Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Development and Optimization of a Target Engagement Model of Brain IDO Inhibition for Alzheimer’s Disease

Author(s): Kurt R. Stover, Paul M. Stafford, Andreea C. Damian, Jagadeesh P. Pasangulapati, Jake Goodwin-Tindall, Lucía M. López Vásquez, Sanghyun Lee, Seung-Pil Yang, Mark A. Reed, Christopher J. Barden and Donald F. Weaver*

Volume 20, Issue 10, 2023

Published on: 26 January, 2024

Page: [705 - 714] Pages: 10

DOI: 10.2174/0115672050283199240111111801

Price: $65

conference banner
Abstract

Background: Indoleamine 2,3-dioxygenase (IDO1) inhibition is a promising target as an Alzheimer’s disease (AD) Disease-modifying therapy capable of downregulating immunopathic neuroinflammatory processes.

Methods: To aid in the development of IDO inhibitors as potential AD therapeutics, we optimized a lipopolysaccharide (LPS) based mouse model of brain IDO1 inhibition by examining the dosedependent and time-course of the brain kynurenine:tryptophan (K:T) ratio to LPS via intraperitoneal dosing.

Results: We determined the optimal LPS dose to increase IDO1 activity in the brain, and the ideal time point to quantify the brain K:T ratio after LPS administration. We then used a brain penetrant tool compound, EOS200271, to validate the model, determine the optimal dosing profile and found that a complete rescue of the K:T ratio was possible with the tool compound.

Conclusion: This LPS-based model of IDO1 target engagement is a useful tool that can be used in the development of brain penetrant IDO1 inhibitors for AD. A limitation of the present study is the lack of quantification of potential clinically relevant biomarkers in this model, which could be addressed in future studies.

[1]
Gaugler, J.; James, B.; Johnson, T.; Scholz, K.; Weuve, J. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[2]
Bronzuoli, M.R.; Iacomino, A.; Steardo, L.; Scuderi, C. Targeting neuroinflammation in Alzheimer’s disease. J. Inflamm. Res., 2016, 9, 199-208.
[http://dx.doi.org/10.2147/JIR.S86958] [PMID: 27843334]
[3]
Leng, F.; Hinz, R.; Gentleman, S.; Hampshire, A.; Dani, M.; Brooks, D.J.; Edison, P. Neuroinflammation is independently associated with brain network dysfunction in Alzheimer’s disease. Mol. Psychiatry, 2023, 28(3), 1303-1311.
[http://dx.doi.org/10.1038/s41380-022-01878-z] [PMID: 36474000]
[4]
Li, T.; Lu, L.; Pember, E.; Li, X.; Zhang, B.; Zhu, Z. New insights into neuroinflammation involved in pathogenic mechanism of alzheimer’s disease and its potential for therapeutic intervention. Cells, 2022, 11(12), 1925.
[http://dx.doi.org/10.3390/cells11121925] [PMID: 35741054]
[5]
Bradburn, S.; Murgatroyd, C.; Ray, N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Ageing Res. Rev., 2019, 50, 1-8.
[http://dx.doi.org/10.1016/j.arr.2019.01.002] [PMID: 30610927]
[6]
Moon, Y.W.; Hajjar, J.; Hwu, P.; Naing, A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer, 2015, 3(1), 51.
[http://dx.doi.org/10.1186/s40425-015-0094-9] [PMID: 26674411]
[7]
Mellor, A.L.; Chandler, P.; Lee, G.K.; Johnson, T.; Keskin, D.B.; Lee, J.; Munn, D.H. Indoleamine 2,3-dioxygenase, immunosuppression and pregnancy. J. Reprod. Immunol., 2002, 57(1-2), 143-150.
[http://dx.doi.org/10.1016/S0165-0378(02)00040-2] [PMID: 12385839]
[8]
Meier-Stephenson, F.S.; Meier-Stephenson, V.C.; Carter, M.D.; Meek, A.R.; Wang, Y.; Pan, L.; Chen, Q.; Jacobo, S.; Wu, F.; Lu, E.; Simms, G.A.; Fisher, L.; McGrath, A.J.; Fermo, V.; Barden, C.J.; Clair, H.D.S.; Galloway, T.N.; Yadav, A.; Campágna-Slater, V.; Hadden, M.; Reed, M.; Taylor, M.; Kelly, B.; Diez-Cecilia, E.; Kolaj, I.; Santos, C.; Liyanage, I.; Sweeting, B.; Stafford, P.; Boudreau, R.; Reid, G.A.; Noyce, R.S.; Stevens, L.; Staniszewski, A.; Zhang, H.; Murty, M.R.V.S.; Lemaire, P.; Chardonnet, S.; Richardson, C.D.; Gabelica, V.; DePauw, E.; Brown, R.; Darvesh, S.; Arancio, O.; Weaver, D.F. Alzheimer’s disease as an autoimmune disorder of innate immunity endogenously modulated by tryptophan metabolites. Alzheimers Dement., 2022, 8(1), e12283.
[http://dx.doi.org/10.1002/trc2.12283] [PMID: 35415204]
[9]
Lovelace, MD; Varney, B; Sundaram, G; Lennon, MJ; Lim, CK; Jacobs, K Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology., 2017, 112(Pt B), 373-388.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.024]
[10]
Croitoru-Lamoury, J.; Guillemin, G.J.; Dormont, D.; Brew, B.J. Quinolinic acid up-regulates chemokine production and chemokine receptor expression in astrocytes. Adv. Exp. Med. Biol., 2003, 527, 37-45.
[http://dx.doi.org/10.1007/978-1-4615-0135-0_4] [PMID: 15206714]
[11]
Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol. Appl. Neurobiol., 2005, 31(4), 395-404.
[http://dx.doi.org/10.1111/j.1365-2990.2005.00655.x] [PMID: 16008823]
[12]
Takikawa, O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem. Biophys. Res. Commun., 2005, 338(1), 12-19.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.032] [PMID: 16176799]
[13]
Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat. Rev., 2022, 110, 102461.
[http://dx.doi.org/10.1016/j.ctrv.2022.102461] [PMID: 36058143]
[14]
Abd El-Fattah, EE IDO/kynurenine pathway in cancer: Possible therapeutic approaches. J Transl Med., 2022, 20, 347.
[15]
Stone, T.W.; Williams, R.O. Interactions of IDO and the kynurenine pathway with cell transduction systems and metabolism at the inflammation–cancer interface. Cancers, 2023, 15(11), 2895.
[http://dx.doi.org/10.3390/cancers15112895] [PMID: 37296860]
[16]
Qian, S.; Zhang, M.; Chen, Q.; He, Y.; Wang, W.; Wang, Z. IDO as a drug target for cancer immunotherapy: Recent developments in IDO inhibitors discovery. RSC Adv., 2016, 6(9), 7575-7581.
[http://dx.doi.org/10.1039/C5RA25046C]
[17]
Wang, C.; Yu, J.T.; Miao, D.; Wu, Z.C.; Tan, M.S.; Tan, L. Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol. Neurobiol., 2014, 49(1), 120-135.
[http://dx.doi.org/10.1007/s12035-013-8505-8] [PMID: 23853042]
[18]
Metz, R.; Rust, S.; DuHadaway, J.B.; Mautino, M.R.; Munn, D.H.; Vahanian, N.N.; Link, C.J.; Prendergast, G.C. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. OncoImmunology, 2012, 1(9), 1460-1468.
[http://dx.doi.org/10.4161/onci.21716] [PMID: 23264892]
[19]
Ohno, M. Roles of eIF2α kinases in the pathogenesis of Alzheimer’s disease. Front. Mol. Neurosci., 2014, 7, 22.
[http://dx.doi.org/10.3389/fnmol.2014.00022] [PMID: 24795560]
[20]
Ma, T.; Trinh, M.A.; Wexler, A.J.; Bourbon, C.; Gatti, E.; Pierre, P.; Cavener, D.R.; Klann, E. Suppression of eIF2α kinases alleviates Alzheimer’s disease–related plasticity and memory deficits. Nat. Neurosci., 2013, 16(9), 1299-1305.
[http://dx.doi.org/10.1038/nn.3486] [PMID: 23933749]
[21]
Chang, R.C.C.; Wong, A.K.Y.; Ng, H.K.; Hugon, J. Phosphorylation of eukaryotic initiation factor-2α (eIF2α) is associated with neuronal degeneration in Alzheimerʼs disease. Neuroreport, 2002, 13(18), 2429-2432.
[http://dx.doi.org/10.1097/00001756-200212200-00011] [PMID: 12499843]
[22]
Crosignani, S.; Bingham, P.; Bottemanne, P.; Cannelle, H.; Cauwenberghs, S.; Cordonnier, M.; Dalvie, D.; Deroose, F.; Feng, J.L.; Gomes, B.; Greasley, S.; Kaiser, S.E.; Kraus, M.; Négrerie, M.; Maegley, K.; Miller, N.; Murray, B.W.; Schneider, M.; Soloweij, J.; Stewart, A.E.; Tumang, J.; Torti, V.R.; Van Den Eynde, B.; Wythes, M. Discovery of a novel and selective indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-Fluoro-1 H -indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential clinical candidate. J. Med. Chem., 2017, 60(23), 9617-9629.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00974] [PMID: 29111717]
[23]
Gomes, B.; Driessens, G.; Bartlett, D.; Cai, D.; Cauwenberghs, S.; Crosignani, S.; Dalvie, D.; Denies, S.; Dillon, C.P.; Fantin, V.R.; Guo, J.; Letellier, M.C.; Li, W.; Maegley, K.; Marillier, R.; Miller, N.; Pirson, R.; Rabolli, V.; Ray, C.; Streiner, N.; Torti, V.R.; Tsaparikos, K.; Van den Eynde, B.J.; Wythes, M.; Yao, L.C.; Zheng, X.; Tumang, J.; Kraus, M. Characterization of the selective indoleamine 2,3-dioxygenase-1 (IDO1) catalytic inhibitor EOS200271/PF-06840003 supports IDO1 as a critical resistance mechanism to PD-(L)1 blockade therapy. Mol. Cancer Ther., 2018, 17(12), 2530-2542.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1104] [PMID: 30232146]
[24]
Zhao, J; Bi, W; Xiao, S; Lan, X; Cheng, X; Zhang, J Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep., 2019, 9(1), 5790.
[http://dx.doi.org/10.1038/s41598-019-42286-8]
[25]
Miao, H; Li, R; Han, C; Lu, X; Zhang, H Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrκB/BDNF pathway in rats. J Neurophysiol., 2018, 120(3), 1307-1317.
[26]
Ploughman, M; Windle, V; MacLellan, CL; White, N; Doré, JJ; Corbett, D Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke., 2009, 40(4), 1490-1495.
[http://dx.doi.org/10.1161/STROKEAHA.108.531806]
[27]
Kunis, G; Baruch, K; Rosenzweig, N; Kertser, A; Miller, O; Berkutzki, T IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain., 2013, 136(11), 3427-3440.
[28]
Ni, C; Wang, C; Zhang, J; Qu, L; Liu, X; Lu, Y Interferon-γ safeguards blood-brain barrier during experimental autoimmune encephalomyelitis. Am. J. Pathol., 2014, 184(12), 3308-3320.
[http://dx.doi.org/10.1016/j.ajpath.2014.08.019]
[29]
Baruch, K; Rosenzweig, N; Kertser, A; Deczkowska, A; Sharif, AM; Spinrad, A Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun., 2015, 6(1), 7967.
[30]
Kunis, G; Baruch, K; Miller, O; Schwartz, M. Immunization with a myelin-derived antigen activates the brain’s choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS. J Neurosci., 2015, 35(16), 6381-6393.
[31]
Millward, JM; Lobner, M; Wheeler, RD; Owens, T Inflammation in the central nervous system and Th17 responses are inhibited by IFN-γ-induced IL-18 binding protein. J Immunol., 2010, 185(4), 2458-2466.
[32]
Mangalam, AK; Luo, N; Luckey, D; Papke, L; Hubbard, A; Wussow, A Absence of IFN-gamma increases brain pathology in experimental autoimmune encephalomyelitis-susceptible DRB1*0301.DQ8 HLA transgenic mice through secretion of proinflammatory cytokine IL-17 and induction of pathogenic monocytes/microglia into the central. J Immunol., 2014, 193(10), 4859, 4870.
[33]
Balabanov, R; Strand, K; Goswami, R; McMahon, E; Begolka, W; Miller, SD Interferon-gamma-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis. J Neurosci., 2007, 27(8), 2013-2024.
[34]
Kaya, T.; Mattugini, N.; Liu, L.; Ji, H.; Cantuti-Castelvetri, L.; Wu, J.; Schifferer, M.; Groh, J.; Martini, R.; Besson-Girard, S.; Kaji, S.; Liesz, A.; Gokce, O.; Simons, M. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci., 2022, 25(11), 1446-1457.
[http://dx.doi.org/10.1038/s41593-022-01183-6] [PMID: 36280798]
[35]
Shaked, I.; Tchoresh, D.; Gersner, R.; Meiri, G.; Mordechai, S.; Xiao, X.; Hart, R.P.; Schwartz, M. Protective autoimmunity: Interferon-γ enables microglia to remove glutamate without evoking inflammatory mediators. J. Neurochem., 2005, 92(5), 997-1009.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02954.x] [PMID: 15715651]
[36]
Garcia, G.; Fernandes, A.; Stein, F.; Brites, D. Protective signature of IFNγ-stimulated microglia relies on miR-124-3p regulation from the secretome released by mutant APP swedish neuronal cells. Front. Pharmacol., 2022, 13, 833066.
[http://dx.doi.org/10.3389/fphar.2022.833066] [PMID: 35620289]
[37]
Young, A.P.; Denovan-Wright, E.M. The microglial endocannabinoid system is similarly regulated by lipopolysaccharide and interferon gamma. J. Neuroimmunol., 2022, 372, 577971.
[http://dx.doi.org/10.1016/j.jneuroim.2022.577971] [PMID: 36150252]
[38]
Quintana, FJ; Basso, AS; Iglesias, AH; Korn, T; Farez, MF; Bettelli, E Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature., 2008, 453(7191), 65-71.
[http://dx.doi.org/10.1038/nature06880]
[39]
Ye, J; Qiu, J; Bostick, JW; Ueda, A; Schjerven, H; Li, S The aryl hydrocarbon receptor preferentially marks and promotes gut regulatory t cells. Cell Rep., 2017, 21(8), 2277-2290.
[40]
Dean, J.W.; Helm, E.Y.; Fu, Z.; Xiong, L.; Sun, N.; Oliff, K.N.; Muehlbauer, M.; Avram, D.; Zhou, L. The aryl hydrocarbon receptor cell intrinsically promotes resident memory CD8+ T cell differentiation and function. Cell Rep., 2023, 42(1), 111963.
[http://dx.doi.org/10.1016/j.celrep.2022.111963] [PMID: 36640340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy