Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

Exploring the Promising Role of Guggulipid in Rheumatoid Arthritis Management: An In-depth Analysis

Author(s): Amit Sahu, Sunny Rathee, Sanjay Kumar Jain and Umesh Kumar Patil*

Volume 20, Issue 5, 2024

Published on: 25 January, 2024

Page: [469 - 487] Pages: 19

DOI: 10.2174/0115733971280984240101115203

Price: $65

conference banner
Abstract

Background: Guggulipid, an oleo-gum resin extracted from the bark of Commiphora wightii of the Burseraceae family, holds a significant place in Ayurvedic medicine due to its historical use in treating various disorders, including inflammation, gout, rheumatism, obesity, and lipid metabolism imbalances.

Objective: This comprehensive review aims to elucidate the molecular targets of guggulipids and explore their cellular responses. Furthermore, it summarizes the findings from in-vitro, in-vivo, and clinical investigations related to arthritis and various inflammatory conditions.

Methods: A comprehensive survey encompassing in-vitro, in-vivo, and clinical studies has been conducted to explore the therapeutic capacity of guggulipid in the management of rheumatoid arthritis. Various molecular pathways, such as cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), PI3-kinase/AKT, JAK/STAT, nitric oxide synthase (iNOS), and NFκB signaling pathways, have been targeted to assess the antiarthritic and anti-inflammatory effects of this compound.

Results: The research findings reveal that guggulipid demonstrates notable antiarthritic and anti-inflammatory effects by targeting key molecular pathways involved in inflammatory responses. These pathways include COX-2, VEGF, PI3-kinase/AKT, JAK/STAT, iNOS, and NFκB signaling pathways. in-vitro, in-vivo, and clinical studies collectively support the therapeutic potential of guggulipid in managing rheumatoid arthritis and related inflammatory conditions.

Conclusion: This review provides a deeper understanding of the therapeutic mechanisms and potential of guggulipid in the management of rheumatoid arthritis. The collective evidence strongly supports the promising role of guggulipid as a therapeutic agent, encouraging further research and development in guggulipid-based treatments for these conditions.

Next »
Graphical Abstract

[1]
Syed A, Devi VK. Potential of targeted drug delivery systems in treatment of rheumatoid arthritis. J Drug Deliv Sci Technol 2019; 53: 101217.
[http://dx.doi.org/10.1016/j.jddst.2019.101217]
[2]
Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423(6937): 356-61.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[3]
Ahmad MA, Najmi AK, Mujeeb M, Akhtar M. Neuroprotective effect of guggulipid alone and in combination with aspirin on middle cerebral artery occlusion (MCAO) model of focal cerebral ischemia in rats. Toxicol Mech Methods 2014; 24(6): 438-47.
[http://dx.doi.org/10.3109/15376516.2014.939320] [PMID: 24965906]
[4]
Sahni S, Hepfinger CA, Sauer KA. Guggulipid use in hyperlipidemia: Case report and review of the literature. Am J Health Syst Pharm 2005; 62(16): 1690-2.
[http://dx.doi.org/10.2146/ajhp040580] [PMID: 16085931]
[5]
Singh RP, Singh R, Ram P, Batliwala PG. Use of pushkar-guggul, an indigenous antiischemic combination, in the management of ischemic heart disease. Int J Pharmacog 1993; 31(2): 147-60.
[http://dx.doi.org/10.3109/13880209309082932]
[6]
Ahmad MA, Mujeeb M, Akhtar M, Khushtar M, Arif M, Haque MR. Guggulipid: A promising multi-purpose herbal medicinal agent. Drug Res 2020; 70(4): 123-30.
[http://dx.doi.org/10.1055/a-1115-4669] [PMID: 32110820]
[7]
Deng R. Therapeutic effects of guggul and its constituent guggulsterone: Cardiovascular benefits. Cardiovasc Drug Rev 2007; 25(4): 375-90.
[http://dx.doi.org/10.1111/j.1527-3466.2007.00023.x] [PMID: 18078436]
[8]
Parmar P, Bhoir S, Naik PP, Waghulde S, Gorde N, Kale MK. Guggulsterone -Farnesoid X receptor interaction. J Pharmacogn Phytochem 2018; 7(SP6): 107-14.
[http://dx.doi.org/10.22271/phyto.2018.v7.isp6.2.22]
[9]
Shishodia S, Harikumar KB, Dass S, Ramawat KG, Aggarwal BB. The guggul for chronic diseases: Ancient medicine, modern targets. Anticancer Res 2008; 28(6A): 3647-64.
[PMID: 19189646]
[10]
Arora RB, Kapoor V, Gupta SK, Sharma RC. Isolation of a crystalline steroidal compound from Commiphora mukul & its anti-inflammatory activity. Indian J Exp Biol 1971; 9(3): 403-4.
[PMID: 5144347]
[11]
Arora RB, Taneja V, Sharma RC, Gupta SK. Anti-inflammatory studies on a crystalline steroid isolated from Commiphora mukul. Indian J Med Res 1972; 60(6): 929-31.
[PMID: 4660307]
[12]
Francis JA, Raja SN, Nair MG. Bioactive terpenoids and guggulusteroids from Commiphora mukul gum resin of potential anti-inflammatory interest. Chem Biodivers 2004; 1(11): 1842-53.
[http://dx.doi.org/10.1002/cbdv.200490138] [PMID: 17191820]
[13]
Kimura I, Yoshikawa M, Kobayashi S, et al. New triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resins, and their potent anti-inflammatory effect on adjuvant-induced air-pouch granuloma of mice. Bioorg Med Chem Lett 2001; 11(8): 985-9.
[http://dx.doi.org/10.1016/S0960-894X(01)00111-1] [PMID: 11327606]
[14]
Zhu N, Rafi MM, DiPaola RS, et al. Bioactive constituents from gum guggul (Commiphora wightii). Phytochemistry 2001; 56(7): 723-7.
[http://dx.doi.org/10.1016/S0031-9422(00)00485-4] [PMID: 11314959]
[15]
Kunnumakkara AB, Banik K, Bordoloi D, et al. Googling the guggul (Commiphora and Boswellia) for prevention of chronic diseases. Front Pharmacol 2018; 9: 686.
[http://dx.doi.org/10.3389/fphar.2018.00686] [PMID: 30127736]
[16]
Shishodia S, Azu N, Rosenzweig JA, Jackson DA. Guggulsterone for chemoprevention of cancer. Curr Pharm Des 2016; 22(3): 294-306.
[http://dx.doi.org/10.2174/1381612822666151112153117] [PMID: 26561056]
[17]
Yamada T, Sugimoto K. Guggulsterone and its role in chronic diseases. Adv Exp Med Biol 2016; 929: 329-61.
[http://dx.doi.org/10.1007/978-3-319-41342-6_15]
[18]
Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleo-gum resin of commiphora wightii (Guggulu). Scientifica 2015; 2015: 1-14.
[http://dx.doi.org/10.1155/2015/138039] [PMID: 26587309]
[19]
Hazra AK, Sur TK, Chakraborty B, Seal T. HPLC analysis of phenolic acids and antioxidant activity of some classical ayurvedic guggulu formulations. Int J Res Ayurveda Pharm 2018; 9(1): 112-7.
[http://dx.doi.org/10.7897/2277-4343.09122]
[20]
Meyer U, Costantino G, Macchiarulo A, Pellicciari R. Is antagonism of E/Z-guggulsterone at the farnesoid X receptor mediated by a noncanonical binding site? A molecular modeling study. J Med Chem 2005; 48(22): 6948-55.
[http://dx.doi.org/10.1021/jm0505056] [PMID: 16250653]
[21]
Yang L, Broderick D, Jiang Y, Hsu V, Maier CS. Conformational dynamics of human FXR-LBD ligand interactions studied by hydrogen/deuterium exchange mass spectrometry: Insights into the antagonism of the hypolipidemic agent Z-guggulsterone. Biochim Biophys Acta Proteins Proteomics 2014; 1844(9): 1684-93.
[http://dx.doi.org/10.1016/j.bbapap.2014.06.007] [PMID: 24953769]
[22]
Sharma ML, Bani S, Singh GB. Anti-arthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. Int J Immunopharmacol 1989; 11(6): 647-52.
[http://dx.doi.org/10.1016/0192-0561(89)90150-1] [PMID: 2807636]
[23]
Urizar NL, Liverman AB, Dodds DNT, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 2002; 296(5573): 1703-6.
[http://dx.doi.org/10.1126/science.1072891] [PMID: 11988537]
[24]
Büchele B, Zugmaier W, Simmet T. Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791(1-2): 21-30.
[http://dx.doi.org/10.1016/S1570-0232(03)00160-0] [PMID: 12798161]
[25]
Du Z, Liu Z, Ning Z, et al. Prospects of boswellic acids as potential pharmaceutics. Planta Med 2015; 81(4): 259-71.
[http://dx.doi.org/10.1055/s-0034-1396313] [PMID: 25714728]
[26]
Roy NK, Deka A, Bordoloi D, et al. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett 2016; 377(1): 74-86.
[http://dx.doi.org/10.1016/j.canlet.2016.04.017] [PMID: 27091399]
[27]
Ammon HPT, Safayhi H, Mack T, Sabieraj J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol 1993; 38(2-3): 105-12.
[http://dx.doi.org/10.1016/0378-8741(93)90005-P] [PMID: 8510458]
[28]
Pharmacopoeia I. Government of India, ministry of health and family welfare. Delhi. Control Publications 1996; 2(35): 448.
[29]
Patel MA, Acharya SR, Macwan CP, Patel TB, Suhagia BN. Evaluation of physico-chemical parameters of different Shodhit guggul. Int J Pharm Pharm Sci 2017; 9(9): 247-51.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.18668]
[30]
Rani R, Mishra S. Phytochemistry of guggul (Commiphora wightii): A review. Asian J Res Chem 2013; 6(4): 415-26.
[31]
Sabarathinam S, Chandra SK, Mahalingam V. CYP3A4 mediated pharmacokinetics drug interaction potential of Maha-Yogaraj Gugglu and E, Z guggulsterone. Sci Rep 2021; 11(1): 715.
[http://dx.doi.org/10.1038/s41598-020-80595-5] [PMID: 33436877]
[32]
Chhonker YS, Chandasana H, Mukkavilli R, et al. Assessment of in vitro metabolic stability, plasma protein binding, and pharmacokinetics of E - and Z -guggulsterone in rat. Drug Test Anal 2016; 8(9): 966-75.
[http://dx.doi.org/10.1002/dta.1885] [PMID: 26608935]
[33]
Smolen JS. New Drug Class New therapies for treatment of rheumatoid arthritis Pathogenesis of rheumatoid arthritis. 2007. Available from:www.thelancet.com
[34]
Shah R, Gulati V, Palombo EA. Pharmacological properties of guggulsterones, the major active components of gum guggul. Phytother Res 2012; 26(11): 1594-605.
[http://dx.doi.org/10.1002/ptr.4647] [PMID: 22388973]
[35]
Burstein S. Molecular mechanisms for the inflammation-resolving actions of lenabasum. Mol Pharmacol 2021; 99(2): 125-32.
[http://dx.doi.org/10.1124/molpharm.120.000083] [PMID: 33239333]
[36]
Shishodia S, Aggarwal BB. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 2004; 279(45): 47148-58.
[http://dx.doi.org/10.1074/jbc.M408093200] [PMID: 15322087]
[37]
Lv N, Song MY, Kim EK, Park JW, Kwon KB, Park BH. Guggulsterone, a plant sterol, inhibits NF-κB activation and protects pancreatic β cells from cytokine toxicity. Mol Cell Endocrinol 2008; 289(1-2): 49-59.
[http://dx.doi.org/10.1016/j.mce.2008.02.001] [PMID: 18343024]
[38]
Lee JI, Burckart GJ. Nuclear factor kappa B: Important transcription factor and therapeutic target. J Clin Pharmacol 1998; 38(11): 981-93.
[http://dx.doi.org/10.1177/009127009803801101] [PMID: 9824778]
[39]
Aggarwal BB. Nuclear factor-κB. Cancer Cell 2004; 6(3): 203-8.
[http://dx.doi.org/10.1016/j.ccr.2004.09.003] [PMID: 15380510]
[40]
Goodsell DS. The molecular perspective: VEGF and angiogenesis. Stem Cells 2003; 21(1): 118-9.
[http://dx.doi.org/10.1634/stemcells.21-1-118] [PMID: 12529559]
[41]
Folkman J. Angiogenesis-dependent diseases. Semin Oncol 2001; 28(6): 536-42.
[http://dx.doi.org/10.1016/S0093-7754(01)90021-1] [PMID: 11740806]
[42]
Xiao D, Singh SV. z-Guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther 2008; 7(1): 171-80.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0491] [PMID: 18202020]
[43]
Darnell JE Jr, Kerr M, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264(5164): 1415-21.
[http://dx.doi.org/10.1126/science.8197455] [PMID: 8197455]
[44]
Ahn KS, Sethi G, Sung B, Goel A, Ralhan R, Aggarwal BB. Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res 2008; 68(11): 4406-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6696] [PMID: 18519703]
[45]
Leeman-Neill RJ, Wheeler SE, Singh SV, et al. Guggulsterone enhances head and neck cancer therapies via inhibition of signal transducer and activator of transcription-3. Carcinogenesis 2009; 30(11): 1848-56.
[http://dx.doi.org/10.1093/carcin/bgp211] [PMID: 19762335]
[46]
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75(1): 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[47]
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298(5600): 1911-2.
[http://dx.doi.org/10.1126/science.1072682] [PMID: 12471242]
[48]
Brancho D, Tanaka N, Jaeschke A, et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev 2003; 17(16): 1969-78.
[http://dx.doi.org/10.1101/gad.1107303] [PMID: 12893778]
[49]
Remy G, Risco AM, Iñesta-Vaquera FA, et al. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 2010; 22(4): 660-7.
[http://dx.doi.org/10.1016/j.cellsig.2009.11.020] [PMID: 20004242]
[50]
Bubici C, Papa S. JNK signalling in cancer: In need of new, smarter therapeutic targets. Br J Pharmacol 2014; 171(1): 24-37.
[http://dx.doi.org/10.1111/bph.12432] [PMID: 24117156]
[51]
Mao X, Bravo IG, Cheng H, Alonso A. Multiple independent kinase cascades are targeted by hyperosmotic stress but only one activates stress kinase p38. Exp Cell Res 2004; 292(2): 304-11.
[http://dx.doi.org/10.1016/j.yexcr.2003.09.012] [PMID: 14697338]
[52]
Chen C, Nelson LJ, Ávila MA, Cubero FJ. Mitogen-Activated Protein Kinases (MAPKs) and cholangiocarcinoma: The missing link. Cells 2019; 8(10): 1172-2.
[http://dx.doi.org/10.3390/cells8101172] [PMID: 31569444]
[53]
Shishodia S, Sethi G, Ahn KS, Aggarwal BB. Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of Akt pathway, and downregulation of antiapoptotic gene products. Biochem Pharmacol 2007; 74(1): 118-30.
[http://dx.doi.org/10.1016/j.bcp.2007.03.026] [PMID: 17475222]
[54]
Noh EM, Chung EY, Youn HJ, et al. Cis-guggulsterone inhibits the IKK/NF-κB pathway, whereas trans-guggulsterone inhibits MAPK/AP-1 in MCF-7 breast cancer cells: Guggulsterone regulates MMP-9 expression in an isomer-specific manner. Int J Mol Med 2013; 31(2): 393-9.
[http://dx.doi.org/10.3892/ijmm.2012.1214] [PMID: 23242121]
[55]
Meselhy M. Inhibition of LPS-induced NO production by the oleogum resin of Commiphora wightii and its constituents. Phytochemistry 2003; 62(2): 213-8.
[http://dx.doi.org/10.1016/S0031-9422(02)00388-6] [PMID: 12482459]
[56]
Youn HS, Ahn SI, Lee BY. Guggulsterone suppresses the activation of transcription factor IRF3 induced by TLR3 or TLR4 agonists. Int Immunopharmacol 2009; 9(1): 108-12.
[http://dx.doi.org/10.1016/j.intimp.2008.10.012] [PMID: 19000789]
[57]
Ahn S-I, Youn H-S. Guggulsterone suppresses the activation of NF-κβ and Expression of cox-2 induced by toll-like receptor 2, 3, and 4 agonists. Food Sci Biotechnol 2008; 17(6): 1294-8.
[58]
Ichikawa H, Aggarwal BB. Guggulsterone inhibits osteoclastogenesis induced by receptor activator of nuclear factor-kappaB ligand and by tumor cells by suppressing nuclear factor-kappaB activation. Clin Cancer Res 2006; 12(2): 662-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1749] [PMID: 16428513]
[59]
Kim DG, Bae GS, Jo IJ, et al. Guggulsterone attenuated lipopolysaccharide-induced inflammatory responses in mouse inner medullary collecting duct-3 cells. Inflammation 2016; 39(1): 87-95.
[http://dx.doi.org/10.1007/s10753-015-0226-x] [PMID: 26260258]
[60]
Zhang JH, Shangguan ZS, Chen C, Zhang HJ, Lin Y. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway. Drug Des Devel Ther 2016; 10: 1829-35.
[http://dx.doi.org/10.2147/DDDT.S104602] [PMID: 27330276]
[61]
Lee YR, Lee JH, Noh EM, et al. Guggulsterone blocks IL-1β-mediated inflammatory responses by suppressing NF-κB activation in fibroblast-like synoviocytes. Life Sci 2008; 82(23-24): 1203-9.
[http://dx.doi.org/10.1016/j.lfs.2008.04.006] [PMID: 18495175]
[62]
Park JY, Lee JW, Lee CH, Lee HJ, Kang KS. Synthesis and inhibitory effect of cis-guggulsterone on lipopolysaccharide-induced production of nitric oxide in macrophages. Bioorg Med Chem Lett 2020; 30(5): 126962-2.
[http://dx.doi.org/10.1016/j.bmcl.2020.126962] [PMID: 31980338]
[63]
Kang SJ, Kim JM, Koh SJ, et al. The guggulsterone derivative GG-52 inhibits NF-κB signaling in bone marrow-derived dendritic cells and attenuates colitis in IL-10 knockout mice. Life Sci 2013; 92(22): 1064-71.
[http://dx.doi.org/10.1016/j.lfs.2013.04.003] [PMID: 23603141]
[64]
Sundaram MS, Neog MK, Rasool M, et al. Guggulipid ameliorates adjuvant-induced arthritis and liver oxidative damage by suppressing inflammatory and oxidative stress mediators. Phytomedicine 2019; 64: 152924-4.
[http://dx.doi.org/10.1016/j.phymed.2019.152924] [PMID: 31465983]
[65]
Niranjan R, Kamat PK, Nath C, Shukla R. Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). J Ethnopharmacol 2010; 127(3): 625-30.
[http://dx.doi.org/10.1016/j.jep.2009.12.012] [PMID: 20018235]
[66]
Dave V, Yadav RB, Gupta S, Sharma S. Guggulosomes: A herbal approach for enhanced topical delivery of phenylbutazone. Fut J Pharmaceut Sci 2017; 3(1): 23-32.
[http://dx.doi.org/10.1016/j.fjps.2016.11.002]
[67]
Su S, Wang T, Duan JA, et al. Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. J Ethnopharmacol 2011; 134(2): 251-8.
[http://dx.doi.org/10.1016/j.jep.2010.12.003] [PMID: 21167270]
[68]
Singh GB, Singh S, Bani S. Anti-inflammatory actions of boswellic acids. Phytomedicine 1996; 3(1): 81-5.
[http://dx.doi.org/10.1016/S0944-7113(96)80017-1] [PMID: 23194868]
[69]
Wang Q, Pan X, Wong HH, et al. Oral and topical boswellic acid attenuates mouse osteoarthritis. Osteoarthri Cartil 2014; 22(1): 128-32.
[http://dx.doi.org/10.1016/j.joca.2013.10.012] [PMID: 24185109]
[70]
Sabina EP, Indu H, Rasool M. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti–oxidant status in gouty arthritic mice. Asian Pac J Trop Biomed 2012; 2(2): 128-33.
[http://dx.doi.org/10.1016/S2221-1691(11)60206-2] [PMID: 23569882]
[71]
Goel A, Ahmad FJ, Singh RM, Singh GN. 3-Acetyl-11-keto-β-boswellic acid loaded-polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity. J Pharm Pharmacol 2010; 62(2): 273-8.
[http://dx.doi.org/10.1211/jpp.62.02.0016] [PMID: 20487208]
[72]
Shenvi S, Kiran KR, Kumar K, Diwakar L, Reddy GC. Synthesis and biological evaluation of boswellic acid-NSAID hybrid molecules as anti-inflammatory and anti-arthritic agents. Eur J Med Chem 2015; 98: 170-8.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.001] [PMID: 26010018]
[73]
Umar S, Umar K, Sarwar AHMG, et al. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine 2014; 21(6): 847-56.
[http://dx.doi.org/10.1016/j.phymed.2014.02.001] [PMID: 24667331]
[74]
Singh BB, Mishra LC, Vinjamury SP, Aquilina N, Singh VJ, Shepard N. The effectiveness of Commiphora mukul for osteoarthritis of the knee: An outcomes study. Altern Ther Health Med 2003; 9(3): 74-9.
[PMID: 12776478]
[75]
Sengupta K, Alluri KV, Satish A, et al. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin® for treatment of osteoarthritis of the knee. Arthritis Res Ther 2008; 10(4): 85.
[http://dx.doi.org/10.1186/ar2461] [PMID: 18667054]
[76]
Vishal AA, Mishra A, Raychaudhuri SP. A double blind, randomized, placebo controlled clinical study evaluates the early efficacy of aflapin in subjects with osteoarthritis of knee. Int J Med Sci 2011; 8(7): 615-22.
[http://dx.doi.org/10.7150/ijms.8.615] [PMID: 22022214]
[77]
Karlapudi V, Sunkara KB, Konda PR, Sarma KV, Rokkam MP. Efficacy and safety of aflapin®, a novel boswellia serrata extract, in the treatment of osteoarthritis of the Knee: A short-term 30-day randomized, double-blind, placebo-controlled clinical study. J Am Nutr Assoc 2023; 42(2): 159-68.
[http://dx.doi.org/10.1080/07315724.2021.2014370] [PMID: 35512759]
[78]
Majeed M, Majeed S, Narayanan NK, Nagabhushanam K. A pilot, randomized, double-blind, placebo-controlled trial to assess the safety and efficacy of a novel Boswellia serrata extract in the management of osteoarthritis of the knee. Phytother Res 2019; 33(5): 1457-68.
[http://dx.doi.org/10.1002/ptr.6338] [PMID: 30838706]
[79]
Kulkarni PD, Damle ND, Singh S, et al. Double-blind trial of solid lipid Boswellia serrata particles (SLBSP) vs. standardized Boswellia serrata gum extract (BSE) for osteoarthritis of knee. Drug Metab Pers Ther 2020; 35(2): 20200104.
[PMID: 32549135]
[80]
Kimmatkar N, Thawani V, Hingorani L, Khiyani R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee - A randomized double blind placebo controlled trial. Phytomedicine 2003; 10(1): 3-7.
[http://dx.doi.org/10.1078/094471103321648593] [PMID: 12622457]
[81]
Pandey S, Joshi N, Pandya D. Clinical efficacy of shiva guggulu and simhanada guggulu in Amavata (Rheumatoid Arthritis). Ayu 2012; 33(2): 247-54.
[http://dx.doi.org/10.4103/0974-8520.105246] [PMID: 23559798]
[82]
Kizhakkedath R. Clinical evaluation of a formulation containing Curcuma longa and Boswellia serrata extracts in the management of knee osteoarthritis. Mol Med Rep 2013; 8(5): 1542-8.
[http://dx.doi.org/10.3892/mmr.2013.1661] [PMID: 24002213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy