalic 6-chloro-7H-purine. Eur. J. Med. Chem., 2011, 46(9), 3802-3809.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.047] [PMID: 21684047]
[24]
Conejo-García, A.; García-Rubiño, M.E.; Marchal, J.A.; Núñez, M.C.; Ramírez, A.; Cimino, S.; García, M.Á.; Aránega, A.; Gallo, M.A.; Campos, J.M. Synthesis and anticancer activity of (RS)-9-(2,3-dihydro-1,4-benzoxaheteroin-2-ylmethyl)-9H-purines. Eur. J. Med. Chem., 2011, 46(9), 3795-3801.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.046] [PMID: 21645946]
[25]
Huang, L.H.; Xu, H.D.; Yang, Z.Y.; Zheng, Y.F.; Liu, H.M. Synthesis and anticancer activity of novel C6-piperazine substituted purine steroid–nucleosides analogues. Steroids, 2014, 82, 1-6.
[http://dx.doi.org/10.1016/j.steroids.2013.12.004] [PMID: 24378780]
[26]
Aguado, L.; Canela, M.D.; Thibaut, H.J.; Priego, E.M.; Camarasa, M.J.; Leyssen, P.; Neyts, J.; Pérez-Pérez, M.J. Efficient synthesis and anti-enteroviral activity of 9-arylpurines. Eur. J. Med. Chem., 2012, 49, 279-288.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.022] [PMID: 22305341]
[27]
Aguado, L.; Thibaut, H.J.; Priego, E.M.; Jimeno, M.L.; Camarasa, M.J.; Neyts, J.; Pérez-Pérez, M.J. 9-Arylpurines as a novel class of enterovirus inhibitors. J. Med. Chem., 2010, 53(1), 316-324.
[http://dx.doi.org/10.1021/jm901240p] [PMID: 19924996]
[28]
D’hooghe, M.; Mollet, K.; De Vreese, R.; Jonckers, T.H.M.; Dams, G.; De Kimpe, N. Design, synthesis, and antiviral evaluation of purine-β-lactam and purine-aminopropanol hybrids. J. Med. Chem., 2012, 55(11), 5637-5641.
[http://dx.doi.org/10.1021/jm300383k] [PMID: 22519297]
[29]
Dai, X.; Xiang, L.; Li, T.; Bai, Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J. Cancer, 2016, 7(10), 1281-1294.
[http://dx.doi.org/10.7150/jca.13141] [PMID: 27390604]
[30]
Hsu, J.L.; Hung, M.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev., 2016, 35(4), 575-588.
[http://dx.doi.org/10.1007/s10555-016-9649-6] [PMID: 27913999]
[31]
Hynes, N.E.; MacDonald, G.; Erb, B. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol., 2009, 21(2), 177-184.
[http://dx.doi.org/10.1016/j.ceb.2008.12.010] [PMID: 19208461]
[32]
Baselga, J.; Swain, S.M. Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer, 2009, 9(7), 463-475.
[http://dx.doi.org/10.1038/nrc2656] [PMID: 19536107]
[33]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[34]
Al-Rifai, N.; Rücker, H.; Amslinger, S. Opening or closing the lock? When reactivity is the key to biological activity. Chemistry, 2013, 19(45), 15384-15395.
[http://dx.doi.org/10.1002/chem.201302117] [PMID: 24105896]
[35]
Méndez-Ferrer, S.; Bonnet, D.; Steensma, D.P.; Hasserjian, R.P.; Ghobrial, I.M.; Gribben, J.G.; Andreeff, M.; Krause, D.S. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer, 2020, 20(5), 285-298.
[http://dx.doi.org/10.1038/s41568-020-0245-2] [PMID: 32112045]
[36]
Zeidner, J.F.; Karp, J.E.; Blackford, A.L.; Foster, M.C.; Dees, E.C.; Smith, G.; Ivy, S.P.; Harris, P. Phase I clinical trials in acute myeloid leukemia: 23-year experience from cancer therapy evaluation program of the national cancer institute. J. Natl. Cancer Inst., 2016, 108(3), 1-8.
[http://dx.doi.org/10.1093/jnci/djv335] [PMID: 26553781]
[37]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[http://dx.doi.org/10.1186/s13045-018-0624-2] [PMID: 29925402]
[38]
Kannaiyan, R.; Mahadevan, D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer Ther., 2018, 18(12), 1249-1270.
[http://dx.doi.org/10.1080/14737140.2018.1527688] [PMID: 30259761]
[39]
Liang, C.; Tian, D.; Ren, X.; Ding, S.; Jia, M.; Xin, M.; Thareja, S. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review. Eur. J. Med. Chem., 2018, 151, 315-326.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.062] [PMID: 29631132]
[40]
Larrosa-Garcia, M.; Baer, M.R. FLT3 inhibitors in acute myeloid leukemia: Current status and future directions. Mol. Cancer Ther., 2017, 16(6), 991-1001.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0876] [PMID: 28576946]
[41]
Musumeci, F.; Schenone, S.; Grossi, G.; Brullo, C.; Sanna, M. Analogs, formulations and derivatives of imatinib: A patent review. Expert Opin. Ther. Pat., 2015, 25(12), 1411-1421.
[http://dx.doi.org/10.1517/13543776.2015.1089233] [PMID: 26372795]
[42]
Sharma, S.; Singh, J.; Ojha, R.; Singh, H.; Kaur, M.; Bedi, P.M.S.; Nepali, K. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur. J. Med. Chem., 2016, 112, 298-346.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.018] [PMID: 26907156]
[43]
Laufer, S.A.; Domeyer, D.M.; Scior, T.R.F.; Albrecht, W.; Hauser, D.R.J. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors. J. Med. Chem., 2005, 48(3), 710-722.
[http://dx.doi.org/10.1021/jm0408767] [PMID: 15689155]
[44]
Legraverend, M.; Grierson, D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem., 2006, 14(12), 3987-4006.
[http://dx.doi.org/10.1016/j.bmc.2005.12.060] [PMID: 16503144]
[45]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018] [PMID: 20303320]
[46]
Azam, M.; Nardi, V.; Shakespeare, W.C.; Metcalf, C.A., III; Bohacek, R.S.; Wang, Y.; Sundaramoorthi, R.; Sliz, P.; Veach, D.R.; Bornmann, W.G.; Clarkson, B.; Dalgarno, D.C.; Sawyer, T.K.; Daley, G.Q. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc. Natl. Acad. Sci., 2006, 103(24), 9244-9249.
[http://dx.doi.org/10.1073/pnas.0600001103] [PMID: 16754879]
[47]
Shi, Q.; Tebben, A.; Dyckman, A.J.; Li, H.; Liu, C.; Lin, J.; Spergel, S.; Burke, J.R.; McIntyre, K.W.; Olini, G.C.; Strnad, J.; Surti, N.; Muckelbauer, J.K.; Chang, C.; An, Y.; Cheng, L.; Ruan, Q.; Leftheris, K.; Carter, P.H.; Tino, J.; De Lucca, G.V. Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases. Bioorg. Med. Chem. Lett., 2014, 24(9), 2206-2211.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.075] [PMID: 24685542]
[48]
Cress, W.D.; Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol., 2000, 184(1), 1-16.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200007)184:1<1::AID-JCP1>3.0.CO;2-7] [PMID: 10825229]
[49]
Manal, M.; Chandrasekar, M.J.N.; Gomathi Priya, J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem., 2016, 67, 18-42.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.005] [PMID: 27239721]
[50]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[51]
Gregoretti, I.; Lee, Y.M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J. Mol. Biol., 2004, 338(1), 17-31.
[http://dx.doi.org/10.1016/j.jmb.2004.02.006] [PMID: 15050820]
[52]
Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett., 2009, 277(1), 8-21.
[http://dx.doi.org/10.1016/j.canlet.2008.08.016] [PMID: 18824292]
[53]
Marks, P.A.; Rifkind, R.A.; Richon, V.M.; Breslow, R.; Miller, T.; Kelly, W.K. Histone deacetylases and cancer: Causes and therapies. Nat. Rev. Cancer, 2001, 1(3), 194-202.
[http://dx.doi.org/10.1038/35106079] [PMID: 11902574]
[54]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23.
[http://dx.doi.org/10.1016/j.gene.2005.09.010] [PMID: 16289629]
[55]
Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: From bench to clinic. J. Med. Chem., 2008, 51(6), 1505-1529.
[http://dx.doi.org/10.1021/jm7011408] [PMID: 18247554]
[56]
Zhang, Y.; Feng, J.; Jia, Y.; Xu, Y.; Liu, C.; Fang, H.; Xu, W. Design, synthesis and primary activity assay of tripeptidomimetics as histone deacetylase inhibitors with linear linker and branched cap group. Eur. J. Med. Chem., 2011, 46(11), 5387-5397.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.045] [PMID: 21924799]
[57]
Miller, T.A.; Witter, D.J.; Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem., 2003, 46(24), 5097-5116.
[http://dx.doi.org/10.1021/jm0303094] [PMID: 14613312]
[58]
Kashanchi, F. Modulators of viral transcription, and methods and compositions therewith. US Patent 20120149708, 2011.
[59]
Németh, G.; Varga, Z.; Greff, Z.; Bencze, G.; Sipos, A.; Szántai-Kis, C.; Baska, F.; Gyuris, A.; Kelemenics, K.; Szathmáry, Z.; Minárovits, J.; Kéri, G.; Orfi, L. Novel, selective CDK9 inhibitors for the treatment of HIV infection. Curr. Med. Chem., 2011, 18(3), 342-358.
[http://dx.doi.org/10.2174/092986711794839188] [PMID: 21143121]
[60]
Kilby, J.M.; Hopkins, S.; Venetta, T.M.; DiMassimo, B.; Cloud, G.A.; Lee, J.Y.; Alldredge, L.; Hunter, E.; Lambert, D.; Bolognesi, D.; Matthews, T.; Johnson, M.R.; Nowak, M.A.; Shaw, G.M.; Saag, M.S. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med., 1998, 4(11), 1302-1307.
[http://dx.doi.org/10.1038/3293] [PMID: 9809555]
[61]
Rana, T.M.; Jeang, K.T. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch. Biochem. Biophys., 1999, 365(2), 175-185.
[http://dx.doi.org/10.1006/abbi.1999.1206] [PMID: 10328810]
[62]
Yang, M. Discoveries of Tat-TAR interaction inhibitors for HIV-1. Curr. Drug Targets Infect. Disord., 2005, 5(4), 433-444.
[http://dx.doi.org/10.2174/156800505774912901] [PMID: 16535863]
[63]
Verhoef, K.; Koper, M.; Berkhout, B. Determination of the minimal amount of Tat activity required for human immunodeficiency virus type 1 replication. Virology, 1997, 237(2), 228-236.
[http://dx.doi.org/10.1006/viro.1997.8786] [PMID: 9356335]
[64]
Kang, D.; Fang, Z.; Huang, B.; Zhang, L.; Liu, H.; Pannecouque, C.; Naesens, L.; De Clercq, E.; Zhan, P.; Liu, X. Synthesis and preliminary antiviral activities of piperidine-substituted purines against HIV and Influenza A/H1N1 Infections. Chem. Biol. Drug Des., 2015, 86(4), 568-577.
[http://dx.doi.org/10.1111/cbdd.12520] [PMID: 25600073]
[65]
Tuttle, J.V.; Tisdale, M.; Krenitsky, T.A. Purine 2′-deoxy-2′-fluororibosides as antiinfluenza virus agents. J. Med. Chem., 1993, 36(1), 119-125.
[http://dx.doi.org/10.1021/jm00053a015] [PMID: 8421277]
[66]
Meneghesso, S.; Vanderlinden, E.; Brancale, A.; Balzarini, J.; Naesens, L.; McGuigan, C. Synthesis and biological evaluation of purine 2′-fluoro-2′-deoxyriboside ProTides as anti-influenza virus agents. ChemMedChem, 2013, 8(3), 415-425.
[http://dx.doi.org/10.1002/cmdc.201200562] [PMID: 23386468]
[67]
Lin, C.; Sun, C.; Liu, X.; Zhou, Y.; Hussain, M.; Wan, J.; Li, M.; Li, X.; Jin, R.; Tu, Z.; Zhang, J. Design, synthesis, and in vitro biological evaluation of novel 6-methyl-7-substituted-7-deaza purine nucleoside analogs as anti-influenza A agents. Antiviral Res., 2016, 129, 13-20.
[http://dx.doi.org/10.1016/j.antiviral.2016.01.005] [PMID: 26802557]
[68]
Krasnov, V.P.; Musiyak, V.V.; Vozdvizhenskaya, O.A.; Galegov, G.A.; Andronova, V.L.; Gruzdev, D.A.; Chulakov, E.N.; Vigorov, A.Y.; Ezhikova, M.A.; Kodess, M.I.; Levit, G.L.; Charushin, V.N. N -[ω-(Purin-6-yl)aminoalkanoyl] derivatives of chiral heterocyclic amines as promising anti-herpesvirus agents. Eur. J. Org. Chem., 2019, 2019(30), 4811-4821.
[http://dx.doi.org/10.1002/ejoc.201900727]
[69]
Krasnov, V.P.; Levit, G.L.; Musiyak, V.V.; Gruzdev, D.A.; Charushin, V.N. Fragment-based approach to novel bioactive purine derivatives. Pure Appl. Chem., 2020, 92(8), 1277-1295.
[http://dx.doi.org/10.1515/pac-2019-1214]
[70]
Vozdvizhenskaya, O.А.; Andronova, V.L.; Galegov, G.А.; Levit, G.L.; Krasnov, V.P.; Charushin, V.N. Synthesis and antiherpetic activity of novel purine conjugates with 7,8-difluoro-3-methyl-3,4-dihydro-2H-1,4-benzoxazine. Chem. Heterocycl. Compd., 2021, 57(4), 490-497.
[http://dx.doi.org/10.1007/s10593-021-02929-z]
[71]
Senga, K.; O’Brien, D.E.; Scholten, M.B.; Novinson, T.; Miller, J.P.; Robins, R.K. Synthesis and enzymic activity of various substituted pyrazolo[1,5-a]-1,3,5-triazines as adenosine cyclic 3′,5′-phosphate phosphodiesterase inhibitors. J. Med. Chem., 1982, 25(3), 243-249.
[http://dx.doi.org/10.1021/jm00345a010] [PMID: 6279842]
[72]
Kobe, J.; O’Brien, D.E.; Robins, R.K. 2-Aryl-7-substituted pyrazolo[1,5α]-1,3,5- triazines. US Patent 3865824, 1975.
[73]
Miller, J.P.; Sigman, C.C.; Johnson, H.L.; Novinson, T.; Springer, R.H.; Senga, K.; O’Brien, D.E.; Robins, R.K. Inhibition of cyclic AMP phosphodiesterases by cyclic nucleotide analogues and nitrogen heterocycles. Adv. Cycle. Nucleotide Protein Phosphoryl. Res., 1984, 16, 277-290.
[74]
Ullas, B.J.; Rakesh, K.P.; Shivakumar, J.; Gowda, D.C.; Chandrashekara, P.G. Multi-targeted quinazolinone-Schiff’s bases as potent bio-therapeutics. Results in Chemistry, 2020, 2, 100067.
[http://dx.doi.org/10.1016/j.rechem.2020.100067]
[75]
Kobe, J.; Springer, R.H.; O’Brien, D.E. Pyrazolo(1,5-α)1,3,5-triazines. US Patent 3846423, 1974.
[76]
Sullivan, T.A.; Duemler, B.H.; Kuttesch, N.J.; Keravis, T.M.; Wells, J.N. Irreversible inhibition of calmodulin-sensitive cyclic nucleotide phosphodiesterase. J. Cyclic Nucleotide Protein Phosphor. Res., 1986, 11(5), 355-364.
[PMID: 2442214]
[77]
O’Brien, D.E.; Senga, K.; Novinson, T. Pyrazolo(1,5-α)-1,3,5-triazines. US Patent 3910907, 1975.
[78]
Raboisson, P.; Schultz, D.; Muller, C.; Reimund, J.M.; Pinna, G.; Mathieu, R.; Bernard, P.; Do, Q.T.; DesJarlais, R.L.; Justiano, H.; Lugnier, C.; Bourguignon, J.J. Cyclic nucleotide phosphodiesterase type 4 inhibitors: Evaluation of pyrazolo[1,5-a]-1,3,5-triazine ring system as an adenine bioisostere. Eur. J. Med. Chem., 2008, 43(4), 816-829.
[http://dx.doi.org/10.1016/j.ejmech.2007.05.016] [PMID: 17640774]
[79]
DeLano, W.L.; Ultsch, M.H.; de, A.M.; Vos; Wells, J.A. Convergent solutions to binding at a protein-protein interface. Science, 2000, 287(5456), 1279-1283.
[http://dx.doi.org/10.1126/science.287.5456.1279] [PMID: 10678837]
[80]
a) Wright, G.E. Nucleotide probes of DNA polymerases. Acta Biochim. Pol., 1996, 43(1), 115-124.
[http://dx.doi.org/10.18388/abp.1996_4522] [PMID: 8790717];
b) Lou, B. Novel strategies for solid-phase construction of small-molecule combinatorial libraries. Drug Discov. Today, 2001, 6(24), 1288-1294.
[http://dx.doi.org/10.1016/S1359-6446(01)02070-0] [PMID: 11738971];
c) Davis, J.T. G-quartets 40 years later: From 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed., 2004, 43(6), 668-698.
[http://dx.doi.org/10.1002/anie.200300589] [PMID: 14755695];
d) Sabat, M.; VanRens, J.C.; Clark, M.P.; Brugel, T.A.; Maier, J.; Bookland, R.G.; Laufersweiler, M.J.; Laughlin, S.K.; Golebiowski, A.; De, B.; Hsieh, L.C.; Walter, R.L.; Mekel, M.J.; Janusz, M.J. The development of novel C-2, C-8, and N-9 trisubstituted purines as inhibitors of TNF-α production. Bioorg. Med. Chem. Lett., 2006, 16(16), 4360-4365.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.050] [PMID: 16750367]
[81]
Li, R.; Dowd, V.; Stewart, D.J.; Burton, S.J.; Lowe, C.R. Design, synthesis, and application of a Protein A mimetic. Nat. Biotechnol., 1998, 16(2), 190-195.
[http://dx.doi.org/10.1038/nbt0298-190] [PMID: 9487529]
[82]
Teng, S.F.; Sproule, K.; Hussain, A.; Lowe, C.R. A strategy for the generation of biomimetic ligands for affinity chromatography. Combinatorial synthesis and biological evaluation of an IgG binding ligand. J. Mol. Recognit., 1999, 12(1), 67-75.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199901/02)12:1<67::AID-JMR443>3.0.CO;2-4] [PMID: 10398398]
[83]
a) Ehrlich, G.K.; Bailon, P. Identification of model peptides as affinity ligands for the purification of humanized monoclonal antibodies by means of phage display. J. Biochem. Biophys. Methods, 2001, 49(1-3), 443-454.
[http://dx.doi.org/10.1016/S0165-022X(01)00212-3] [PMID: 11694293];
b) Fassina, G.; Verdoliva, A.; Odierna, M.R.; Ruvo, M.; Cassini, G. Protein a mimetic peptide ligand for affinity purification of antibodies. J. Mol. Recognit., 1996, 9(5-6), 564-569.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<564::AID-JMR302>3.0.CO;2-F] [PMID: 9174941]
[84]
Johnson, C.P.; Jensen, I.E.; Prakasam, A.; Vijayendran, R.; Leckband, D. Engineered protein a for the orientational control of immobilized proteins. Bioconjug. Chem., 2003, 14(5), 974-978.
[http://dx.doi.org/10.1021/bc034063t] [PMID: 13129401]
[85]
Jensen, T.S.; Baron, R.; Haanpää, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.C.; Treede, R.D. A new definition of neuropathic pain. Pain, 2011, 152(10), 2204-2205.
[http://dx.doi.org/10.1016/j.pain.2011.06.017] [PMID: 21764514]
[86]
Murnion, B.P. Neuropathic pain: Current definition and review of drug treatment. Aust. Prescr., 2018, 41(3), 60-63.
[http://dx.doi.org/10.18773/austprescr.2018.022] [PMID: 29921999]
[87]
Jiang, Y.; Rakesh, K.P.; Alharbi, N.S.; Vivek, H.K.; Manukumar, H.M.; Mohammed, Y.H.E.; Qin, H.L. Radical scavenging and anti-inflammatory activities of (hetero)arylethenesulfonyl fluorides: Synthesis and structure-activity relationship (SAR) and QSAR studies. Bioorg. Chem., 2019, 89, 103015-103015.
[http://dx.doi.org/10.1016/j.bioorg.2019.103015] [PMID: 31158576]
[88]
Sałat, K.; Moniczewski, A.; Librowski, T. Transient receptor potential channels - emerging novel drug targets for the treatment of pain. Curr. Med. Chem., 2013, 20(11), 1409-1436.
[http://dx.doi.org/10.2174/09298673113209990107] [PMID: 23409716]
[89]
Eva, N.; Franzén, B.; Andreas, N.; Göran, K.; Gang, L.; Maria, N.; Annika, R.; Charlotta, B.; Dirk, W.; Patrik, W.; Paul, K.; Patrick, R. in vitro pharmacological characterization of a novel TRPA1 antagonist and proof of mechanism in a human dental pulp model. J. Pain Res., 2013, 2013, 59-70.
[90]
Chen, J.; Hackos, D.H. TRPA1 as a drug target—promise and challenges. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(4), 451-463.
[http://dx.doi.org/10.1007/s00210-015-1088-3] [PMID: 25640188]
[91]
Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front. Pharmacol., 2018, 9, 1048.
[http://dx.doi.org/10.3389/fphar.2018.01048] [PMID: 30386231]
[92]
Chłoń-Rzepa, G.; Jankowska, A.; Ślusarczyk, M.; Świerczek, A.; Pociecha, K.; Wyska, E.; Bucki, A.; Gawalska, A.; Kołaczkowski, M.; Pawłowski, M. Novel butanehydrazide derivatives of purine-2,6-dione as dual PDE4/7 inhibitors with potential anti-inflammatory activity: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 146, 381-394.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.068] [PMID: 29407965]
[93]
Chłoń-Rzepa, G.; Ślusarczyk, M.; Jankowska, A.; Gawalska, A.; Bucki, A.; Kołaczkowski, M.; Świerczek, A.; Pociecha, K.; Wyska, E.; Zygmunt, M.; Kazek, G.; Sałat, K.; Pawłowski, M. Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: A new approach for the treatment of pain. Eur. J. Med. Chem., 2018, 158, 517-533.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.021]
[94]
Gerlo, S.; Kooijman, R.; Beck, I.M.; Kolmus, K.; Spooren, A.; Haegeman, G. Cyclic AMP: A selective modulator of NF-κB action. Cell. Mol. Life Sci., 2011, 68(23), 3823-3841.
[http://dx.doi.org/10.1007/s00018-011-0757-8] [PMID: 21744067]
[95]
Kollias, G.; Kontoyiannis, D. Role of TNF/TNFR in autoimmunity: Specific TNF receptor blockade may be advantageous to anti-TNF treatments. Cytokine Growth Factor Rev., 2002, 13(4-5), 315-321.
[http://dx.doi.org/10.1016/S1359-6101(02)00019-9] [PMID: 12220546]
[96]
Fortin, M.; D’Anjou, H.; Higgins, M.-È.; Gougeon, J.; Aubé, P.; Moktefi, K.; Mouissi, S.; Séguin, S.; Séguin, R.; Renzi, P. M.; Paquet, L.; Ferrari, N. A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir. Res., 2009, 39(1), 1-14.
[http://dx.doi.org/10.1186/1465-9921-10-39]
[97]
Page, C.P. Phosphodiesterase inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. Int. Arch. Allergy Immunol., 2014, 165(3), 152-164.
[http://dx.doi.org/10.1159/000368800] [PMID: 25532037]
[98]
Fan Chung, K. Phosphodiesterase inhibitors in airways disease. Eur. J. Pharmacol., 2006, 533(1-3), 110-117.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.059] [PMID: 16458289]
[99]
Mokry, J.; Joskova, M.; Mokra, D.; Christensen, I.; Nosalova, G. Effects of selective inhibition of PDE4 and PDE7 on airway reactivity and cough in healthy and ovalbumin-sensitized guinea pigs. Adv. Exp. Med. Biol., 2013, 756, 57-64.
[http://dx.doi.org/10.1007/978-94-007-4549-0_8] [PMID: 22836619]
[100]
Perez-Gonzalez, R.; Pascual, C.; Antequera, D.; Bolos, M.; Redondo, M.; Perez, D.I.; Pérez-Grijalba, V.; Krzyzanowska, A.; Sarasa, M.; Gil, C.; Ferrer, I.; Martinez, A.; Carro, E. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2013, 34(9), 2133-2145.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.011] [PMID: 23582662]
[101]
García, A.M.; Brea, J.; Morales-García, J.A.; Perez, D.I.; González, A.; Alonso-Gil, S.; Gracia-Rubio, I.; Ros-Simó, C.; Conde, S.; Cadavid, M.I.; Loza, M.I.; Perez-Castillo, A.; Valverde, O.; Martinez, A.; Gil, C. Modulation of cAMP-specific PDE without emetogenic activity: new sulfide-like PDE7 inhibitors. J. Med. Chem., 2014, 57(20), 8590-8607.
[http://dx.doi.org/10.1021/jm501090m] [PMID: 25264825]
[102]
Xu, R.X.; Rocque, W.J.; Lambert, M.H.; Vanderwall, D.E.; Luther, M.A.; Nolte, R.T. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J. Mol. Biol., 2004, 337(2), 355-365.
[http://dx.doi.org/10.1016/j.jmb.2004.01.040] [PMID: 15003452]
[103]
Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev., 2006, 58(1), 87-114.
[http://dx.doi.org/10.1124/pr.58.1.6] [PMID: 16507884]
[104]
Hille, R.; Nishino, T. Xanthine oxidase and xanthine dehydrogenase. FASEB J., 1995, 9(11), 995-1003.
[http://dx.doi.org/10.1096/fasebj.9.11.7649415] [PMID: 7649415]
[105]
Higgins, P.; Dawson, J.; Lees, K.R.; McArthur, K.; Quinn, T.J.; Walters, M.R. Xanthine oxidase inhibition for the treatment of cardiovascular disease: A systematic review and meta-analysis. Cardiovasc. Ther., 2012, 30(4), 217-226.
[http://dx.doi.org/10.1111/j.1755-5922.2011.00277.x] [PMID: 22099531]
[106]
Robins, R.K.; Revankar, G.R.; O’Brien, D.E.; Springer, R.H.; Albert, T.N.A.; Senga, K.; Miller, J.P.; Streeter, D.G. Purine analog inhibitors of xanthine oxidase - structure activity relationships and proposed binding of the molybdenum cofactor. J. Heterocycl. Chem., 1985, 22(3), 601-634.
[http://dx.doi.org/10.1002/jhet.5570220303]
[107]
Zhang, G.B.; Maddili, S.K.; Tangadanchu, V.K.R.; Gopala, L.; Gao, W.W.; Cai, G.X.; Zhou, C.H. Discovery of natural berberine-derived nitroimidazoles as potentially multi-targeting agents against drug-resistant Escherichia coli. Sci. China Chem., 2018, 61(5), 557-568.
[http://dx.doi.org/10.1007/s11426-017-9169-4]
[108]
a) Zhang, Y.; Tangadanchu, V.K.R.; Cheng, Y.; Yang, R.G.; Lin, J.M.; Zhou, C.H. Potential antimicrobial isopropanol-conjugated carbazole azoles as dual targeting inhibitors of enterococcus faecalis. ACS Med. Chem. Lett., 2018, 9(3), 244-249.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00514] [PMID: 29541368];
b) Zhang, Y.; Tangadanchu, V.K.R.; Bheemanaboina, R.R.Y.; Cheng, Y.; Zhou, C.H. Novel carbazole-triazole conjugates as DNA-targeting membrane active potentiators against clinical isolated fungi. Eur. J. Med. Chem., 2018, 155, 579-589.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.022] [PMID: 29913383]
[109]
Peng, X.M.; Kumar, K.V.; Damu, G.L.V.; Zhou, C.H. Coumarin-derived azolyl ethanols: Synthesis, antimicrobial evaluation and preliminary action mechanism. Sci. China Chem., 2016, 59(7), 878-894.
[http://dx.doi.org/10.1007/s11426-015-0351-0]
[110]
Li, Z.Z.; Tangadanchu, V.K.R.; Battini, N.; Bheemanaboina, R.R.Y.; Zang, Z.L.; Zhang, S.L.; Zhou, C.H. Indole-nitroimidazole conjugates as efficient manipulators to decrease the genes expression of methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2019, 179, 723-735.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.093] [PMID: 31284082]
[111]
a) Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586), 336-343.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724];
b) Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science, 2017, 355(6327), 826-830.
[http://dx.doi.org/10.1126/science.aaj2191] [PMID: 28183996]
[112]
Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev., 2011, 24(1), 71-109.
[http://dx.doi.org/10.1128/CMR.00030-10] [PMID: 21233508]
[113]
a) Mishra, B.; Wang, G. Ab initio design of potent anti-MRSA peptides based on database filtering technology. J. Am. Chem. Soc., 2012, 134(30), 12426-12429.
[http://dx.doi.org/10.1021/ja305644e] [PMID: 22803960];
b) Lin, S.; Koh, J.J.; Aung, T.T.; Sin, W.L.W.; Lim, F.; Wang, L.; Lakshminarayanan, R.; Zhou, L.; Tan, D.T.H.; Cao, D.; Beuerman, R.W.; Ren, L.; Liu, S. Semisynthetic flavone-derived antimicrobials with therapeutic potential against methicillin-resistant Staphylococcus aureus (MRSA). J. Med. Chem., 2017, 60(14), 6152-6165.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00380] [PMID: 28636355]
[114]
Stokes, J.M.; MacNair, C.R.; Ilyas, B.; French, S.; Côté, J.P.; Bouwman, C.; Farha, M.A.; Sieron, A.O.; Whitfield, C.; Coombes, B.K.; Brown, E.D. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat. Microbiol., 2017, 2(5), 17028.
[http://dx.doi.org/10.1038/nmicrobiol.2017.28] [PMID: 28263303]
[115]
Peng, X.M.; Cai, G.X.; Zhou, C.H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr. Top. Med. Chem., 2013, 13(16), 1963-2010.
[http://dx.doi.org/10.2174/15680266113139990125] [PMID: 23895097]
[116]
a) Sharma, P.; Srinivasa Reddy, T.; Thummuri, D.; Senwar, K.R.; Praveen Kumar, N.; Naidu, V.G.M.; Bhargava, S.K.; Shankaraiah, N. Synthesis and biological evaluation of new benzimidazole-thiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem., 2016, 124, 608-621.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.029] [PMID: 27614408];
b) Liu, H.B.; Gao, W.W.; Tangadanchu, V.K.R.; Zhou, C.H.; Geng, R.X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 143, 66-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.027] [PMID: 29172083]
[117]
Wang, Y.N.; Bheemanaboina, R.R.Y.; Cai, G.X.; Zhou, C.H. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove. Bioorg. Med. Chem. Lett., 2018, 28(9), 1621-1628.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.046] [PMID: 29598912]
[118]
Mikušová, K.; Huang, H.; Yagi, T.; Holsters, M.; Vereecke, D.; D’Haeze, W.; Scherman, M.S.; Brennan, P.J.; McNeil, M.R.; Crick, D.C. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol., 2005, 187(23), 8020-8025.
[http://dx.doi.org/10.1128/JB.187.23.8020-8025.2005] [PMID: 16291675]
[119]
Wolucka, B.A.; McNeil, M.R.; de Hoffmann, E.; Chojnacki, T.; Brennan, P.J. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem., 1994, 269(37), 23328-23335.
[http://dx.doi.org/10.1016/S0021-9258(17)31657-5] [PMID: 8083238]
[120]
Brændvang, M.; Gundersen, L.L. Synthesis, biological activity, and SAR of antimycobacterial 2- and 8-substituted 6-(2- furyl)-9-(p-methoxybenzyl)purines. Bioorg. Med. Chem., 2007, 15(22), 7144-7165.
[http://dx.doi.org/10.1016/j.bmc.2007.07.034] [PMID: 17804243]
[121]
Bakkestuen, A.K.; Gundersen, L.L.; Utenova, B.T. Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines. J. Med. Chem., 2005, 48(7), 2710-2723.
[http://dx.doi.org/10.1021/jm0408924] [PMID: 15801862]
[122]
Trefzer, C.; Škovierová, H.; Buroni, S.; Bobovská, A.; Nenci, S.; Molteni, E.; Pojer, F.; Pasca, M.R.; Makarov, V.; Cole, S.T.; Riccardi, G.; Mikušová, K.; Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc., 2012, 134(2), 912-915.
[http://dx.doi.org/10.1021/ja211042r] [PMID: 22188377]
[123]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804.
[http://dx.doi.org/10.1126/science.1171583] [PMID: 19299584]
[124]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[http://dx.doi.org/10.1002/emmm.201303575] [PMID: 24500695]
[125]
Shirude, P.S.; Shandil, R.; Sadler, C.; Naik, M.; Hosagrahara, V.; Hameed, S.; Shinde, V.; Bathula, C.; Humnabadkar, V.; Kumar, N.; Reddy, J.; Panduga, V.; Sharma, S.; Ambady, A.; Hegde, N.; Whiteaker, J.; McLaughlin, R.E.; Gardner, H.; Madhavapeddi, P.; Ramachandran, V.; Kaur, P.; Narayan, A.; Guptha, S.; Awasthy, D.; Narayan, C.; Mahadevaswamy, J.; Vishwas, K.G.; Ahuja, V.; Srivastava, A.; Prabhakar, K.R.; Bharath, S.; Kale, R.; Ramaiah, M.; Choudhury, N.R.; Sambandamurthy, V.K.; Solapure, S.; Iyer, P.S.; Narayanan, S.; Chatterji, M. Azaindoles: Noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. J. Med. Chem., 2013, 56(23), 9701-9708.
[http://dx.doi.org/10.1021/jm401382v] [PMID: 24215368]
[126]
Hariguchi, N.; Chen, X.; Hayashi, Y.; Kawano, Y.; Fujiwara, M.; Matsuba, M.; Shimizu, H.; Ohba, Y.; Nakamura, I.; Kitamoto, R.; Shinohara, T.; Uematsu, Y.; Ishikawa, S.; Itotani, M.; Haraguchi, Y.; Takemura, I.; Matsumoto, M. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor. Antimicrob. Agents Chemother., 2020, 64(6), e02020-19.
[http://dx.doi.org/10.1128/AAC.02020-19] [PMID: 32229496]
[127]
Hassan, P.; Fergusson, D.; Grant, K.M.; Mottram, J.C. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol. Biochem. Parasitol., 2001, 113(2), 189-198.
[http://dx.doi.org/10.1016/S0166-6851(01)00220-1] [PMID: 11295173]
[128]
Gómez, E.B.; Kornblihtt, A.R.; Téllez-Iñón, M.T. Cloning of a cdc2-related protein kinase from Trypanosoma cruzi that interacts with mammalian cyclins1Note: The nucleotide sequences reported in this paper has been submitted to the GenBankTM/EMBL data bank with accession numbers tzcrk3, U69958; tzcrk3a, U69960; tzcrk3b U69959; tzcrk1, U74762; tzcrk1a, U74763; tzcrk1b, U74764; tzcrk1c, U74765; tzcrk1d, U74766.1. Mol. Biochem. Parasitol., 1998, 91(2), 337-351.
[http://dx.doi.org/10.1016/S0166-6851(97)00218-1] [PMID: 9580532]
[129]
Hammarton, T.C.; Clark, J.; Douglas, F.; Boshart, M.; Mottram, J.C. Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J. Biol. Chem., 2003, 278(25), 22877-22886.
[http://dx.doi.org/10.1074/jbc.M300813200] [PMID: 12682070]
[130]
Naula, C.; Parsons, M.; Mottram, J.C. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim. Biophys. Acta. Proteins Proteomics, 2005, 1754(1-2), 151-159.
[http://dx.doi.org/10.1016/j.bbapap.2005.08.018] [PMID: 16198642]
[131]
Moravec, J.; Kryštof, V.; Hanuš, J.; Havlíček, L.; Moravcová, D.; Fuksová, K.; Kuzma, M.; Lenobel, R.; Otyepka, M.; Strnad, M. 2,6,8,9-tetrasubstituted purines as new CDK1 inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(18), 2993-2996.
[http://dx.doi.org/10.1016/S0960-894X(03)00632-2] [PMID: 12941319]
[132]
Thiry, A.; Dogné, J.M.; Supuran, C.; Masereel, B. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr. Top. Med. Chem., 2007, 7(9), 855-864.
[http://dx.doi.org/10.2174/156802607780636726] [PMID: 17504130]
[133]
Rémi, J.; Hüttenbrenner, A.; Feddersen, B.; Noachtar, S. Carbamazepine but not pregabalin impairs eye control: A study on acute objective CNS side effects in healthy volunteers. Epilepsy Res., 2010, 88(2-3), 145-150.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.10.007] [PMID: 19926254]
[134]
Meador, K.J. Newer anticonvulsants: Dosing strategies and cognition in treating patients with mood disorders and epilepsy. J. Clin. Psychiatry, 2003, 64(S8), 30-34.
[PMID: 12892539]
[135]
Kennedy, G.M.; Lhatoo, S.D. CNS adverse events associated with antiepileptic drugs. CNS Drugs, 2008, 22(9), 739-760.
[http://dx.doi.org/10.2165/00023210-200822090-00003] [PMID: 18698874]
[136]
Penovich, P.E.; James Willmore, L. Use of a new antiepileptic drug or an old one as first drug for treatment of absence epilepsy. Epilepsia, 2009, 50(S8), 37-41.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02234.x] [PMID: 19702732]
[137]
Zhang, L.; Guan, L.P.; Sun, X.Y.; Wei, C.X.; Chai, K.Y.; Quan, Z.S. Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a]phthalazines. Chem. Biol. Drug Des., 2009, 73(3), 313-319.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00776.x] [PMID: 19207467]
[138]
Guo, L.J.; Wei, C.X.; Jia, J.H.; Zhao, L.M.; Quan, Z.S. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity. Eur. J. Med. Chem., 2009, 44(3), 954-958.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.010] [PMID: 18752871]
[139]
Zhang, L.Q.; Guan, L.P.; Wei, C.X.; Deng, X.Q.; Quan, Z.S. Synthesis and anticonvulsant activity of some 7-alkoxy-2h-1,4-benzothiazin-3(4H)-ones and 7-Alkoxy-4H-[1,2,4]triazolo[4,3-d]benzo[b][1,4]thiazines. Chem. Pharm. Bull., 2010, 58(3), 326-331.
[http://dx.doi.org/10.1248/cpb.58.326] [PMID: 20190436]
[140]
Deng, X.Q.; Wei, C.X.; Li, F.N.; Sun, Z.G.; Quan, Z.S. Design and synthesis of 10-alkoxy-5, 6-dihydro-triazolo[4,3-d]benzo[f][1,4]oxazepine derivatives with anticonvulsant activity. Eur. J. Med. Chem., 2010, 45(7), 3080-3086.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.041] [PMID: 20416982]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy