Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Short Communication

Heterocyclic-Based Analogues against Sarcine-Ricin Loop RNA from Escherichia coli: In Silico Molecular Docking Study and Machine Learning Classifiers

Author(s): Shivangi Sharma, Rahul Choubey, Manish Gupta* and Shivendra Singh*

Volume 20, Issue 4, 2024

Published on: 25 January, 2024

Page: [452 - 465] Pages: 14

DOI: 10.2174/0115734064266329231228050535

Price: $65

Abstract

Background: Heterocyclic-based drugs have strong bioactivities, are active pharmacophores, and are used to design several antibacterial drugs. Due to the diverse biodynamic properties of well-known heterocyclic cores, such as quinoline, indole, and its derivatives, they have a special place in the chemistry of nitrogen-containing heterocyclic molecules.

Objectives: The objective of this study is to analyze the interaction of several heterocyclic molecules using molecular docking and machine learning approaches to find out the possible antibacterial drugs.

Methods: The molecular docking analysis of heterocyclic-based analogues against the sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 modification (PDB ID: 6ZYB) is discussed.

Results: Many heterocyclic-based derivatives show several residual interaction, affinity, and hydrogen bonding with sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 alteration which are identified by the investigation of in silico molecular docking analysis of such heterocyclic derivatives.

Conclusion: The dataset from the molecular docking study was used for additional optimum analysis, and the molecular descriptors were classified using a variety of machine learning classifiers, including the GB Classifier, CB Classifier, RF Classifier, SV Classifier, KNN Classifier, and Voting Classifier. The research presented here showed that heterocyclic derivatives may operate as potent antibacterial agents when combined with other compounds to produce highly efficient antibacterial agents.

« Previous
[1]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[2]
Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114(114), 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
[3]
Shah, V.; Bose, J.; Shah, R. Communication- new synthesis of 4-hydroxycoumarins. J. Org. Chem., 1960, 25(4), 677-678.
[http://dx.doi.org/10.1021/jo01074a630]
[4]
Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem., 2009, 17(9), 3229-3256.
[http://dx.doi.org/10.1016/j.bmc.2009.02.050] [PMID: 19299148]
[5]
Letafat, B.; Emami, S.; Mohammadhosseini, N.; Faramarzi, M.A.; Samadi, N.; Shafiee, A.; Foroumadi, A. Synthesis and antibacterial activity of new N-[2-(thiophen-3-yl)ethyl] piperazinyl quinolones. Chem. Pharm. Bull., 2007, 55(6), 894-898.
[http://dx.doi.org/10.1248/cpb.55.894] [PMID: 17541188]
[6]
Othman, D.I.A.; Selim, K.B.; El-Sayed, M.A.A.; Tantawy, A.S.; Amen, Y.; Shimizu, K.; Okauchi, T.; Kitamura, M. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives. Bioorg. Med. Chem., 2019, 27(19), 115026.
[http://dx.doi.org/10.1016/j.bmc.2019.07.042] [PMID: 31416740]
[7]
(a) Sharma, S.; Singh, S. Molecular docking study for binding affinity of 2H-thiopyrano[2,3-b]quinoline derivatives against CB1a. Interdiscip. Perspect. Infect. Dis., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/1618082] [PMID: 36655217];
(b) Sharma, S.; Mishra, A.K.; Singh, S. Molecular Docking Study of 2, 3, 4-trisubstituted-2, 3, 4, 9-Tetrahydrothiopyrano[2, 3-b] indole Derivatives with TRPV channels: Possible New Analgesics. ETJRI, 2022, V(I), 11-20.
[8]
(a) Sharma, S.; Singh, S. Synthetic routes to quinoline-based derivatives having potential anti-bacterial and anti-fungal properties. Curr. Org. Chem., 2022, 26(15), 1453-1469.
[http://dx.doi.org/10.2174/1385272827666221021140934];
(b) Sharma, S.; Yadav, D.; Singh, S. Quinoline-based anti-oncogenic molecules: Synthesis and biological evaluation. Med. Chem., 2023, 19.
[9]
Sharma, S.; Singh, K.; Singh, S. Synthetic strategies for quinoline based derivatives as potential bioactive heterocycles. Curr. Org. Synth., 2023, 20(6), 606-629.
[http://dx.doi.org/10.2174/1570179420666221004143910] [PMID: 36200204]
[10]
(a) Sharma, S.; Singh, S. The biological and pharmacological potentials of indole-based heterocycles. Lett. Org. Chem., 2023, 20(8), 711-729.
[http://dx.doi.org/10.2174/1570178620666230215121808];
(b) Sharma, S.; Monga, Y.; Gupta, A.; Singh, S. 2-Oxindole and related heterocycles: Synthetic methodologies for their natural products and related derivatives. RSC Advances, 2023, 13(21), 14249-14267.
[http://dx.doi.org/10.1039/D3RA02217J] [PMID: 37179999]
[11]
Arif Nadeem, M.; Thornton, A.W.; Hill, M.R.; Stride, J.A. A flexible copper based microporous metal–organic framework displaying selective adsorption of hydrogen over nitrogen. Dalton Trans., 2011, 40(13), 3398-3401.
[http://dx.doi.org/10.1039/c0dt01531h] [PMID: 21380476]
[12]
Hui, B.W.Q.; Chiba, S. Orthogonal synthesis of isoindole and isoquinoline derivatives from organic azides. Org. Lett., 2009, 11(3), 729-732.
[http://dx.doi.org/10.1021/ol802816k] [PMID: 19123787]
[13]
Köse, A.; Bal, Y.; Kishalı, N.H.; Şanlı-Mohamed, G.; Kara, Y. Synthesis and anticancer activity evaluation of new isoindole analogues. Med. Chem. Res., 2017, 26(4), 779-786.
[http://dx.doi.org/10.1007/s00044-017-1793-1]
[14]
Kokorekin, V.A.; Terent’ev, A.O.; Ramenskaya, G.V.; Grammatikova, N.É.; Rodionova, G.M.; Ilovaiskii, A.I. Synthesis and antifungal activity of arylthiocyanates. Pharm. Chem. J., 2013, 47(8), 422-425.
[http://dx.doi.org/10.1007/s11094-013-0973-7]
[15]
Philkhana, S.C.; Badmus, F.O.; Dos Reis, I.C.; Kartika, R. Recent advancements in pyrrole synthesis. Synthesis, 2021, 53(9), 1531-1555.
[http://dx.doi.org/10.1055/s-0040-1706713] [PMID: 34366491]
[16]
Kouznetsov, V.V.; Zacchino, S.A.; Sortino, M.; Vargas Méndez, L.Y.; Gupta, M.P. Cytotoxic and antifungal activities of diverse α-naphthylamine derivatives. Sci. Pharm., 2012, 80(4), 867-877.
[http://dx.doi.org/10.3797/scipharm.1209-03] [PMID: 23264936]
[17]
Amat, M.; Hadida, S.; Sathyanarayana, S.; Bosch, J. A new synthetic entry to the indolo[2,3-a]quinolizidine system. Electrophilic cyclizations on the indole ring from 2-(2-piperidyl) indoles. Tetr. Lett., 1996, 37(17), 3071-3074.
[18]
Schumacher, R.W.; Davidson, B.S. Synthesis of didemnolines A-D, N9-substituted β-carboline alkaloids from the marine ascidian Didemnum sp. Tetrahedron, 1999, 55(4), 935-942.
[http://dx.doi.org/10.1016/S0040-4020(98)01100-4]
[19]
Abdel-Wahab, B.F.; Awad, G.E.A.; Badria, F.A. Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. Eur. J. Med. Chem., 2011, 46(5), 1505-1511.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.062] [PMID: 21353349]
[20]
Listratova, A.; Voskressensky, L. Recent advances in the synthesis of hydrogenated azocine-containing¬ molecules. Synthesis, 2017, 49(17), 3801-3834.
[http://dx.doi.org/10.1055/s-0036-1589500]
[21]
Eissa, S.I.; Farrag, A.M.; Abbas, S.Y.; El Shehry, M.F.; Ragab, A.; Fayed, E.A.; Ammar, Y.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem., 2021, 110, 104803.
[http://dx.doi.org/10.1016/j.bioorg.2021.104803] [PMID: 33761314]
[22]
Mahmoodi, N.O.; Khalili, B.; Rezaeianzade, O.; Ghavidast, A. One-pot multicomponent synthesis of indol-3-yl-hydrazinyl thiazoles as antimicrobial agents. Res. Chem. Intermed., 2016, 42(8), 6531-6542.
[http://dx.doi.org/10.1007/s11164-016-2478-y]
[23]
Vaca, J.; Salazar, F.; Ortiz, A.; Sansinenea, E. Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study. J. Antibiot., 2020, 73(11), 798-802.
[http://dx.doi.org/10.1038/s41429-020-0333-2] [PMID: 32483303]
[24]
Azimi, T.; Maham, S.; Fallah, F.; Azimi, L.; Gholinejad, Z. Evaluating the antimicrobial resistance patterns among major bacterial pathogens isolated from clinical specimens taken from patients in Mofid Children’s Hospital, Tehran, Iran: 2013-2018. Infect. Drug Resist., 2019, 12, 2089-2102.
[http://dx.doi.org/10.2147/IDR.S215329] [PMID: 31410032]
[25]
Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.; Verma, A.; Choi, E. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[26]
Quasdorf, K.W.; Overman, L.E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature, 2014, 516(7530), 181-191.
[http://dx.doi.org/10.1038/nature14007] [PMID: 25503231]
[27]
Zhang, J.; Li, L.; Dan, W.; Li, J.; Zhang, Q.; Bai, H.; Wang, J. Synthesis and antimicrobial activities of 3-methyl-β-carboline derivatives. Nat. Prod. Commun., 2015, 10(6), 899-902.
[28]
Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Crit. Rev. Food Sci. Nutr., 2016, 56(13), 2223-2230.
[http://dx.doi.org/10.1080/10408398.2013.805316] [PMID: 25745811]
[29]
Zhang, C.P.; Chen, Q.Y.; Guo, Y.; Xiao, J.C.; Gu, Y.C. Progress in fluoroalkylation of organic compounds via sulfinatodehalogenation initiation system. Chem. Soc. Rev., 2012, 41(12), 4536-4559.
[http://dx.doi.org/10.1039/c2cs15352a] [PMID: 22511113]
[30]
Ladurner, A.; Schachner, D.; Schueller, K.; Pignitter, M.; Heiss, E.; Somoza, V.; Dirsch, V. Impact of trans-resveratrol-sulfates and -glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species. Molecules, 2014, 19(10), 16724-16736.
[http://dx.doi.org/10.3390/molecules191016724] [PMID: 25329867]
[31]
Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Mol. Modeling Annual, 2001, 7, 306-317.
[32]
(a) Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576];
(b) Biovia, D.S. Discovery studio visualizer; San Diego, CA, USA, 2017.
[33]
Lee, H.; Börgel, J.; Ritter, T. Carbon-fluorine reductive elimination from Nickel(III) complexes. Angew. Chem. Int. Ed., 2017, 56(24), 6966-6969.
[http://dx.doi.org/10.1002/anie.201701552] [PMID: 28493645]
[34]
Ökten, S.; Aydın, A.; Koçyiğit, Ü.M.; Çakmak, O.; Erkan, S.; Andac, C.A.; Taslimi, P.; Gülçin, İ. Quinoline‐based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Arch. Pharm., 2020, 353(9), 2000086.
[http://dx.doi.org/10.1002/ardp.202000086] [PMID: 32537757]
[35]
Lim, C.K.; Hemaroopini, S.; Gan, S.Y.; Loo, S.M.; Low, J.R.; Jong, V.Y.M.; Soo, H.C.; Leong, C.O.; Mai, C.W.; Chee, C.F. In vitro cytotoxic activity of isolated compounds from Malaysian Calophyllum species. Med. Chem. Res., 2016, 25(8), 1686-1694.
[http://dx.doi.org/10.1007/s00044-016-1606-y]
[36]
Hesse, R.H.; Barton, D.H.R.; Toh, H.T.; Pechet, M.M. Convenient synthesis of 5-fluorouracil. J. Org. Chem., 1972, 37(2), 329-330.
[http://dx.doi.org/10.1021/jo00967a037] [PMID: 5013354]
[37]
Ma, G.; Zancanella, M.; Oyola, Y.; Richardson, R.D.; Smith, J.W.; Romo, D. Total synthesis and comparative analysis of orlistat, valilactone, and a transposed orlistat derivative: Inhibitors of fatty acid synthase. Org. Lett., 2006, 8(20), 4497-4500.
[http://dx.doi.org/10.1021/ol061651o] [PMID: 16986934]
[38]
Lu, H.; Lin, J.B.; Liu, J.Y.; Xu, P.F. One-pot asymmetric synthesis of quaternary pyrroloindolones through a multicatalytic N-allylation/hydroacylation sequence. Chemistry, 2014, 20(37), 11659-11663.
[http://dx.doi.org/10.1002/chem.201402947] [PMID: 25079294]
[39]
Fako, V.E.; Zhang, J.T.; Liu, J.Y. Mechanism of orlistat hydrolysis by the thioesterase of human fatty acid synthase. ACS Catal., 2014, 4(10), 3444-3453.
[http://dx.doi.org/10.1021/cs500956m] [PMID: 25309810]
[40]
Staunton, J.; Wilkinson, B. Biosynthesis of erythromycin and rapamycin. Chem. Rev., 1997, 97(7), 2611-2630.
[http://dx.doi.org/10.1021/cr9600316] [PMID: 11851474]
[41]
Hagan, M.J.; Shenkar, R.; Srinath, A.; Romanos, S.G.; Stadnik, A.; Kahn, M.L.; Marchuk, D.A.; Girard, R.; Awad, I.A. Rapamycin in cerebral cavernous malformations: What doses to test in mice and humans. ACS Pharmacol. Transl. Sci., 2022, 5(5), 266-277.
[http://dx.doi.org/10.1021/acsptsci.2c00006] [PMID: 35592432]
[42]
Karginov, V. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J. A.C.S., 2010, 133(3), 420-423.
[http://dx.doi.org/10.1021/ja109630v] [PMID: 21162531]
[43]
Zhai, L.H.; Guo, L.H.; Luo, Y.H.; Ling, Y.; Sun, B.W. Effective laboratory-scale preparation of axitinib by Two CuI-catalyzed coupling reactions. Org. Process Res. Dev., 2015, 19(7), 849-857.
[http://dx.doi.org/10.1021/acs.oprd.5b00123]
[44]
Chekal, B.P.; Guinness, S.M.; Lillie, B.M.; McLaughlin, R.W.; Palmer, C.W.; Post, R.J.; Sieser, J.E.; Singer, R.A.; Sluggett, G.W.; Vaidyanathan, R.; Withbroe, G.J. Development of an efficient Pd-catalyzed coupling process for axitinib. Org. Process Res. Dev., 2014, 18(1), 266-274.
[http://dx.doi.org/10.1021/op400088k]
[45]
Qu, H.; Zhang, J.; Zhang, G.; Li, Z.; Liu, Y.; Wu, S.; Gong, J. Structural insights into the highly solvating system of axitinib via binary and ternary solvates. Cryst. Growth Des., 2022, 22(2), 1083-1093.
[http://dx.doi.org/10.1021/acs.cgd.1c01021]
[46]
Palakhachane, S.; Ketkaew, Y.; Chuaypen, N.; Sirirak, J.; Boonsombat, J.; Ruchirawat, S.; Tangkijvanich, P.; Suksamrarn, A.; Limpachayaporn, P. Synthesis of sorafenib analogues incorporating a 1,2,3-triazole ring and cytotoxicity towards hepatocellular carcinoma cell lines. Bioorg. Chem., 2021, 112, 104831.
[http://dx.doi.org/10.1016/j.bioorg.2021.104831] [PMID: 33831675]
[47]
Zhang, B.C.; Luo, B.Y.; Zou, J.J.; Wu, P.Y.; Jiang, J.L.; Le, J.Q.; Zhao, R.R.; Chen, L.; Shao, J.W. Co-delivery of sorafenib and CRISPR/Cas9 based on targeted core–shell hollow mesoporous organosilica nanoparticles for synergistic HCC therapy. ACS Appl. Mater. Interfaces, 2020, 12(51), 57362-57372.
[http://dx.doi.org/10.1021/acsami.0c17660] [PMID: 33301289]
[48]
Jiang, S.; Qin, Y.; Wu, S.; Xu, S.; Li, K.; Yang, P.; Zhao, K.; Lin, L.; Gong, J. Solubility correlation and thermodynamic analysis of sorafenib free base and sorafenib tosylate in monosolvents and binary solvent mixtures. J. Chem. Eng. Data, 2016, 62(1), 259-267.
[http://dx.doi.org/10.1021/acs.jced.6b00630]
[49]
Zhang, M.; Zhang, X.; Ho, C.T.; Huang, Q. Chemistry and health effect of tea polyphenol (−)-epigallocatechin 3- o -(3- o -methyl)gallate. J. Agric. Food Chem., 2019, 67(19), 5374-5378.
[http://dx.doi.org/10.1021/acs.jafc.8b04837] [PMID: 30346164]
[50]
Shimazu, R.; Anada, M.; Miyaguchi, A.; Nomi, Y.; Matsumoto, H. Evaluation of blood-brain barrier permeability of polyphenols, anthocyanins, and their metabolites. J. Agric. Food Chem., 2021, 69(39), 11676-11686.
[http://dx.doi.org/10.1021/acs.jafc.1c02898] [PMID: 34555897]
[51]
Ngueyem, T.A.; Brusotti, G.; Caccialanza, G.; Finzi, P.V. The genus Bridelia: A phytochemical and ethnopharmacological review. J. Ethnopharmacol., 2009, 124(3), 339-349.
[http://dx.doi.org/10.1016/j.jep.2009.05.019] [PMID: 19477259]
[52]
Ho, H.Y.; Cheng, M.L.; Weng, S.F.; Leu, Y.L.; Chiu, D.T.Y. Antiviral effect of epigallocatechin gallate on enterovirus 71. J. Agric. Food Chem., 2009, 57(14), 6140-6147.
[http://dx.doi.org/10.1021/jf901128u] [PMID: 19537794]
[53]
Du, J.Z.; Du, X.J.; Mao, C.Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc., 2011, 133(44), 17560-17563.
[http://dx.doi.org/10.1021/ja207150n] [PMID: 21985458]
[54]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[55]
Mielczarek-Puta, M.; Struga, M.; Roszkowski, P. Synthesis and anticancer effects of conjugates of doxorubicin and unsaturated fatty acids (LNA and DHA). Med. Chem. Res., 2019, 28(12), 2153-2164.
[http://dx.doi.org/10.1007/s00044-019-02443-0]
[56]
Ribeiro, J.A.; Silva, F.; Pereira, C.M. Electrochemical study of the anticancer drug daunorubicin at a water/oil interface: drug lipophilicity and quantification. Anal. Chem., 2013, 85(3), 1582-1590.
[http://dx.doi.org/10.1021/ac3028245] [PMID: 23301839]
[57]
Hutchinson, C.R. Biosynthetic studies of daunorubicin and tetracenomycin C. Chem. Rev., 1997, 97(7), 2525-2536.
[http://dx.doi.org/10.1021/cr960022x] [PMID: 11851469]
[58]
Oberlies, N.H.; Kroll, D.J. Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod., 2004, 67(2), 129-135.
[http://dx.doi.org/10.1021/np030498t] [PMID: 14987046]
[59]
Holton, R.A.; Kim, H.B.; Somoza, C.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 2. Completion of the C and D rings. J. Am. Chem. Soc., 1994, 116(4), 1599-1600.
[http://dx.doi.org/10.1021/ja00083a067]
[60]
Wall, E. Paclitaxel: From Discovery to Clinic ACS Symposium Series, 2009.
[http://dx.doi.org/10.1021/bk-1995-0583.ch002]
[61]
Nicolaou, K.C.; Chakraborty, T.K.; Piscopio, A.D.; Minowa, N.; Bertinato, P. Total synthesis of rapamycin. J. Am. Chem. Soc., 1993, 115(10), 4419-4420.
[http://dx.doi.org/10.1021/ja00063a093]
[62]
Ley, S.V.; Tackett, M.N.; Maddess, M.L.; Anderson, J.C.; Brennan, P.E.; Cappi, M.W.; Heer, J.P.; Helgen, C.; Kori, M.; Kouklovsky, C.; Marsden, S.P.; Norman, J.; Osborn, D.P.; Palomero, M.Á.; Pavey, J.B.J.; Pinel, C.; Robinson, L.A.; Schnaubelt, J.; Scott, J.S.; Spilling, C.D.; Watanabe, H.; Wesson, K.E.; Willis, M.C. Total synthesis of rapamycin. Chemistry, 2009, 15(12), 2874-2914.
[http://dx.doi.org/10.1002/chem.200801656] [PMID: 19204960]
[63]
Zhang, L.; Xia, W.; Wang, B.; Luo, Y.; Lu, W. Convenient synthesis of sorafenib and its derivatives. Synth. Commun., 2011, 41(21), 3140-3146.
[http://dx.doi.org/10.1080/00397911.2010.517372]
[64]
Li, L.; Chan, T.H. Enantioselective synthesis of epigallocatechin-3-gallate (EGCG), the active polyphenol component from green tea. Org. Lett., 2001, 3(5), 739-741.
[http://dx.doi.org/10.1021/ol000394z] [PMID: 11259050]
[65]
Chen, C.R.; Fon, M.T.; Fujiwara, A.N.; Henry, D.W.; Leaffer, M.A.; Lee, W.W.; Smith, T.H. Synthesis of daunorubicin‐14‐ 14 C and adriamycin‐14‐ 14 C. J. Labelled Comp. Radiopharm., 1978, 14(1), 111-117.
[http://dx.doi.org/10.1002/jlcr.2580140115]
[66]
Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Claiborne, C.F.; Renaud, J.; Couladouros, E.A.; Paulvannan, K.; Sorensen, E.J. Total synthesis of taxol. Nature, 1994, 367(6464), 630-634.
[http://dx.doi.org/10.1038/367630a0] [PMID: 7906395]
[67]
Sun, Z.; Zheng, L.; Wang, K.; Huai, Z.; Liu, Z. Primary vs secondary: Directionalized guest coordination in β-cyclodextrin derivatives. Carbohydr. Polym., 2022, 297, 120050.
[http://dx.doi.org/10.1016/j.carbpol.2022.120050] [PMID: 36184151]
[68]
Sun, Z.; Huai, Z.; He, Q.; Liu, Z. A general picture of cucurbit[8]uril host-guest binding. J. Chem. Inf. Model., 2021, 61(12), 6107-6134.
[http://dx.doi.org/10.1021/acs.jcim.1c01208] [PMID: 34818004]
[69]
Liu, X.; Zheng, L.; Qin, C.; Cong, Y.; Zhang, J.; Sun, Z. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: III. Force-field comparison, three-trajectory realization and further dielectric augmentation. Molecules, 2023, 28(6), 2767.
[http://dx.doi.org/10.3390/molecules28062767] [PMID: 36985739]
[70]
Himmelstoß, M.; Erharter, K.; Renard, E.; Ennifar, E.; Kreutz, C.; Micura, R. 2′- O -Trifluoromethylated RNA - A powerful modification for RNA chemistry and NMR spectroscopy. Chem. Sci., 2020, 11(41), 11322-11330.
[http://dx.doi.org/10.1039/D0SC04520A] [PMID: 34094374]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy