Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: This paper delves into the potential of Fault Current Limiters (FCLs) as a transformative technology within power systems. FCLs assume a pivotal role in streamlining network expansion efforts, sustaining fault current levels, and augmenting the overall performance of power systems. The classification of FCLs is outlined, encompassing superconducting FCLs (SFCLs), Solid-State FCLs (SFCLs), and non-superconducting FCLs (Non-SFCLs).
Objective: The core of this study lies in an exhaustive review of relevant literature, with a keen focus on optimal allocation strategies for FCLs. The primary objective of this paper is to function as an all-encompassing reference for both researchers and engineers, providing optimal FCL allocation studies.
Method: this paper discusses various techniques for the optimal allocation of FCLs within power systems. These allocation methods are categorized based on multiobjective functions such as cost, fault current reduction, stability, protection coordination, reliability, and power quality.
Results: This search presents an overview of the FCL survey structured around key components, including objective functions, design variables, constraints, optimization methods, network types, FCL types, and research contributions.
Conclusion: This work aims to empower professionals in the field with a robust understanding of FCL allocation, ultimately contributing to the efficient and sustainable evolution of power systems. FCLs represent a promising technology for enhancing the performance and reliability of power systems, and this paper serves as a comprehensive resource for those interested in optimizing their allocation within these systems.