Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Two-step Continuous-flow Synthesis of 1,2-dimethyl-3-methylsulfanylbenzene via Diazotization and Methanethiolation

Author(s): Lixia Li, Qi Zhang, Ce Bian, Wei Wei, Wenxuan Sun, Lu Ji, Hande Wang, Chuan Zhou, Ke Wang, Dangsheng Gong and Dongmao Yan*

Volume 28, Issue 3, 2024

Published on: 26 January, 2024

Page: [222 - 229] Pages: 8

DOI: 10.2174/0113852728277310240103111746

Price: $65

Abstract

1,2-Dimethyl-3-methylsulfanylbenzene is the key intermediate of topramezone. This work designed a two-step continuous-flow device to synthesize 1,2-dimethyl-3- methylsulfanylbenzene via diazotization and methanethiolation. The results showed that compared with the batch process, the continuous-flow method greatly shortened the residence time to 1 minute, avoided the accumulation of large amounts of diazonium salts to reduce decomposition and increased the product yield to 91.7%. At the same time, the continuous- flow process improved the safety and efficiency of the reactions, saved reaction time and had good prospects for industrial application.

Graphical Abstract

[1]
Grossmann, K.; Ehrhardt, T. On the mechanism of action and selectivity of the corn herbicide topramezone: A new inhibitor of 4‐hydroxyphenyl-pyruvate dioxygenase. Pest Manag. Sci., 2007, 63(5), 429-439.
[http://dx.doi.org/10.1002/ps.1341] [PMID: 17340675]
[2]
Nath, C.P.; Kumar, N.; Hazra, K.K.; Praharaj, C.S.; Singh, S.S.; Dubey, R.P.; Sharma, A.R. Topramezone: A selective post-emergence herbicide in chickpea for higher weed control efficiency and crop productivity. Crop Prot., 2021, 150, 105814.
[http://dx.doi.org/10.1016/j.cropro.2021.105814]
[3]
Soltani, N.; Sikkema, P.H.; Zandstra, J.; O’Sullivan, J.; Robinson, D.E. Response of eight sweet corn (Zea mays L.) hybrids to topramezone. HortScience, 2007, 42(1), 110-112.
[http://dx.doi.org/10.21273/HORTSCI.42.1.110]
[4]
Gitsopoulos, T.K.; Melidis, V.; Evgenidis, G. Response of maize (Zea mays L.) to post-emergence applications of topramezone. Crop Prot., 2010, 29(10), 1091-1093.
[http://dx.doi.org/10.1016/j.cropro.2010.06.020]
[5]
Arslan, Z.F.; Williams, M.M., II; Becker, R.; Fritz, V.A.; Peachey, R.E.; Rabaey, T.L. Alternatives to atrazine for weed management in processing sweet corn. Weed Sci., 2016, 64(3), 531-539.
[http://dx.doi.org/10.1614/WS-D-16-00001.1]
[6]
Sheng, M.; Liu, B.; Xu, J.; Peng, Q.; Zhang, L.; Chen, K.; He, J. Cloning of a novel topramezone-resistant 4-hydroxyphenylpyruvate dioxygenase gene and improvement of its resistance through pressure acclimation. Enzyme Microb. Technol., 2020, 140, 109642.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109642] [PMID: 32912694]
[7]
Zhao, F.; Xiang, Q.; Zhou, Y.; Xu, X.; Qiu, X.; Yu, Y.; Ahmad, F. Evaluation of the toxicity of herbicide topramezone to Chlorella vulgaris: Oxidative stress, cell morphology and photosynthetic activity. Ecotoxicol. Environ. Saf., 2017, 143, 129-135.
[http://dx.doi.org/10.1016/j.ecoenv.2017.05.022] [PMID: 28525816]
[8]
Chipomho, J.; Mupeti, S.; Chipomho, C.; Mashavakure, N.; Mashingaidze, A.B. Evaluation of a pre-formulated post-emergence herbicide mixture of topramezone and dicamba on annual weeds and Bermuda grass in maize in a sub-tropical agro-ecology. Heliyon, 2019, 5(5), e01712.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01712] [PMID: 31193336]
[9]
Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[10]
He, Z.; Ren, T.; Li, Y.; Fang, X. The synthesis and crystal structure of a novel pesticide intermediates. J. Chem. Crystallogr., 2015, 45(8-9), 419-426.
[http://dx.doi.org/10.1007/s10870-015-0609-8]
[11]
Zhilin, E.S.; Fershtat, L.L.; Bystrov, D.M.; Kulikov, A.S.; Dmitrienko, A.O.; Ananyev, I.V.; Makhova, N.N. Renaissance of 1,2,5‐oxadiazolyl diazonium salts: Synthesis and reactivity. Eur. J. Org. Chem., 2019, 2019(26), 4248-4259.
[http://dx.doi.org/10.1002/ejoc.201900622]
[12]
Pesyan, N.N.; Khalafy, J.; Malekpoor, Z. Diazotization of aniline derivatives and diazo couplings in the presence of p-toluenesulfonic acid by grinding. Prog. Color Colorants Coat., 2009.https://api.semanticscholar.org/CorpusID:102200274
[13]
Rahimizadeh, M.; Eshghi, H.; Shiri, A.; Ghadamyari, Z.; Matin, M.M.; Oroojalian, F.; Pordeli, P. Fe(HSO4)3 as an efficient catalyst for diazotization and diazo coupling reactions. J. Korean Chem. Soc., 2012, 56(6), 716-719.
[http://dx.doi.org/10.5012/jkcs.2012.56.6.716]
[14]
Mirjalili, B.B.F.; Bamoniri, A.; Akbari, A. BF3.SiO2: An efficient catalyst for the synthesis of azo dyes at room temperature. Curr. Chem. Lett., 2012, 1(3), 109-114.
[http://dx.doi.org/10.5267/j.ccl.2012.6.002]
[15]
Fortt, R.; Wootton, R.C.R.; de Mello, A.J. Continuous-flow generation of anhydrous diazonium species: Monolithic microfluidic reactors for the chemistry of unstable intermediates. Org. Process Res. Dev., 2003, 7(5), 762-768.
[http://dx.doi.org/10.1021/op025586j]
[16]
Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem., 2013, 11(10), 1582-1593.
[http://dx.doi.org/10.1039/c3ob27366k] [PMID: 23358692]
[17]
Clark, J.D.; Shah, A.S.; Peterson, J.C. Understanding the large-scale chemistry of ethyl diazoacetate via reaction calorimetry. Thermochim. Acta, 2002, 392-393, 177-186.
[http://dx.doi.org/10.1016/S0040-6031(02)00100-4]
[18]
Hosmane, R.S.; Liebman, J.F. Paradigms and paradoxes: diazomethane and ethyl diazoacetate: The role of substituent effects on stability. Struct. Chem., 2002, 13(5/6), 501-503.
[http://dx.doi.org/10.1023/A:1020573723147]
[19]
Garel, L.; Saint-Jalmes, L. One-pot fluoro-de-diazoniation of anilines in organic medium. Tetrahedron Lett., 2006, 47(32), 5705-5708.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.024]
[20]
Oger, N.; Le Grognec, E.; Felpin, F.X. Handling diazonium salts in flow for organic and material chemistry. Org. Chem. Front., 2015, 2(5), 590-614.
[http://dx.doi.org/10.1039/C5QO00037H]
[21]
Wang, F.J.; Huang, J.P.; Xu, J.H. Continuous-flow synthesis of the azo pigment yellow 14 using a three-stream micromixing process. Org. Process Res. Dev., 2019, 23(12), 2637-2646.
[http://dx.doi.org/10.1021/acs.oprd.9b00286]
[22]
Lancaster, M. Principles of sustainable and green chemistry. In: Handbook of Green Chemistry and Technology; , 2002; pp. 10-27.
[http://dx.doi.org/10.1002/9780470988305.ch2]
[23]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[24]
Jiménez-González, C.; Poechlauer, P.; Broxterman, Q.B.; Yang, B.S.; am Ende, D.; Baird, J.; Bertsch, C.; Hannah, R.E.; Dell’Orco, P.; Noorman, H.; Yee, S.; Reintjens, R.; Wells, A.; Massonneau, V.; Manley, J. Key green engineering research areas for sustainable manufacturing: A perspective from pharmaceutical and fine chemicals manufacturers. Org. Process Res. Dev., 2011, 15(4), 900-911.
[http://dx.doi.org/10.1021/op100327d]
[25]
Jas, G.; Kirschning, A. Continuous flow techniques in organic synthesis. Chemistry, 2003, 9(23), 5708-5723.
[http://dx.doi.org/10.1002/chem.200305212] [PMID: 14673841]
[26]
Kirschning, A.; Solodenko, W.; Mennecke, K. Combining enabling techniques in organic synthesis: Continuous flow processes with heterogenized catalysts. Chemistry, 2006, 12(23), 5972-5990.
[http://dx.doi.org/10.1002/chem.200600236] [PMID: 16832800]
[27]
Baumann, M.; Baxendale, I.R.; Ley, S.V. The flow synthesis of heterocycles for natural product and medicinal chemistry applications. Mol. Divers., 2011, 15(3), 613-630.
[http://dx.doi.org/10.1007/s11030-010-9282-1] [PMID: 20960230]
[28]
Ley, S.; O’Brien, M.; Denton, R. Lesser-known enabling technologies for organic synthesis. Synthesis, 2011, 2011(8), 1157-1192.
[http://dx.doi.org/10.1055/s-0030-1259979]
[29]
Wegner, J.; Ceylan, S.; Kirschning, A. Ten key issues in modern flow chemistry. Chem. Commun., 2011, 47(16), 4583-4592.
[http://dx.doi.org/10.1039/c0cc05060a] [PMID: 21409184]
[30]
Chinnusamy, T.; Yudha S, S.; Hager, M.; Kreitmeier, P.; Reiser, O. Application of metal-based reagents and catalysts in microstructured flow devices. ChemSusChem, 2012, 5(2), 247-255.
[http://dx.doi.org/10.1002/cssc.201100444] [PMID: 22275318]
[31]
Ley, S.V. On being green: can flow chemistry help? Chem. Rec., 2012, 12(4), 378-390.
[http://dx.doi.org/10.1002/tcr.201100041] [PMID: 22711555]
[32]
Amii, H.; Nagaki, A.; Yoshida, J. Flow microreactor synthesis in organo-fluorine chemistry. Beilstein J. Org. Chem., 2013, 9, 2793-2802.
[http://dx.doi.org/10.3762/bjoc.9.314] [PMID: 24367443]
[33]
Protasova, L.N.; Bulut, M.; Ormerod, D.; Buekenhoudt, A.; Berton, J.; Stevens, C.V. Latest highlights in liquid-phase reactions for organic synthesis in microreactors. Org. Process Res. Dev., 2013, 17(5), 760-791.
[http://dx.doi.org/10.1021/op4000169]
[34]
Puglisi, A.; Benaglia, M.; Chiroli, V. Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. Green Chem., 2013, 15(7), 1790-1813.
[http://dx.doi.org/10.1039/c3gc40195b]
[35]
Fuse, S.; Mifune, Y.; Takahashi, T. Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor. Angew. Chem. Int. Ed., 2014, 53(3), 851-855.
[http://dx.doi.org/10.1002/anie.201307987] [PMID: 24402801]
[36]
Plouffe, P.; Macchi, A.; Roberge, D.M. From batch to continuous chemical synthesis-a toolbox approach. Org. Process Res. Dev., 2014, 18(11), 1286-1294.
[http://dx.doi.org/10.1021/op5001918]
[37]
Vaccaro, L.; Lanari, D.; Marrocchi, A.; Strappaveccia, G. Flow approaches towards sustainability. Green Chem., 2014, 16(8), 3680-3704.
[http://dx.doi.org/10.1039/C4GC00410H]
[38]
Noël, T.; Buchwald, S.L. Cross-coupling in flow. Chem. Soc. Rev., 2011, 40(10), 5010-5029.
[http://dx.doi.org/10.1039/c1cs15075h] [PMID: 21826351]
[39]
Akwi, F.M.; Watts, P. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors. Beilstein J. Org. Chem., 2016, 12, 1987-2004.
[http://dx.doi.org/10.3762/bjoc.12.186] [PMID: 27829903]
[40]
Wiles, C.; Watts, P. Continuous flow reactors: A perspective. Green Chem., 2012, 14(1), 38-54.
[http://dx.doi.org/10.1039/C1GC16022B]
[41]
Newman, S.G.; Gu, L.; Lesniak, C.; Victor, G.; Meschke, F.; Abahmane, L.; Jensen, K.F. Rapid Wolff–Kishner reductions in a silicon carbide microreactor. Green Chem., 2014, 16(1), 176-180.
[http://dx.doi.org/10.1039/C3GC41942H]
[42]
Roberge, D.M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Microreactor technology: A revolution for the fine chemical and pharmaceutical industries? Chem. Eng. Technol., 2005, 28(3), 318-323.
[http://dx.doi.org/10.1002/ceat.200407128]
[43]
Armstrong, C.T.; Pritchard, C.Q.; Cook, D.W.; Ibrahim, M.; Desai, B.K.; Whitham, P.J.; Marquardt, B.J.; Chen, Y.; Zoueu, J.T.; Bortner, M.J.; Roper, T.D. Continuous flow synthesis of a pharmaceutical intermediate: A computational fluid dynamics approach. React. Chem. Eng., 2019, 4(3), 634-642.
[http://dx.doi.org/10.1039/C8RE00252E] [PMID: 33456973]
[44]
Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The hitchhiker’s guide to flow chemistry. Chem. Rev., 2017, 117(18), 11796-11893.
[http://dx.doi.org/10.1021/acs.chemrev.7b00183] [PMID: 28570059]
[45]
Webb, D.; Jamison, T.F. Continuous flow multi-step organic synthesis. Chem. Sci., 2010, 1(6), 675-680.
[http://dx.doi.org/10.1039/c0sc00381f]
[46]
Zhang, J.; Wang, K.; Lin, X.; Lu, Y.; Luo, G. Intensification of fast exothermic reaction by gas agitation in a microchemical system. AIChE J., 2014, 60(7), 2724-2730.
[http://dx.doi.org/10.1002/aic.14450]
[47]
Huang, J.P.; Sang, F.N.; Luo, G.S.; Xu, J.H. Continuous synthesis of Gabapentin with a microreaction system. Chem. Eng. Sci., 2017, 173, 507-513.
[http://dx.doi.org/10.1016/j.ces.2017.08.020]
[48]
Yu, Z.; Ye, X.; Xu, Q.; Xie, X.; Dong, H.; Su, W. A fully continuous-flow process for the synthesis of p-Cresol: Impurity analysis and process optimization. Org. Process Res. Dev., 2017, 21(10), 1644-1652.
[http://dx.doi.org/10.1021/acs.oprd.7b00250]
[49]
Xia, S.; Ding, X.; Wang, Y.; Luo, G. Continuous-flow synthesis of an important liquid-crystal intermediate using a microreaction system. Ind. Eng. Chem. Res., 2018, 57(36), 12113-12121.
[http://dx.doi.org/10.1021/acs.iecr.8b02839]
[50]
Pawlowska-Zygarowicz, A.; Kukawka, R.; Maciejewski, H.; Smiglak, M. Optimization and intensification of hydrosilylation reactions using a microreactor system. New J. Chem., 2018, 42(18), 15332-15339.
[http://dx.doi.org/10.1039/C8NJ01167B]
[51]
Wille, C.; Gabski, H.P.; Haller, T.; Kim, H.; Unverdorben, L.; Winter, R. Synthesis of pigments in a three-stage microreactor pilot plant-an experi- mental technical report. Chem. Eng. J., 2004, 101(1), 179-185.
[http://dx.doi.org/10.1016/j.cej.2003.11.007]
[52]
Günther, P.M.; Möller, F.; Henkel, T.; Köhler, J.M.; Groß, G.A. Formation of monomeric and novolak azo dyes in nanofluid segments by use of a double injector chip reactor. Chem. Eng. Technol., 2005, 28(4), 520-527.
[http://dx.doi.org/10.1002/ceat.200407122]
[53]
Anderson, N.G. Using continuous processes to increase production. Org. Process Res. Dev., 2012, 16(5), 852-869.
[http://dx.doi.org/10.1021/op200347k]
[54]
Singh, R.; Lee, H.J.; Singh, A.K.; Kim, D.P. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems. Korean J. Chem. Eng., 2016, 33(8), 2253-2267.
[http://dx.doi.org/10.1007/s11814-016-0114-6]
[55]
Newman, S.G.; Jensen, K.F. The role of flow in green chemistry and engineering. Green Chem., 2013, 15(6), 1456-1472.
[http://dx.doi.org/10.1039/c3gc40374b]
[56]
Kulkarni, A.A. Continuous flow nitration in miniaturized devices. Beilstein J. Org. Chem., 2014, 10(1), 405-424.
[http://dx.doi.org/10.3762/bjoc.10.38] [PMID: 24605161]
[57]
Liu, Y.; Zeng, C.; Wang, C.; Zhang, L. Continuous diazotization of aromatic amines with high acid and sodium nitrite concentrations in microreactors. J. Flow Chem., 2018, 8(3-4), 139-146.
[http://dx.doi.org/10.1007/s41981-018-0018-1]
[58]
Wootton, R.C.R.; Fortt, R.; de Mello, A.J. On-chip generation and reaction of unstable intermediates-monolithic nanoreactors for diazonium chemistry: Azo dyes. Lab Chip, 2002, 2(1), 5-7.
[http://dx.doi.org/10.1039/B111286D] [PMID: 15100849]
[59]
Zani, D.D.; Colombo, M. Phase-transfer catalysis under continuous flow conditions: An alternative approach to the biphasic liquid/liquid o-alkylation of phenols. J. Flow Chem., 2012, 2(1), 5-7.
[http://dx.doi.org/10.1556/jfchem.2012.00020]
[60]
Pennemann, H.; Forster, S.; Kinkel, J.; Hessel, V.; Löwe, H.; Wu, L. Improvement of dye properties of the azo pigment yellow 12 using a micro-mixer-based process. Org. Process Res. Dev., 2005, 9(2), 188-192.
[http://dx.doi.org/10.1021/op049789e]
[61]
Xue, Y.; Tang, Z.; Xu, W.; Zou, H.; Chu, G.; Sun, B.; Zhang, L.; Chen, J. Kinetics of the homogenous diazotization of p-nitroaniline with nitrous acid solution using stopped-flow technique. Chem. Eng. J., 2021, 423, 130223.
[http://dx.doi.org/10.1016/j.cej.2021.130223]
[62]
Yu, Z.; Dong, H.; Xie, X.; Liu, J.; Su, W. Continuous-flow diazotization for efficient synthesis of methyl 2-(Chlorosulfonyl)benzoate: An example of inhibiting parallel side reactions. Org. Process Res. Dev., 2016, 20(12), 2116-2123.
[http://dx.doi.org/10.1021/acs.oprd.6b00238]
[63]
Si, Y.; Liu, S.; Ming, W.; Wei, W.; Ji, L.; Zhang, J.; An, T.; Gong, D.; Zhao, J.; Meng, Q.; Yan, D. Micropacked‐bed reactor for continuous hydrogenation of aromatic dinitro compounds. ChemistrySelect, 2022, 7(47), e202203577.
[http://dx.doi.org/10.1002/slct.202203577]
[64]
Zhao, W.Y.; Zhang, Q.; Wei, W.; Xu, W.C.; Sun, W.X.; An, T.W.; Ji, L.; Wang, H.D.; Zhou, C.; Yan, D.M. Safe, green, and efficient synthesis of m- dinitrobenzene via two-step nitration in a continuous-flow microreactor. ChemistrySelect, 2023, 8(14), 202204997.
[http://dx.doi.org/10.1002/slct.202204997]
[65]
Zhang, Q.; Yan, D.; Li, L.; Yin, G.; Wei, W.; Sun, W.; Li, S.; Zhou, C.; Liu, D.; Zhao, J.; Meng, Q. Continuous process for preparation of 2,3-dimethyl-4-methylsulfonylbromobenzene via oxidation by in situ formed peracetic acid. Chem. Eng. Process., 2023, 184, 109295.
[http://dx.doi.org/10.1016/j.cep.2023.109295]
[66]
Ansari, M.A.; Kim, K.Y. A numerical study of mixing in a microchannel with circular mixing chambers. AIChE J., 2009, 55(9), 2217-2225.
[http://dx.doi.org/10.1002/aic.11833]
[67]
Fu, H.; Liu, X.; Li, S. Mixing indexes considering the combination of mean and dispersion information from intensity images for the performance estimation of micromixing. RSC Advances, 2017, 7(18), 10906-10914.
[http://dx.doi.org/10.1039/C6RA23783E]
[68]
Wiley, D.; Weihs, G.F. Mixing index. Encyclopedia of Membranes, 2015, 1-3.
[http://dx.doi.org/10.1007/978-3-642-40872-4_2080-1]
[69]
Jin, X.; Chandratilleke, G.R.; Wang, S.; Shen, Y. DEM investigation of mixing indices in a ribbon mixer. Particuology, 2022, 60, 37-47.
[http://dx.doi.org/10.1016/j.partic.2021.03.005]
[70]
Chen, M.; Liu, M.; Li, T.; Tang, Y.; Liu, R.; Wen, Y.; Liu, B.; Shao, Y. A novel mixing index and its application in particle mixing behavior study in multiple-spouted bed. Powder Technol., 2018, 339, 167-181.
[http://dx.doi.org/10.1016/j.powtec.2018.08.036]
[71]
Cho, M.; Dutta, P.; Shim, J. A non-sampling mixing index for multicomponent mixtures. Powder Technol., 2017, 319, 434-444.
[http://dx.doi.org/10.1016/j.powtec.2017.07.011]
[72]
Mahmud, F.; Tamrin, K.F. Method for determining mixing index in microfluidics by RGB color model. Asia-Pac. J. Chem. Eng., 2020, 15(2), e2407.
[http://dx.doi.org/10.1002/apj.2407]
[73]
Cheng, Z.; Zuo, Z.; Yang, S.; Yuan, Z.; Huang, X.; Liu, Y. Study of free nitrous acid (FNA)-based elimination of sulfamethoxazole: Kinetics, transformation pathways, and toxicity assessment. Water Res., 2021, 189, 116629.
[http://dx.doi.org/10.1016/j.watres.2020.116629] [PMID: 33249308]
[74]
Kinen, C.O.; Rossi, L.I.; De Rossi, R.H. Mechanism of the selective sulfide oxidation promoted by HNO3/FeBr3. J. Org. Chem., 2009, 74(18), 7132-7139.
[http://dx.doi.org/10.1021/jo9015248] [PMID: 19691326]
[75]
Basu Baul, T.S.; Nongsiej, K.; Biswas, K.; Joshi, S.R.; Höpfl, H. Pyridine aided progression from amorphous to crystalline bis([5-(aryl)-1-diazenyl]quinolin-8-olato)zinc(II) compounds − Solution and solid-state structural characterization, nanoparticle formation and antibacterial activity. Inorg. Chim. Acta, 2018, 482, 756-773.
[http://dx.doi.org/10.1016/j.ica.2018.06.049]
[76]
Georgiev, A.; Stoilova, A.; Dimov, D.; Yordanov, D.; Zhivkov, I.; Weiter, M. Synthesis and photochromic properties of some N-phthalimide azo-azomethine dyes. A DFT quantum mechanical calculations on imine-enamine tautomerism and trans-cis photoisomerization. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 210, 230-244.
[http://dx.doi.org/10.1016/j.saa.2018.11.033] [PMID: 30458391]
[77]
Wang, F.; Huang, J.; Xu, J. Continuous-flow synthesis of azo dyes in a microreactor system. Chem. Eng. Process., 2018, 127, 43-49.
[http://dx.doi.org/10.1016/j.cep.2018.03.014]
[78]
Shi, Z.; Wang, X.; Yin, D.; Li, W.; Liu, D.; Zhou, X. High-flux continuous-flow synthesis of C.I. pigment yellow 12 from clear alkaline solutions of the coupling component. Org. Process Res. Dev., 2022, 26(3), 661-669.
[http://dx.doi.org/10.1021/acs.oprd.1c00144]
[79]
Yu, Z.; Lv, Y.; Yu, C. A continuous kilogram-scale process for the manufacture of o-difluorobenzene. Org. Process Res. Dev., 2012, 16(10), 1669-1672.
[http://dx.doi.org/10.1021/op300127x]
[80]
Nalivela, K.S.; Tilley, M.; McGuire, M.A.; Organ, M.G. Multicomponent, flow diazotization/Mizoroki-Heck coupling protocol: Dispelling myths about working with diazonium salts. Chemistry, 2014, 20(22), 6603-6607.
[http://dx.doi.org/10.1002/chem.201402092] [PMID: 24753266]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy