Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

The Mushroom Albatrellus confluens: A Minireview on Phytochemistry, Biosynthesis, Synthesis and Pharmacological Activities

Author(s): Chu Anh Van and Ninh The Son*

Volume 24, Issue 6, 2024

Published on: 26 January, 2024

Page: [487 - 502] Pages: 16

DOI: 10.2174/0115680266291757240124093756

Price: $65

Abstract

Background: Albatrellus confluens is one of the representative species in the Polyporaceae family. Its major mero terpenoid grifolin and related compounds have the potential for drug applications.

Objective: The current study aims to briefly provide an insightful view of the phytochemistry, biosynthesis, synthesis, and pharmacology of A. confluens metabolites.

Methods: Data collection was performed using electronic resources, e.g., Google Scholar, PubMed, and Sci-Finder from the 1990s to the present, while Albatrellus confluens is the most meaningful keyword in the search for publications. The Latin name Albatrellus confluens (Alb. & Schwein.) Kotl. & Pouzar is in accordance with the name listing on www.mycobank.org.

Results: By chromatography column procedures, it indicated that A. confluens species was associated with the presence of 57 secondary metabolites, in which nitrogenous compounds, meroterpenoids, polyene pyrones, and polyesters can be seen as the main phytochemical classes. L-isoleucine was the parent molecule in biosynthetic and synthetic steps of A. confluens nitrogenous compounds. Numerous experiments revealed that A. confluens isolated compounds have a variety of pharmacological activities, such as anticancer, anti-inflammatory, vasorelaxant, and neuroprotective and skin whitening activities. Some isolates become potential cancer inhibitors. Grifolin induced apoptosis and promoted cell cycle arrest in A2780 ovarian cancer cells via the inactivation of the ERK1/2/Akt signaling pathway. Grifolic acid caused osteosarcoma cancer cell deaths by inhibiting NADH generation and ATP production without obvious toxicity. Neoalbaconol caused apoptosis and necroptosis in mice bearing nasopharyngeal C666-1 cancer cells via PDK1- PI3K/Akt signaling inhibition.

Conclusion: The continuation of chromatographic separation and biomedical research is expected. Modern biological assays for explaining the pharmacological values of A. confluens constituents are warranted. Toxicological and pharmacokinetic assessments are urgently needed.

Next »
Graphical Abstract

[1]
Baran, A.; Keskin, C.; Baran, M.F.; Huseynova, I.; Khalilov, R.; Eftekhari, A.; Kandemir, S.I.; Kawak, D.V. Ecofriendly synthesis of silver nanoparticles using Ananas comomus fruit peels: Anticancer and antimicrobial activities. Bioorg. Chem. Appl., 2021, 2021
[http://dx.doi.org/10.1155/2021/2058149]
[2]
Gunashova, G.Y. Synthesis of silver nanoparticles using a thermophilic bacterium strain isolated from the spring Yukhari istisu of the Kalbrajar region (Azerbaijan). Adv. Biol. Earth Sci, 2022, 7, 198-204.
[3]
Bouziane, T.; Daouia, H.; Soumia, A. in vitro antifungal activity of the extracts of Punica granatum L obtained by reflux method against Fusarium oxysoprum Albedenis in South West of Algergia. Adv. Biol. Earth Sci, 2022, 7, 178-191.
[4]
Baran, A.; Fırat Baran, M.; Keskin, C.; Hatipoğlu, A.; Yavuz, Ö.; İrtegün Kandemir, S.; Adican, M.T.; Khalilov, R.; Mammadova, A.; Ahmadian, E.; Rosić, G.; Selakovic, D.; Eftekhari, A. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front. Bioeng. Biotechnol., 2022, 10, 855136.
[http://dx.doi.org/10.3389/fbioe.2022.855136] [PMID: 35330628]
[5]
Hop, N.Q.; The Son, N. Boesenbergia rotunda (L.) Mansf: A review of phytochemistry, pharmacology, and pharmacokinetics. Curr. Org. Chem., 2023, 27(21), 1842-1856.
[http://dx.doi.org/10.2174/0113852728278058231123094250]
[6]
Nukata, M.; Hashimoto, T.; Yamamoto, I.; Iwasaki, N.; Tanaka, M.; Asakawa, Y. Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochemistry, 2002, 59(7), 731-737.
[http://dx.doi.org/10.1016/S0031-9422(02)00050-X] [PMID: 11909630]
[7]
Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi. Wallingford, 10th ed; CAB International: UK, 2008, p. 18.
[8]
Li, G.Q.; Lei, X.; Feng, T.; Li, Z.H.; Liu, H.; Liu, J.K. Five new chemical constituents from the mushroom Albatrellus dispansus. Phytochem. Lett., 2023, 58, 36-41.
[http://dx.doi.org/10.1016/j.phytol.2023.09.011]
[9]
Holmberg, P. The pocket guide to wild mushrooms: Helpful tips for mushrooming in the field. Marklund, Hans, Hedström, Ellen; Skyhorse: New York, 1937.
[10]
Zhou, Z.Y.; Liu, R.; Jiang, M.Y.; Zhang, L.; Niu, Y.; Zhu, Y.C.; Dong, Z.J.; Liu, J.K. Two new cleistanthane diterpenes and a new isocoumarine from cultures of the basidiomycete Albatrellus confluens. Chem. Pharm. Bull., 2009, 57(9), 975-978.
[http://dx.doi.org/10.1248/cpb.57.975] [PMID: 19721259]
[11]
Guo, H.; Feng, T.; Li, Z.H.; Liu, J.K. Ten new aurovertins from cultures of the basidiomycete Albatrellus confluens. Nat. Prod. Bioprospect., 2013, 3(1), 8-13.
[http://dx.doi.org/10.1007/s13659-012-0088-y]
[12]
Guo, H.; Li, Z.H.; Feng, T.; Liu, J.K. One new ergostane-type steroid and three new phthalide derivatives from cultures of the basidiomycete Albatrellus confluens. J. Asian Nat. Prod. Res., 2015, 17(2), 107-113.
[http://dx.doi.org/10.1080/10286020.2014.951925] [PMID: 25465923]
[13]
Zhang, S.; Huang, Y.; He, S.; Chen, H.; Li, Z.; Wu, B.; Zuo, J.; Feng, T.; Liu, J. Albatredines A and B, a pair of epimers with unusual natural heterocyclic skeletons from edible mushroom Albatrellus confluens. RSC Advances, 2018, 8(42), 23914-23918.
[http://dx.doi.org/10.1039/C8RA04226H] [PMID: 35540281]
[14]
Zhang, S.; Huang, Y.; He, S.; Chen, H.; Wu, B.; Li, S.; Zhao, Z.; Li, Z.; Wang, X.; Zuo, J.; Feng, T.; Liu, J. Heterocyclic compounds from the Mushroom Albatrellus confluens and their inhibitions against lipopolysaccharides-induced B lymphocyte cell proliferation. J. Org. Chem., 2018, 83(17), 10158-10165.
[http://dx.doi.org/10.1021/acs.joc.8b01420] [PMID: 30047265]
[15]
Zhang, S.B.; Huang, Y.; Chen, H.P.; Li, Z.H.; Wu, B.; Feng, T.; Liu, J.K. Confluenines A–F, N -oxidized l -isoleucine derivatives from the edible mushroom Albatrellus confluens. Tetrahedron Lett., 2018, 59(34), 3262-3266.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.033]
[16]
Dube, M.; Llanes, D.; Saoud, M.; Rennert, R.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N. Albatrellus confluens (Alb. & Schwein.) Kotl. & Pouz.: Natural fungal compounds and synthetic derivatives with in vitro anthelmintic activities and antiproliferative effects against two human cancer cell lines. Molecules, 2022, 27(9), 2950.
[http://dx.doi.org/10.3390/molecules27092950] [PMID: 35566312]
[17]
Zhou, G-Y.; Pan, C-W.; Jin, L-X.; Zheng, J-J.; Yi, Y-X. Neoalbaconol inhibits cell growth of human cholangiocarcinoma cells by up-regulating PTEN. Am. J. Transl. Res., 2016, 8(2), 496-505.
[PMID: 27158342]
[18]
Zhao, Y.; Zhang, H.; Yan, A.; Zhu, J.; Liu, K.; Chen, D.; Xie, R.; Xu, X.; Su, X. Grifolic acid induces mitochondrial membrane potential loss and cell death of RAW264.7 macrophages. Mol. Med. Rep., 2017, 17(2), 3281-3287.
[http://dx.doi.org/10.3892/mmr.2017.8218] [PMID: 29257254]
[19]
Misasa, H.; Matsui, Y.; Uehara, H.; Tanaka, H.; Ishihara, M.; Shibata, H. Tyrosinae inhibitors from Albatrellus confluens. Biosci. Biotechnol. Biochem., 1992, 56(10), 1660-1661.
[http://dx.doi.org/10.1271/bbb.56.1660]
[20]
Yanqin, Y.; Jing, T.; Wei, C.; Nan, L. Grifolin attenuates white matter lesion in oxygen/glucose deprivation. Transl. Neurosci., 2017, 8(1), 102-110.
[http://dx.doi.org/10.1515/tnsci-2017-0016] [PMID: 29071135]
[21]
Zhi-Hui, D.; Ze-Jun, D.; Ji-Kai, L. Albaconol, a novel prenylated resorcinol (= benzene-1,3-diol) from basidiomycetes Albatrellus confluens. Helv. Chim. Acta, 2001, 84(1), 259-262.
[http://dx.doi.org/10.1002/1522-2675(20010131)84:1<259::AID-HLCA259>3.0.CO;2-O]
[22]
Kawagishi, H.; Tanaka, A.; Sugiyama, K.; Mori, H.; Sakamoto, H.; Ishiguro, Y.; Kobayashi, K.; Uramato, M. A pyradine-derivative from the mushroom Albatrellus confluens. Phytochemistry, 1996, 42(2), 547-548.
[http://dx.doi.org/10.1016/0031-9422(95)00881-0] [PMID: 8688180]
[23]
Wang, F.; Luo, D.Q.; Liu, J.K. Aurovertin E, a new polyene pyrone from the basidiomycete Albatrellus confluens. J. Antibiot., 2005, 58(6), 412-415.
[http://dx.doi.org/10.1038/ja.2005.53] [PMID: 16156519]
[24]
Yang, X.L.; Qin, C.; Wang, F.; Dong, Z.J.; Liu, J.K. A new meroterpenoid pigment from the basidiomycete Albatrellus confluens. Chem. Biodivers., 2008, 5(3), 484-489.
[http://dx.doi.org/10.1002/cbdv.200890047] [PMID: 18357556]
[25]
Hellwig, V.; Nopper, R.; Mauler, F.; Freitag, J.; Ji-Kai, L.; Zhi-Hui, D.; Stadler, M. Activities of prenylphenol derivatives from fruitbodies of Albatrellus spp. on the human and rat vanilloid receptor 1 (VR1) and characterisation of the novel natural product, confluentin. Arch. Pharm., 2003, 336(2), 119-126.
[http://dx.doi.org/10.1002/ardp.200390008] [PMID: 12761765]
[26]
Ye, M.; Liu, J.; Lu, Z.; Zhao, Y.; Liu, S.; Li, L.; Tan, M.; Weng, X.; Li, W.; Cao, Y. Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, inhibits tumor cell growth by inducing apoptosis in vitro. FEBS Lett., 2005, 579(16), 3437-3443.
[http://dx.doi.org/10.1016/j.febslet.2005.05.013] [PMID: 15949805]
[27]
Ye, M.; Luo, X.; Li, L.; Shi, Y.; Tan, M.; Weng, X.; Li, W.; Liu, J.; Cao, Y. Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett., 2007, 258(2), 199-207.
[http://dx.doi.org/10.1016/j.canlet.2007.09.001] [PMID: 18029087]
[28]
Jin, S.; Pang, R.P.; Shen, J.N.; Huang, G.; Wang, J.; Zhou, J.G. Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis, 2007, 12(7), 1317-1326.
[http://dx.doi.org/10.1007/s10495-007-0062-z] [PMID: 17333316]
[29]
Luo, X.; Li, L.; Deng, Q.; Yu, X.; Yang, L.; Luo, F.; Xiao, L.; Chen, X.; Ye, M.; Liu, J.; Cao, Y. Grifolin, a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur. J. Cancer, 2011, 47(2), 316-325.
[http://dx.doi.org/10.1016/j.ejca.2010.09.021] [PMID: 20943371]
[30]
Luo, X.; Li, W.; Yang, L.; Yu, X.; Xiao, L.; Tang, M.; Dong, X.; Deng, Q.; Bode, A.M.; Liu, J.; Cao, Y. DAPK1 mediates the G1 phase arrest in human nasopharyngeal carcinoma cells induced by grifolin, a potential antitumor natural product. Eur. J. Pharmacol., 2011, 670(2-3), 427-434.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.026] [PMID: 21914449]
[31]
Luo, X.; Yang, L.; Xiao, L.; Xia, X.; Dong, X.; Zhong, J.; Liu, Y.; Li, N.; Chen, L.; Li, H.; Li, W.; Liu, W.; Yu, X.; Chen, H.; Tang, M.; Weng, X.; Yi, W.; Bode, A.; Dong, Z.; Liu, J.; Cao, Y. Grifolin directly targets ERK1/2 to epigenetically suppress cancer cell metastasis. Oncotarget, 2015, 6(40), 42704-42716.
[http://dx.doi.org/10.18632/oncotarget.5678] [PMID: 26516701]
[32]
Luo, X.; Li, N.; Zhong, J.; Tan, Z.; Liu, Y.; Dong, X.; Cheng, C.; Xu, Z.; Li, H.; Yang, L.; Tang, M.; Weng, X.; Yi, W.; Liu, J.; Cao, Y. Grifolin inhibits tumor cells adhesion and migration via suppressing interplay between PGC1α and Fra-1/LSF-MMP2/CD44 axes. Oncotarget, 2016, 7(42), 68708-68720.
[http://dx.doi.org/10.18632/oncotarget.11929] [PMID: 27626695]
[33]
Che, X.; Yan, H.; Sun, H.; Dongol, S.; Wang, Y.; Lv, Q.; Jiang, J. Grifolin induces autophagic cell death by inhibiting the Akt/mTOR/S6K pathway in human ovarian cancer cells. Oncol. Rep., 2016, 36(2), 1041-1047.
[http://dx.doi.org/10.3892/or.2016.4840] [PMID: 27277722]
[34]
Zhao, Y.F.; Jiang, F.; Liang, X.Y.; Wei, L.L.; Zhao, Y.Y.; Ma, Q.; Hu, Y.S.; Su, X.L. Grifolic acid causes osteosarcoma cell death in vitro and in tumor-bearing mice. Biomed. Pharmacother., 2018, 103, 1035-1042.
[http://dx.doi.org/10.1016/j.biopha.2018.04.132] [PMID: 29710661]
[35]
Chen, Y.; Peng, G-F.; Han, X-Z.; Wang, W.; Zhang, G-Q.; Li, X. Apoptosis prediction via inhibition of AKT signaling pathway by neogrifolin. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1154-1164.
[PMID: 25973001]
[36]
Yang, W.M.; Liu, J.K.; Qing, C.; Liu, Y.D.; Ding, Z.H.; Shen, Z.Q.; Chen, Z.H. Albaconol from the mushroom Albatrellus confluens induces contraction and desensitization in guinea pig trachea. Planta Med., 2003, 69(8), 715-719.
[http://dx.doi.org/10.1055/s-2003-42788] [PMID: 14531021]
[37]
Qing, C.; Liu, M.H.; Yangi, W-M.; Zhang, Y.; Wang, L.; Liu, J.K. Effects of albaconol from the basidiomycete Albatrellus confluens on DNA topoisomerase II-mediated DNA cleavage and relaxation. Planta Med., 2004, 70(9), 792-796.
[http://dx.doi.org/10.1055/s-2004-827224] [PMID: 15503351]
[38]
Liu, Q.; Shu, X.; Wang, L.; Sun, A.; Liu, J.; Cao, X. Albaconol, a plant-derived small molecule, inhibits macrophage function by suppressing NF-kappaB activation and enhancing SOCS1 expression. Cell. Mol. Immunol., 2008, 5(4), 271-278.
[http://dx.doi.org/10.1038/cmi.2008.33] [PMID: 18761814]
[39]
Liu, Q.; Shu, X.; Sun, A.; Sun, Q.; Zhang, C.; An, H.; Liu, J.; Cao, X. Plant-derived small molecule albaconol suppresses LPS-triggered proinflammatory cytokine production and antigen presentation of dendritic cells by impairing NF-κB activation. Int. Immunopharmacol., 2008, 8(8), 1103-1111.
[http://dx.doi.org/10.1016/j.intimp.2008.04.001] [PMID: 18550014]
[40]
Deng, Q.; Yu, X.; Xiao, L.; Hu, Z.; Luo, X.; Tao, Y.; Yang, L.; Liu, X.; Chen, H.; Ding, Z.; Feng, T.; Tang, Y.; Weng, X.; Gao, J.; Yi, W.; Bode, A.M.; Dong, Z.; Liu, J.; Cao, Y. Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis., 2013, 4(9), e804.
[http://dx.doi.org/10.1038/cddis.2013.324] [PMID: 24052072]
[41]
Yu, X.; Deng, Q.; Li, W.; Xiao, L.; Luo, X.; Liu, X.; Yang, L.; Peng, S.; Ding, Z.; Feng, T.; Zhou, J.; Fan, J.; Bode, A.M.; Dong, Z.; Liu, J.; Cao, Y. Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production. Oncotarget, 2015, 6(4), 1995-2008.
[http://dx.doi.org/10.18632/oncotarget.3038] [PMID: 25575821]
[42]
Yu, X.; Li, W.; Deng, Q.; You, S.; Liu, H.; Peng, S.; Liu, X.; Lu, J.; Luo, X.; Yang, L.; Tang, M.; Weng, X.; Yi, W.; Liu, W.; Wu, S.; Ding, Z.; Feng, T.; Zhou, J.; Fan, J.; Bode, A.M.; Dong, Z.; Liu, J.; Cao, Y. Neoalbaconol inhibits angiogenesis and tumor growth by suppressing EGFR-mediated VEGF production. Mol. Carcinog., 2017, 56(5), 1414-1426.
[http://dx.doi.org/10.1002/mc.22602] [PMID: 27996164]
[43]
Azumi, M.; Ishidoh, K.; Kinoshita, H.; Nihira, T.; Ihara, F.; Fujita, T.; Igarashi, Y. Aurovertins F-H from the entomopathogenic fungus Metarhizium anisopliae. J. Nat. Prod., 2008, 71(2), 278-280.
[http://dx.doi.org/10.1021/np070494e] [PMID: 18211004]
[44]
Huong, D.T.L.; Xuan Duc, D.; The Son, N. Baeckea frutescens L.: A review on phytochemistry, biosynthesis, synthesis, and pharmacology. Nat. Prod. Commun., 2023, 18(7), 1934578X231189143.
[http://dx.doi.org/10.1177/1934578X231189143]
[45]
Ma, T.K.; White, A.J.P.; Barrett, A.G.M. Meroterpenoid total synthesis: Conversion of geraniol and farnesol into amorphastilbol, grifolin and grifolic acid by dioxinone- β -keto-acylation, palladium catalyzed decarboxylative allylic rearrangement and aromatization. Tetrahedron Lett., 2017, 58(28), 2765-2767.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.096]
[46]
Zhu, H.; Wang, F.; Ju, X.; Kong, L.; An, T.; Zhao, Z.; Liu, J.; Li, Y. Aurovertin B sensitizes colorectal cancer cells to NK cell recognition and lysis. Biochem. Biophys. Res. Commun., 2018, 503(4), 3057-3063.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.093] [PMID: 30144974]
[47]
Yan, H.; Che, X.; Lv, Q.; Zhang, L.; Dongol, S.; Wang, Y.; Sun, H.; Jiang, J. Grifolin induces apoptosis and promotes cell cycle arrest in the A2780 human ovarian cancer cell line via inactivation of the ERK1/2 and Akt pathways. Oncol. Lett., 2017, 13(6), 4806-4812.
[http://dx.doi.org/10.3892/ol.2017.6092] [PMID: 28588729]
[48]
Wu, Z.; Li, Y. Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells. Oncotarget, 2017, 8(13), 21454-21460.
[http://dx.doi.org/10.18632/oncotarget.15250] [PMID: 28206955]
[49]
Jing, S.; Ying, P.; Hu, X.; Yu, Z.; Sun, J.; Ding, Y.; Du, H.; Song, S. Protective effect of grifolin against brain injury in an acute cerebral ischemia rat model. Trop. J. Pharm. Res., 2017, 16(6), 1299-1305.
[http://dx.doi.org/10.4314/tjpr.v16i6.13]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy