Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Clinical Trial

Alterations in CD4+ T Cell Cytokines Profile in Female Patients with Hashimoto’s Thyroiditis Following Vitamin D Supplementation: A Double-blind, Randomized Clinical Trial

Author(s): Reza Chahardoli, Behrouz Robat-Jazi, Fereidoun Azizi, Atieh Amouzegar, Davood Khalili, Azita Zadeh-Vakili, Fatemeh Mansouri and Ali Akbar Saboor-Yaraghi*

Volume 24, Issue 12, 2024

Published on: 25 January, 2024

Page: [1454 - 1463] Pages: 10

DOI: 10.2174/0118715303273297231226153751

Price: $65

Abstract

Background: Hashimoto's thyroiditis (HT) is an autoimmune disease characterized by the destruction of thyroid cells through immune processes involving T helper (Th)1 cytokines. This clinical trial investigates the impact of vitamin D supplementation on serum cytokine levels and gene expression in CD4+ T cells from HT patients, aiming to understand its effects on Th-1, Th-2, Th-17, and regulatory T (Treg) cell-associated factors.

Methods: Female patients were randomly assigned in a double-blind design to either a vitamin D-supplemented group, which received cholecalciferol (1, 25(OH)2D3) at a dose of 50,000 IU, or the placebo group, which received a weekly placebo for a duration of three months. Serum cytokine levels were assessed using enzyme-linked immunosorbent assay (ELISA), while genes’ expression levels were measured using real-time PCR.

Results: Serum 25-hydroxyvitamin D and levels exhibited a significant increase following vitamin D supplementation, in comparison to the placebo group. Additionally, the vitamin D supplementation resulted in a significant elevation of serum calcium (Ca) levels compared to baseline. In the vitamin D group, there was a significant decrease in both serum levels and expression of the interleukin (IL)-17 gene when compared to baseline, although no statistical difference was observed between the placebo and vitamin D groups. The gene expression of transforming growth factor-beta (TGFβ) was significantly increased in the vitamin D group compared to baseline, with no significant difference between the two study groups. Vitamin D treatment had no effect on serum levels of interferon-gamma (IFNϒ) and IL-4. While the gene expression of IL-4 in the vitamin D group did not exhibit a statistically significant increase, the level of GATA3 transcription factor increased significantly when compared to the placebo group. The expression of IFNϒ and transcription factors, T-bet, RORc, and forkhead box protein 3 (FOXP3) in genes did not show significant changes following vitamin D supplementation.

Conclusion: The findings suggest that vitamin D supplementation may hold potential benefits for autoimmune diseases, such as HT. However, further longitudinal clinical trials are necessary to gain a more comprehensive understanding of the specific effects of vitamin D on HT.

[1]
Weetman, A.P. An update on the pathogenesis of hashimoto’s thyroiditis. J. Endocrinol. Invest., 2021, 44(5), 883-890.
[http://dx.doi.org/10.1007/s40618-020-01477-1] [PMID: 33332019]
[2]
Robat-Jazi, B.; Mobini, S.; Chahardoli, R.; Mansouri, F.; Nodehi, M.; Esfahanian, F.; Saboor-Yaraghi, A.A. The impact of vitamin D supplementation on the ifnγ-ip10 axis in women with hashimoto’s thyroiditis treated with levothyroxine: A double-blind randomized placebo-controlled trial. Iran. J. Allergy Asthma Immunol., 2022, 21(4), 407-417.
[http://dx.doi.org/10.18502/ijaai.v21i4.10288] [PMID: 36243929]
[3]
Daniel, C.; Sartory, N.A.; Zahn, N.; Radeke, H.H.; Stein, J.M. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther., 2008, 324(1), 23-33.
[http://dx.doi.org/10.1124/jpet.107.127209] [PMID: 17911375]
[4]
Zake, T.; Skuja, S.; Kalere, I.; Konrade, I.; Groma, V. Upregulated tissue expression of T helper (Th) 17 pathogenic interleukin (IL)-23 and IL-1β in Hashimoto’s thyroiditis but not in Graves’ disease. Endocr. J., 2019, 66(5), 423-430.
[http://dx.doi.org/10.1507/endocrj.EJ18-0396] [PMID: 30814438]
[5]
Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003, 4(4), 330-336.
[http://dx.doi.org/10.1038/ni904] [PMID: 12612578]
[6]
Shapira, Y.; Agmon-Levin, N.; Shoenfeld, Y. Mycobacterium tuberculosis, autoimmunity, and vitamin D. Clin. Rev. Allergy Immunol., 2010, 38(2-3), 169-177.
[http://dx.doi.org/10.1007/s12016-009-8150-1] [PMID: 19543859]
[7]
Giovannucci, E.; Liu, Y.; Rimm, E.B.; Hollis, B.W.; Fuchs, C.S.; Stampfer, M.J.; Willett, W.C. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J. Natl. Cancer Inst., 2006, 98(7), 451-459.
[http://dx.doi.org/10.1093/jnci/djj101] [PMID: 16595781]
[8]
Zittermann, A.; Schleithoff, S.S.; Koerfer, R. Putting cardiovascular disease and vitamin D insufficiency into perspective. Br. J. Nutr., 2005, 94(4), 483-492.
[http://dx.doi.org/10.1079/BJN20051544] [PMID: 16197570]
[9]
Adorini, L.; Penna, G. Control of autoimmune diseases by the vitamin D endocrine system. Nat. Clin. Pract. Rheumatol., 2008, 4(8), 404-412.
[http://dx.doi.org/10.1038/ncprheum0855] [PMID: 18594491]
[10]
Peelen, E.; Knippenberg, S.; Muris, A.H.; Thewissen, M.; Smolders, J.; Tervaert, J.W.C.; Hupperts, R.; Damoiseaux, J. Effects of vitamin D on the peripheral adaptive immune system: A review. Autoimmun. Rev., 2011, 10(12), 733-743.
[http://dx.doi.org/10.1016/j.autrev.2011.05.002] [PMID: 21621002]
[11]
Alroy, I.; Towers, T.L.; Freedman, L.P. Transcriptional repression of the interleukin-2 gene by vitamin D3: Direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol. Cell. Biol., 1995, 15(10), 5789-5799.
[http://dx.doi.org/10.1128/MCB.15.10.5789] [PMID: 7565732]
[12]
Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.J.; O’Garra, A. 1α,25-Dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J. Immunol., 2001, 167(9), 4974-4980.
[http://dx.doi.org/10.4049/jimmunol.167.9.4974] [PMID: 11673504]
[13]
Gorman, S.; Kuritzky, L.A.; Judge, M.A.; Dixon, K.M.; McGlade, J.P.; Mason, R.S.; Finlay-Jones, J.J.; Hart, P.H. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J. Immunol., 2007, 179(9), 6273-6283.
[http://dx.doi.org/10.4049/jimmunol.179.9.6273] [PMID: 17947703]
[14]
Mottaghi, A.; Salehi, E.; Keshvarz, A.; Sezavar, H.; Saboor-Yaraghi, A-A. The influence of vitamin A supplementation on Foxp3 and TGF-β gene expression in atherosclerotic patients. J. Nutrigenet. Nutrigenomics, 2012, 5(6), 314-326.
[PMID: 23363776]
[15]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods, 2001, 25(4), 402-408.
[16]
Ikeda, U.; Wakita, D.; Ohkuri, T.; Chamoto, K.; Kitamura, H.; Iwakura, Y.; Nishimura, T. 1α,25-Dihydroxyvitamin D3 and all-trans retinoic acid synergistically inhibit the differentiation and expansion of Th17 cells. Immunol. Lett., 2010, 134(1), 7-16.
[http://dx.doi.org/10.1016/j.imlet.2010.07.002] [PMID: 20655952]
[17]
Parastouei, K.; Mirshafiey, A.; Eshraghian, M.R.; Shiri-Shahsavar, M.R.; Solaymani-Mohammadi, F.; Chahardoli, R.; Alvandi, E.; Saboor-Yaraghi, A.A. The effect of 1, 25(OH)2 D3 (calcitriol) alone and in combination with all-trans retinoic acid on ROR-γt, IL-17, TGF-β, and FOXP3 gene expression in experimental autoimmune encephalomyelitis. Nutr. Neurosci., 2018, 21(3), 210-218.
[http://dx.doi.org/10.1080/1028415X.2016.1263039] [PMID: 27996890]
[18]
Ramos-Leví, A.M.; Marazuela, M. Pathogenesis of thyroid autoimmune disease: The role of cellular mechanisms. Endocrinol. Nutr., 2016, 63(8), 421-429.
[http://dx.doi.org/10.1016/j.endonu.2016.04.003] [PMID: 27234136]
[19]
Zhang, Q.Y.; Ye, X.P.; Zhou, Z.; Zhu, C.F.; Li, R.; Fang, Y.; Zhang, R.J.; Li, L.; Liu, W.; Wang, Z.; Song, S.Y.; Lu, S.Y.; Zhao, S.X.; Lin, J.N.; Song, H.D. Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis. Nat. Commun., 2022, 13(1), 775.
[http://dx.doi.org/10.1038/s41467-022-28120-2] [PMID: 35140214]
[20]
Phenekos, C.; Vryonidou, A.; Gritzapis, A.D.; Baxevanis, C.N.; Goula, M.; Papamichail, M. Th1 and Th2 serum cytokine profiles characterize patients with Hashimoto’s thyroiditis (Th1) and Graves’ disease (Th2). Neuroimmunomodulation, 2004, 11(4), 209-213.
[http://dx.doi.org/10.1159/000078438] [PMID: 15249726]
[21]
Li, Q.; Wang, B.; Mu, K.; Zhang, J.A. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1−Th2 paradigm. J. Cell. Physiol., 2019, 234(3), 2204-2216.
[http://dx.doi.org/10.1002/jcp.27180] [PMID: 30246383]
[22]
Ghoreschi, K.; Laurence, A.; Yang, X.P.; Tato, C.M.; McGeachy, M.J.; Konkel, J.E.; Ramos, H.L.; Wei, L.; Davidson, T.S.; Bouladoux, N.; Grainger, J.R.; Chen, Q.; Kanno, Y.; Watford, W.T.; Sun, H.W.; Eberl, G.; Shevach, E.M.; Belkaid, Y.; Cua, D.J.; Chen, W.; O’Shea, J.J. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature, 2010, 467(7318), 967-971.
[http://dx.doi.org/10.1038/nature09447] [PMID: 20962846]
[23]
Li, D.; Cai, W.; Gu, R.; Zhang, Y.; Zhang, H.; Tang, K.; Xu, P.; Katirai, F.; Shi, W.; Wang, L.; Huang, T.; Huang, B. Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin. Immunol., 2013, 149(3), 411-420.
[http://dx.doi.org/10.1016/j.clim.2013.10.001] [PMID: 24211715]
[24]
Yasuda, K.; Takeuchi, Y.; Hirota, K. The pathogenicity of Th17 cells in autoimmune diseases. Semin. Immunopathol., 2019, 41(3), 283-297.
[http://dx.doi.org/10.1007/s00281-019-00733-8] [PMID: 30891627]
[25]
Papp, G.; Boros, P.; Nakken, B.; Szodoray, P.; Zeher, M. Regulatory immune cells and functions in autoimmunity and transplantation immunology. Autoimmun. Rev., 2017, 16(5), 435-444.
[http://dx.doi.org/10.1016/j.autrev.2017.03.011] [PMID: 28286106]
[26]
El-Zawawy, H.T.; Farag, H.F.; Tolba, M.M.; Abdalsamea, H.A. Improving Hashimoto’s thyroiditis by eradicating Blastocystis hominis: Relation to IL-17. Ther. Adv. Endocrinol. Metab., 2020, 11, 20242018820907013.
[http://dx.doi.org/10.1177/2042018820907013] [PMID: 32128107]
[27]
Li, S.; Li, S.; Lin, M.; Li, Z.; He, J.; Qiu, J.; Zhang, J. Interleukin-17 and vascular endothelial growth factor: New biomarkers for the diagnosis of papillary thyroid carcinomain patients with Hashimoto’s thyroiditis. J. Int. Med. Res., 2022, 50(1), 03000605211067121.
[http://dx.doi.org/10.1177/03000605211067121] [PMID: 35023376]
[28]
Gerenova, J.; Manolova, I.; Stanilova, S. Serum levels of interleukin - 23 and interleukin - 17 in hashimoto’s thyroiditis. Acta Endocrinol., 2019, 5(1), 74-79.
[29]
Qin, Q.; Liu, P.; Liu, L.; Wang, R.; Yan, N.; Yang, J.; Wang, X.; Pandey, M.; Zhang, J. The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto’s thyroiditis but not in Graves’ disease. Braz. J. Med. Biol. Res., 2012, 45(12), 1202-1208.
[http://dx.doi.org/10.1590/S0100-879X2012007500168] [PMID: 23090124]
[30]
Chang, S.H.; Chung, Y.; Dong, C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J. Biol. Chem., 2010, C110, 185777.
[31]
Nashold, F.E.; Nelson, C.D.; Brown, L.M.; Hayes, C.E. One calcitriol dose transiently increases Helios+FoxP3+ T cells and ameliorates autoimmune demyelinating disease. J. Neuroimmunol., 2013, 263(1-2), 64-74.
[http://dx.doi.org/10.1016/j.jneuroim.2013.07.016] [PMID: 23968560]
[32]
Isik, S.; Ozuguz, U.; Tutuncu, Y.; Erden, G.; Berker, D.; Acar, K.; Aydin, Y.; Akbaba, G.; Helvaci, N.; Guler, S. Serum transforming growth factor-beta levels in patients with vitamin D deficiency. Eur. J. Intern. Med., 2012, 23(1), 93-97.
[http://dx.doi.org/10.1016/j.ejim.2011.09.017] [PMID: 22153539]
[33]
Qin, W.; Holick, M.F.; Sorensen, W.; Walker, C.R.; Sauter, E.R. Vitamin D3 treatment influences PGE2 and TGFβ in normal and increased breast cancer risk women. Anticancer Res., 2016, 36(10), 5347-5354.
[http://dx.doi.org/10.21873/anticanres.11108] [PMID: 27798898]
[34]
Mahon, B.D.; Gordon, S.A.; Cruz, J.; Cosman, F.; Cantorna, M.T. Cytokine profile in patients with multiple sclerosis following vitamin D supplementation. J. Neuroimmunol., 2003, 134(1-2), 128-132.
[http://dx.doi.org/10.1016/S0165-5728(02)00396-X] [PMID: 12507780]
[35]
Piantoni, S.; Andreoli, L.; Scarsi, M.; Zanola, A.; Dall’Ara, F.; Pizzorni, C.; Cutolo, M.; Airò, P.; Tincani, A. Phenotype modifications of T-cells and their shift toward a Th2 response in patients with systemic lupus erythematosus supplemented with different monthly regimens of vitamin D. Lupus, 2015, 24(4-5), 490-498.
[http://dx.doi.org/10.1177/0961203314559090] [PMID: 25801892]
[36]
van Hamburg, J.P.; Mus, A.M.; de Bruijn, M.J.W.; de Vogel, L.; Boon, L.; Cornelissen, F.; Asmawidjaja, P.; Hendriks, R.W.; Lubberts, E. GATA‐3 protects against severe joint inflammation and bone erosion and reduces differentiation of Th17 cells during experimental arthritis. Arthritis Rheum., 2009, 60(3), 750-759.
[http://dx.doi.org/10.1002/art.24329] [PMID: 19248112]
[37]
Palmer, M.T.; Lee, Y.K.; Maynard, C.L.; Oliver, J.R.; Bikle, D.D.; Jetten, A.M.; Weaver, C.T. Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J. Biol. Chem., 2011, 286(2), 997-1004.
[http://dx.doi.org/10.1074/jbc.M110.163790] [PMID: 21047796]
[38]
Peelen, E.; Thewissen, M.; Knippenberg, S.; Smolders, J.; Muris, A.H.; Menheere, P.; Cohen Tervaert, J.W.; Hupperts, R.; Damoiseaux, J. Fraction of IL-10+ and IL-17+ CD8 T cells is increased in MS patients in remission and during a relapse, but is not influenced by immune modulators. J. Neuroimmunol., 2013, 258(1-2), 77-84.
[http://dx.doi.org/10.1016/j.jneuroim.2013.02.014] [PMID: 23517930]
[39]
Staeva-Vieira, T.P.; Freedman, L.P. 1,25-dihydroxyvitamin D3 inhibits IFN-γ and IL-4 levels during in vitro polarization of primary murine CD4+ T cells. J. Immunol., 2002, 168(3), 1181-1189.
[http://dx.doi.org/10.4049/jimmunol.168.3.1181] [PMID: 11801653]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy