Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation

Author(s): Parul Grover, Kulbhushan Thakur, Monika Bhardwaj, Lovekesh Mehta, Soom Nath Raina and Vijay Rani Rajpal*

Volume 24, Issue 12, 2024

Published on: 25 January, 2024

Page: [1050 - 1074] Pages: 25

DOI: 10.2174/0115680266282518231231075311

Price: $65

Abstract

Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.

Graphical Abstract

[1]
Rahman, M.A.; Hannan, M.A.; Dash, R.; Rahman, M.D.H.; Islam, R.; Uddin, M.J.; Sohag, A.A.M.; Rahman, M.H.; Rhim, H. Phytochemicals as a complement to cancer chemotherapy: Pharmacological modulation of the autophagy-apoptosis pathway. Front. Pharmacol., 2021, 12, 639628.
[http://dx.doi.org/10.3389/fphar.2021.639628] [PMID: 34025409]
[2]
Bhatia, K.; Bhumika; Das, A. Combinatorial drug therapy in cancer: New insights. Life Sci., 2020, 258, 118134.
[http://dx.doi.org/10.1016/j.lfs.2020.118134] [PMID: 32717272]
[3]
Sanford, N.N.; Sher, D.J.; Xu, X.; Ahn, C.; D’Amico, A.V.; Aizer, A.A.; Mahal, B.A. Alcohol use among patients with cancer and survivors in the United States, 2000–2017. J. Natl. Compr. Canc. Netw., 2020, 18(1), 69-79.
[http://dx.doi.org/10.6004/jnccn.2019.7341] [PMID: 31910381]
[4]
Khaltaev, N.; Axelrod, S. Global lung cancer mortality trends and lifestyle modifications: Peliminary analysis. Chin. Med. J., 2020, 133(13), 1526-1532.
[http://dx.doi.org/10.1097/CM9.0000000000000918] [PMID: 32568874]
[5]
Hartwig, A.; Arand, M.; Epe, B.; Guth, S.; Jahnke, G.; Lampen, A.; Martus, H.J.; Monien, B.; Rietjens, I.M.C.M.; Schmitz-Spanke, S.; Schriever-Schwemmer, G.; Steinberg, P.; Eisenbrand, G. Mode of action-based risk assessment of genotoxic carcinogens. Arch. Toxicol., 2020, 94(6), 1787-1877.
[http://dx.doi.org/10.1007/s00204-020-02733-2] [PMID: 32542409]
[6]
Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; O’Sullivan, D.E.; Booth, C.M.; Sullivan, R.; Aggarwal, A. Mortality due to cancer treatment delay: Systematic review and meta-analysis. bmj, 2020, 371
[7]
Henley, S.J.; Ward, E.M.; Scott, S.; Ma, J.; Anderson, R.N.; Firth, A.U.; Thomas, C.C.; Islami, F.; Weir, H.K.; Lewis, D.R.; Sherman, R.L.; Wu, M.; Benard, V.B.; Richardson, L.C.; Jemal, A.; Cronin, K.; Kohler, B.A. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer, 2020, 126(10), 2225-2249.
[http://dx.doi.org/10.1002/cncr.32802] [PMID: 32162336]
[8]
Markham, M.J.; Wachter, K.; Agarwal, N.; Bertagnolli, M.M.; Chang, S.M.; Dale, W.; Diefenbach, C.S.M.; Rodriguez-Galindo, C.; George, D.J.; Gilligan, T.D.; Harvey, R.D.; Johnson, M.L.; Kimple, R.J.; Knoll, M.A.; LoConte, N.; Maki, R.G.; Meisel, J.L.; Meyerhardt, J.A.; Pennell, N.A.; Rocque, G.B.; Sabel, M.S.; Schilsky, R.L.; Schneider, B.J.; Tap, W.D.; Uzzo, R.G.; Westin, S.N. Clinical cancer advances 2020: Annual report on progress against cancer from the American society of clinical oncology. J. Clin. Oncol., 2020, 38(10), 1081.
[http://dx.doi.org/10.1200/JCO.19.03141] [PMID: 32013670]
[9]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2018, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[10]
Sak, K. Site-specific anticancer effects of dietary flavonoid quercetin. Nutr. Cancer, 2014, 66(2), 177-193.
[http://dx.doi.org/10.1080/01635581.2014.864418] [PMID: 24377461]
[11]
Alfarouk, K.O.; Stock, C.M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.H.H.; Mohammed, O.Y.; Elhassan, G.O.; Harguindey, S.; Reshkin, S.J.; Ibrahim, M.E.; Rauch, C. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int., 2015, 15(1), 71.
[http://dx.doi.org/10.1186/s12935-015-0221-1] [PMID: 26180516]
[12]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[13]
Grover, P.; Bhardwaj, M.; Mehta, L.; Kapoor, G.; Chawla, P.A. Current developments in the pyran-based analogues as anticancer agents. Anticancer. Agents Med. Chem., 2022, 22(19), 3239-3268.
[http://dx.doi.org/10.2174/1871520621666211119090302] [PMID: 34802409]
[14]
Aung, T.; Qu, Z.; Kortschak, R.; Adelson, D. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), 656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[15]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[16]
George, B.P.; Chandran, R.; Abrahamse, H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 2021, 10(9), 1455.
[http://dx.doi.org/10.3390/antiox10091455] [PMID: 34573087]
[17]
Ahmed, M.B.; Islam, S.U.; Alghamdi, A.A.A.; Kamran, M.; Ahsan, H.; Lee, Y.S. Phytochemicals as chemo-preventive agents and signaling molecule modulators: Current role in cancer therapeutics and inflammation. Int. J. Mol. Sci., 2022, 23(24), 15765.
[http://dx.doi.org/10.3390/ijms232415765] [PMID: 36555406]
[18]
Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401.
[http://dx.doi.org/10.1016/j.gendis.2022.02.007] [PMID: 37397557]
[19]
Jäger, U.; Barcellini, W.; Broome, C.M.; Gertz, M.A.; Hill, A.; Hill, Q.A.; Jilma, B.; Kuter, D.J.; Michel, M.; Montillo, M.; Röth, A.; Zeerleder, S.S.; Berentsen, S. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the first international consensus meeting. Blood Rev., 2020, 41, 100648.
[http://dx.doi.org/10.1016/j.blre.2019.100648] [PMID: 31839434]
[20]
Begna, K.; Abdelatif, A.; Schwager, S.; Hanson, C.; Pardanani, A.; Tefferi, A. Busulfan for the treatment of myeloproliferative neoplasms: The mayo clinic experience. Blood Cancer J., 2016, 6(5), e427.
[http://dx.doi.org/10.1038/bcj.2016.34] [PMID: 27232929]
[21]
Ho, G.Y.; Woodward, N.; Coward, J.I.G. Cisplatin versus carboplatin: Comparative review of therapeutic management in solid malignancies. Crit. Rev. Oncol. Hematol., 2016, 102, 37-46.
[http://dx.doi.org/10.1016/j.critrevonc.2016.03.014] [PMID: 27105947]
[22]
Yerram, P.; Reiss, S.N.; Modelevsky, L.; Gavrilovic, I.T.; Kaley, T. Evaluation of toxicity of carmustine with or without bevacizumab in patients with recurrent or progressive high grade gliomas. J. Neurooncol., 2019, 145(1), 57-63.
[http://dx.doi.org/10.1007/s11060-019-03266-0] [PMID: 31432377]
[23]
Lee, H.Z.; Miller, B.W.; Kwitkowski, V.E.; Ricci, S.; DelValle, P.; Saber, H.; Grillo, J.; Bullock, J.; Florian, J.; Mehrotra, N.; Ko, C.W.; Nie, L.; Shapiro, M.; Tolnay, M.; Kane, R.C.; Kaminskas, E.; Justice, R.; Farrell, A.T.; Pazdur, R. U.S. Food and drug administration approval: Obinutuzumab in combination with chlorambucil for the treatment of previously untreated chronic lymphocytic leukemia. Clin. Cancer Res., 2014, 20(15), 3902-3907.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0516] [PMID: 24824310]
[24]
Raudenska, M.; Balvan, J.; Fojtu, M.; Gumulec, J.; Masarik, M. Unexpected therapeutic effects of cisplatin. Metallomics, 2019, 11(7), 1182-1199.
[http://dx.doi.org/10.1039/c9mt00049f] [PMID: 31098602]
[25]
Casak, S.J.; Lemery, S.J.; Shen, Y.L.; Rothmann, M.D.; Khandelwal, A.; Zhao, H.; Davis, G.; Jarral, V.; Keegan, P.; Pazdur, R. U.S. Food and drug administration approval: Rituximab in combination with fludarabine and cyclophosphamide for the treatment of patients with chronic lymphocytic leukemia. Oncologist, 2011, 16(1), 97-104.
[http://dx.doi.org/10.1634/theoncologist.2010-0306] [PMID: 21212432]
[26]
Velho, T. Metastatic melanoma :A review of current and future drugs. Drugs Context, 2012, 2012, 1-17.
[http://dx.doi.org/10.7573/dic.212242] [PMID: 24432031]
[27]
Grover, P.; Bhardwaj, M.; Kapoor, G.; Mehta, L.; Ghai, R.; Nagarajan, K. Advances on quinazoline based congeners for anticancer potential. Curr. Org. Chem., 2021, 25(6), 695-723.
[http://dx.doi.org/10.2174/1385272825666210212121056]
[28]
Dhillon, S. Decitabine/cedazuridine: First approval. Drugs, 2020, 80(13), 1373-1378.
[http://dx.doi.org/10.1007/s40265-020-01389-7] [PMID: 32860582]
[29]
Cagel, M.; Grotz, E.; Bernabeu, E.; Moretton, M.A.; Chiappetta, D.A. Doxorubicin: Nanotechnological overviews from bench to bedside. Drug Discov. Today, 2017, 22(2), 270-281.
[http://dx.doi.org/10.1016/j.drudis.2016.11.005] [PMID: 27890669]
[30]
Buzdar, A.U.; Suman, V.J.; Meric-Bernstam, F.; Leitch, A.M.; Ellis, M.J.; Boughey, J.C.; Unzeitig, G.; Royce, M.; McCall, L.M.; Ewer, M.S.; Hunt, K.K. Fluorouracil, epirubicin, and cyclophosphamide (FEC-75) followed by paclitaxel plus trastuzumab versus paclitaxel plus trastuzumab followed by FEC-75 plus trastuzumab as neoadjuvant treatment for patients with HER2-positive breast cancer (Z1041): A randomised, controlled, phase 3 trial. Lancet Oncol., 2013, 14(13), 1317-1325.
[http://dx.doi.org/10.1016/S1470-2045(13)70502-3] [PMID: 24239210]
[31]
Hande, K.R. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer, 1998, 34(10), 1514-1521.
[http://dx.doi.org/10.1016/S0959-8049(98)00228-7] [PMID: 9893622]
[32]
Faulds, D.; Balfour, J.A.; Chrisp, P.; Langtry, H.D. Mitoxantrone. Drugs, 1991, 41(3), 400-449.
[http://dx.doi.org/10.2165/00003495-199141030-00007] [PMID: 1711446]
[33]
Matz, E.L.; Hsieh, M.H. Review of advances in uroprotective agents for cyclophosphamide-and ifosfamide-induced hemorrhagic cystitis. Urology, 2017, 100, 16-19.
[http://dx.doi.org/10.1016/j.urology.2016.07.030] [PMID: 27566144]
[34]
de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254.
[http://dx.doi.org/10.1007/s40262-018-0644-7] [PMID: 29520731]
[35]
KuKanich, B.; Warner, M.; Hahn, K. Analysis of lomustine drug content in FDA-approved and compounded lomustine capsules. J. Am. Vet. Med. Assoc., 2017, 250(3), 322-326.
[http://dx.doi.org/10.2460/javma.250.3.322] [PMID: 28117638]
[36]
Chen, Y.; Jia, Y.; Song, W.; Zhang, L. Therapeutic potential of nitrogen mustard based hybrid molecules. Front. Pharmacol., 2018, 9, 1453.
[http://dx.doi.org/10.3389/fphar.2018.01453] [PMID: 30618747]
[37]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11(S5)(Suppl. 5), 87.
[http://dx.doi.org/10.1186/s12918-017-0464-7] [PMID: 28984210]
[38]
Crooke, S.T.; Bradner, W.T. Mitomycin C: A review. Cancer Treat. Rev., 1976, 3(3), 121-139.
[http://dx.doi.org/10.1016/S0305-7372(76)80019-9] [PMID: 786455]
[39]
Fox, E.J. Mechanism of action of mitoxantrone. Neurology, 2004, 63(12)(Suppl. 6), S15-S18.
[PMID: 15623664]
[40]
Stein, A.; Arnold, D. Oxaliplatin: A review of approved uses. Expert Opin. Pharmacother., 2012, 13(1), 125-137.
[http://dx.doi.org/10.1517/14656566.2012.643870] [PMID: 22149372]
[41]
Mutter, N.; Stupp, R. Temozolomide: A milestone in neuro-oncology and beyond? Expert Rev. Anticancer Ther., 2006, 6(8), 1187-1204.
[http://dx.doi.org/10.1586/14737140.6.8.1187] [PMID: 16925485]
[42]
Garst, J. Topotecan: An evolving option in the treatment of relapsed small cell lung cancer. Ther. Clin. Risk Manag., 2007, 3(6), 1087-1095.
[PMID: 18516270]
[43]
Kokolo, M.B.; Fergusson, D.; O’Neill, J.; Tay, J.; Tinmouth, A.T.; Stewart, D.; Bredeson, C. Effectiveness and safety of thiotepa as conditioning treatment prior to stem cell transplant in patients with central nervous system lymphoma. Leuk. Lymphoma, 2014, 55(12), 2712-2720.
[http://dx.doi.org/10.3109/10428194.2014.889825] [PMID: 24491026]
[44]
D’Incalci, M.; Badri, N.; Galmarini, C.M.; Allavena, P. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br. J. Cancer, 2014, 111(4), 646-650.
[http://dx.doi.org/10.1038/bjc.2014.149] [PMID: 24755886]
[45]
Broen, J.C.A.; van Laar, J.M. Mycophenolate mofetil, azathioprine and tacrolimus: Mechanisms in rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 167-178.
[http://dx.doi.org/10.1038/s41584-020-0374-8] [PMID: 32055040]
[46]
Rosenberg, J.D.; Burian, C.; Waalen, J.; Saven, A. Clinical characteristics and long-term outcome of young hairy cell leukemia patients treated with cladribine: A single-institution series. Blood, 2014, 123(2), 177-183.
[http://dx.doi.org/10.1182/blood-2013-06-508754] [PMID: 24192579]
[47]
Zhenchuk, A.; Lotfi, K.; Juliusson, G.; Albertioni, F. Mechanisms of anti-cancer action and pharmacology of clofarabine. Biochem. Pharmacol., 2009, 78(11), 1351-1359.
[http://dx.doi.org/10.1016/j.bcp.2009.06.094] [PMID: 19576186]
[48]
Ricci, F.; Tedeschi, A.; Morra, E.; Montillo, M. Fludarabine in the treatment of chronic lymphocytic leukemia: A review. Ther. Clin. Risk Manag., 2009, 5(1), 187-207.
[PMID: 19436622]
[49]
Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol., 2006, 17(Suppl. 5), v7-v12.
[http://dx.doi.org/10.1093/annonc/mdj941] [PMID: 16807468]
[50]
Fan, P.O.L.; Leung, K.T.; Chan, K.Y.Y.; Leung, A.W.K.; Lam, G.K.S.; Chow, T.T.W.; Cheng, F.W.T.; Yuen, L.Y.P.; Moriyama, T.; Yang, J.J.; Li, C.K. ABCC4, ITPA, NUDT15, TPMT and their interaction as genetic predictors of 6-mercaptopurine intolerance in chinese patients with acute lymphoblastic leukemia. Pediatr. Hematol. Oncol., 2022, 39(3), 254-266.
[http://dx.doi.org/10.1080/08880018.2021.1973628] [PMID: 34665987]
[51]
Amer-Salas, N.; González-Morcillo, G.; Rodríguez-Camacho, J.M.; Cladera-Serra, A. Nelarabine-associated myelopathy in a patient with acute lymphoblastic leukaemia: Case report. J. Oncol. Pharm. Pract., 2021, 27(1), 244-249.
[http://dx.doi.org/10.1177/1078155220929747] [PMID: 32517638]
[52]
Kempin, S.; Sun, Z.; Kay, N.E.; Paietta, E.M.; Mazza, J.J.; Ketterling, R.P.; Frankfurt, O.; Claxton, D.F.; Saltzman, J.N.; Srkalovic, G.; Callander, N.S.; Gross, G.; Tallman, M.S. Pentostatin, cyclophosphamide, and rituximab followed by alemtuzumab for relapsed or refractory chronic lymphocytic leukemia: A phase 2 trial of the ECOG-Acrin Cancer Research Group (E2903). Acta Haematol., 2019, 142(4), 224-232.
[http://dx.doi.org/10.1159/000500164] [PMID: 31336367]
[53]
Florin, T.H.; Duley, J.A. Therapeutic drug monitoring for IBD children on thioguanine. J. Pediatr. Gastroenterol. Nutr., 2023, 77(3), e64-e65.
[http://dx.doi.org/10.1097/MPG.0000000000003870] [PMID: 37346029]
[54]
Yang, B.; Xie, X.; Lv, D.; Hu, J.; Chen, Y.; Wu, Z.; Luo, S.; Zhang, S. Capecitabine induces hand-foot syndrome through elevated thymidine phosphorylase-mediated locoregional toxicity and GSDME-driven pyroptosis that can be relieved by tipiracil. Br. J. Cancer, 2023, 128(2), 219-231.
[http://dx.doi.org/10.1038/s41416-022-02039-3] [PMID: 36347964]
[55]
Consoli, G.M.L.; Giuffrida, M.L.; Zimbone, S.; Ferreri, L.; Maugeri, L.; Palmieri, M.; Satriano, C.; Forte, G.; Petralia, S. Green light-triggerable chemo-photothermal activity of cytarabine-loaded polymer carbon dots: mechanism and preliminary in vitro evaluation. ACS Appl. Mater. Interfaces, 2023, 15(4), 5732-5743.
[http://dx.doi.org/10.1021/acsami.2c22500] [PMID: 36688816]
[56]
Zhang, Y.; Chen, L.; Hu, G.Q.; Zhang, N.; Zhu, X.D.; Yang, K.Y.; Jin, F.; Shi, M.; Chen, Y.P.; Hu, W.H.; Cheng, Z.B.; Wang, S.Y.; Tian, Y.; Wang, X.C.; Sun, Y.; Li, J.G.; Li, W.F.; Li, Y.H.; Tang, L.L.; Mao, Y.P.; Zhou, G.Q.; Sun, R.; Liu, X.; Guo, R.; Long, G.X.; Liang, S.Q.; Li, L.; Huang, J.; Long, J.H.; Zang, J.; Liu, Q.D.; Zou, L.; Su, Q.F.; Zheng, B.M.; Xiao, Y.; Guo, Y.; Han, F.; Mo, H.Y.; Lv, J.W.; Du, X.J.; Xu, C.; Liu, N.; Li, Y.Q.; Chua, M.L.K.; Xie, F.Y.; Sun, Y.; Ma, J. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N. Engl. J. Med., 2019, 381(12), 1124-1135.
[http://dx.doi.org/10.1056/NEJMoa1905287] [PMID: 31150573]
[57]
De Luca, O.; Salerno, G.; De Bernardini, D.; Torre, M.S.; Simmaco, M.; Lionetto, L.; Gentile, G.; Borro, M. Predicting dihydropyrimidine dehydrogenase deficiency and related 5-fluorouracil toxicity: Opportunities and challenges of DPYD exon sequencing and the role of phenotyping assays. Int. J. Mol. Sci., 2022, 23(22), 13923.
[http://dx.doi.org/10.3390/ijms232213923] [PMID: 36430399]
[58]
Bi, Y.; Wang, Y.; Zhang, W.; Lu, H.; Ren, J.; Han, X. Preliminary outcomes of DEB-TACE loaded with raltitrexed in the treatment of unresectable or recurrent hepatocellular carcinoma. Cancer Imaging, 2023, 23(1), 19.
[http://dx.doi.org/10.1186/s40644-023-00534-1] [PMID: 36814327]
[59]
Zhang, S.C.; Yu, M.Y.; Xi, L.; Zhang, J.X. Tegafur deteriorates established cardiovascular atherosclerosis in colon cancer: A case report and review of the literature. World J. Clin. Cases, 2019, 7(1), 89-94.
[http://dx.doi.org/10.12998/wjcc.v7.i1.89] [PMID: 30637257]
[60]
Gesundheit, B.; Shapira, M.Y.; Resnick, I.; Bitan, M.; Ben-Yehuda, D.; Slavin, S.; Or, R. Trisenox (Arsenic Trioxide) in the treatment for multiple myeloma after bone marrow transplantation. Blood, 2005, 106(11), 5128.
[http://dx.doi.org/10.1182/blood.V106.11.5128.5128]
[61]
Tshilolo, L.; Tomlinson, G.; Williams, T.N.; Santos, B.; Olupot-Olupot, P.; Lane, A.; Aygun, B.; Stuber, S.E.; Latham, T.S.; McGann, P.T.; Ware, R.E. Hydroxyurea for children with sickle cell anemia in sub-Saharan Africa. N. Engl. J. Med., 2019, 380(2), 121-131.
[http://dx.doi.org/10.1056/NEJMoa1813598] [PMID: 30501550]
[62]
Kuriakose, G.C.; Arathi, B.P.; Divya Lakshmanan, M.; Jiby, M.V.; Gudde, R.S.; Jayabhaskaran, C. Sub-acute toxicity assessment of taxol isolated from Fusarium solani, an endophytic fungus of Taxus brevifolia, in wistar rats and analyzing its cytotoxicity and apoptotic potential in lung cancer cells. Front. Oncol., 2020, 10, 538865.
[http://dx.doi.org/10.3389/fonc.2020.538865] [PMID: 33117679]
[63]
Bee, H. Ixempra and neuropathy. Sign, 2018, 5, 35.
[64]
Ranganathan, P. Monitoring methotrexate toxicity: Are we being over-vigilant. bmj, 2023, 30, 381.
[65]
Vogelzang, N.J.; Rusthoven, J.J.; Symanowski, J.; Denham, C.; Kaukel, E.; Ruffie, P.; Gatzemeier, U.; Boyer, M.; Emri, S.; Manegold, C.; Niyikiza, C.; Paoletti, P. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol., 2023, 41(12), 2125-2133.
[http://dx.doi.org/10.1200/JCO.22.02542] [PMID: 37068377]
[66]
Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One, 2017, 12(11), e0187925.
[http://dx.doi.org/10.1371/journal.pone.0187925] [PMID: 29121120]
[67]
da Costa, R.; Passos, G.F.; Quintão, N.L.M.; Fernandes, E.S.; Maia, J.R.L.C.B.; Campos, M.M.; Calixto, J.B. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br. J. Pharmacol., 2020, 177(14), 3127-3146.
[http://dx.doi.org/10.1111/bph.15086] [PMID: 32352155]
[68]
Arora, R.D.; Menezes, R.G. Vinca Alkaloid Toxicity. In: In: StatPearls; StatPearls Publishing: Treasure Island, 2023.
[69]
Wu, J.; Liu, Z. Progress in the management of acute colchicine poisoning in adults. Intern. Emerg. Med., 2022, 17(7), 2069-2081.
[http://dx.doi.org/10.1007/s11739-022-03079-6] [PMID: 36028733]
[70]
Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem., 2013, 1, 168-182.
[71]
Saklani, A.; Kutty, S. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13(3-4), 161-171.
[http://dx.doi.org/10.1016/j.drudis.2007.10.010] [PMID: 18275914]
[72]
Elrayess, R.A.; Gad El-Hak, H.N. Anticancer natural products: A Review. Cancer Stud. Mol. Med., 2019, 5(1), 11-22.
[http://dx.doi.org/10.17140/CSMMOJ-5-127]
[73]
Palmirotta, R.; Lovero, D.; Cafforio, P.; Felici, C.; Mannavola, F.; Pellè, E.; Quaresmini, D.; Tucci, M.; Silvestris, F. Liquid biopsy of cancer: A multimodal diagnostic tool in clinical oncology. Ther. Adv. Med. Oncol., 2018, 10
[http://dx.doi.org/10.1177/1758835918794630] [PMID: 30181785]
[74]
Kutova, O.; Guryev, E.; Sokolova, E.; Alzeibak, R.; Balalaeva, I. Targeted delivery to tumors: Multidirectional strategies to improve treatment efficiency. Cancers, 2019, 11(1), 68.
[http://dx.doi.org/10.3390/cancers11010068] [PMID: 30634580]
[75]
Yadav, R.; Das, P.P.; Sharma, S.; Sengupta, S.; Kumar, D.; Sagar, R. Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment. Med. Oncol., 2023, 40(12), 347.
[http://dx.doi.org/10.1007/s12032-023-02195-3] [PMID: 37930458]
[76]
Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. In: In Seminars in Cancer Biology; Academic Press, 2022.
[77]
Feng, Y.; Cao, Y.; Singh, R.; Janjua, T.I.; Popat, A. Silica nanoparticles for brain cancer. Exp Opin Drug Del., 2023.
[78]
Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.B.; Cai, L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther., 2023, 8(1), 418.
[http://dx.doi.org/10.1038/s41392-023-01642-x] [PMID: 37919282]
[79]
Singh, S.; Sachan, K.; Verma, S.; Singh, N.; Singh, P.K. Cubosomes: An emerging and promising drug delivery system for enhancing cancer therapy. Curr. Pharm. Biotechnol., 2024.
[PMID: 37929730]
[80]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[81]
Zaman, A.; Wu, W.; Bivona, T.G. Targeting oncogenic BRAF: Past, present, and future. Cancers, 2019, 11(8), 1197.
[http://dx.doi.org/10.3390/cancers11081197] [PMID: 31426419]
[82]
André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940.
[http://dx.doi.org/10.1056/NEJMoa1813904] [PMID: 31091374]
[83]
Kalra, R.S.; Bapat, S.A. Springer; New York: Proteomics to predict loss of RXR-γ during progression of epithelial ovarian cancer. Methods Mol. Biol., 2019, 1-14.
[PMID: 31359385]
[84]
de la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, 178, 132-140.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.002] [PMID: 28435091]
[85]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[86]
Hilchie, A.L.; Hoskin, D.W.; Power Coombs, M.R. Power Coombs M.R. Anticancer activities of natural and synthetic peptides. Adv. Exp. Med. Biol., 2019, 1117, 131-147.
[http://dx.doi.org/10.1007/978-981-13-3588-4_9] [PMID: 30980357]
[87]
Mwangi, J.; Hao, X.; Lai, R.; Zhang, Z.Y. Antimicrobial peptides: New hope in the war against multidrug resistance. Zool. Res., 2019, 40(6), 488-505.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2019.062] [PMID: 31592585]
[88]
Qin, Y.; Qin, Z.D.; Chen, J.; Cai, C.G.; Li, L.; Feng, L.Y.; Wang, Z.; Duns, G.J.; He, N.Y.; Chen, Z.S.; Luo, X.F. From antimicrobial to anticancer peptides: The transformation of peptides. Recent Patents Anticancer Drug Discov., 2019, 14(1), 70-84.
[http://dx.doi.org/10.2174/1574892814666190119165157] [PMID: 30663573]
[89]
Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, 11(7), 3919-3931.
[PMID: 31396309]
[90]
Roudi, R.; Syn, N.L.; Roudbary, M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: A comprehensive overview. Front. Immunol., 2017, 8, 1320.
[http://dx.doi.org/10.3389/fimmu.2017.01320] [PMID: 29081781]
[91]
Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules, 2020, 25(12), 2850.
[http://dx.doi.org/10.3390/molecules25122850] [PMID: 32575664]
[92]
Khare, T.; Anand, U.; Dey, A.; Assaraf, Y.G.; Chen, Z.S.; Liu, Z.; Kumar, V. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front. Pharmacol., 2021, 12, 720726.
[http://dx.doi.org/10.3389/fphar.2021.720726] [PMID: 34366872]
[93]
van Harten, R.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H. Cathelicidins: Immunomodulatory antimicrobials. Vaccines, 2018, 6(3), 63.
[http://dx.doi.org/10.3390/vaccines6030063] [PMID: 30223448]
[94]
Wang, G.; Narayana, J.L.; Mishra, B.; Zhang, Y.; Wang, F.; Wang, C.; Zarena, D.; Lushnikova, T.; Wang, X. Design of antimicrobial peptides: Progress made with human cathelicidin LL-37. Adv. Exp. Med. Biol., 2019, 1117, 215-240.
[http://dx.doi.org/10.1007/978-981-13-3588-4_12] [PMID: 30980360]
[95]
Chauhan, S.; Dhawan, D.K.; Saini, A.; Preet, S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol. Res., 2021, 167, 105529.
[http://dx.doi.org/10.1016/j.phrs.2021.105529] [PMID: 33675962]
[96]
Dolkar, T.; Trinidad, C.M.; Nelson, K.C.; Amaria, R.N.; Nagarajan, P.; Torres-Cabala, C.A.; Ivan, D.; Prieto, V.G.; Tetzlaff, M.T.; Curry, J.L.; Aung, P.P. Dermatologic toxicity from novel therapy using antimicrobial peptide LL-37 in melanoma: A detailed examination of the clinicopathologic features. J. Cutan. Pathol., 2018, 45(7), 539-544.
[http://dx.doi.org/10.1111/cup.13262] [PMID: 29665030]
[97]
Divyashree, M.; Mani, M.K.; Reddy, D.; Kumavath, R.; Ghosh, P.; Azevedo, V.; Barh, D. Clinical applications of antimicrobial peptides (AMPs):where do we stand now? Protein Pept. Lett., 2020, 27(2), 120-134.
[http://dx.doi.org/10.2174/0929866526666190925152957] [PMID: 31553285]
[98]
Kim, I.; Sanchez, K.; McArthur, H.L.; Page, D. Immunotherapy in triple-negative breast cancer: Present and future. Curr. Breast Cancer Rep., 2019, 11(4), 259-271.
[http://dx.doi.org/10.1007/s12609-019-00345-z]
[99]
Marra, A.; Viale, G.; Curigliano, G. Recent advances in triple negative breast cancer: The immunotherapy era. BMC Med., 2019, 17(1), 90.
[http://dx.doi.org/10.1186/s12916-019-1326-5] [PMID: 31068190]
[100]
Sambi, M.; Bagheri, L.; Szewczuk, M.R. Current challenges in cancer immunotherapy: Multimodal approaches to improve efficacy and patient response rates. J. Oncol., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/4508794] [PMID: 30941175]
[101]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[102]
Robert, C.; Ribas, A.; Hamid, O.; Daud, A.; Wolchok, J.D.; Joshua, A.M.; Long, G.V. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J. Clin. Oncol., 2015, 33, 2259-2266.
[PMID: 29283791]
[103]
Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; Savage, K.J.; Hernberg, M.M.; Lebbé, C.; Charles, J.; Mihalcioiu, C.; Chiarion-Sileni, V.; Mauch, C.; Cognetti, F.; Arance, A.; Schmidt, H.; Schadendorf, D.; Gogas, H.; Lundgren-Eriksson, L.; Horak, C.; Sharkey, B.; Waxman, I.M.; Atkinson, V.; Ascierto, P.A. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med., 2015, 372(4), 320-330.
[http://dx.doi.org/10.1056/NEJMoa1412082] [PMID: 25399552]
[104]
Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; Kohrt, H.E.K.; Horn, L.; Lawrence, D.P.; Rost, S.; Leabman, M.; Xiao, Y.; Mokatrin, A.; Koeppen, H.; Hegde, P.S.; Mellman, I.; Chen, D.S.; Hodi, F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563-567.
[http://dx.doi.org/10.1038/nature14011] [PMID: 25428504]
[105]
Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; Fuereder, T.; Hughes, B.G.M.; Mesía, R.; Ngamphaiboon, N.; Rordorf, T.; Wan Ishak, W.Z.; Hong, R.L.; González Mendoza, R.; Roy, A.; Zhang, Y.; Gumuscu, B.; Cheng, J.D.; Jin, F.; Rischin, D.; Lerzo, G.; Tatangelo, M.; Varela, M.; Zarba, J.J.; Boyer, M.; Gan, H.; Gao, B.; Hughes, B.; Mallesara, G.; Rischin, D.; Taylor, A.; Burian, M.; Fuereder, T.; Greil, R.; Barrios, C.H.; de Castro Junior, D.O.; Castro, G.; Franke, F.A.; Girotto, G.; Lima, I.P.F.; Nicolau, U.R.; Pinto, G.D.J.; Santos, L.; Victorino, A-P.; Chua, N.; Couture, F.; Gregg, R.; Hansen, A.; Hilton, J.; McCarthy, J.; Soulieres, D.; Ascui, R.; Gonzalez, P.; Villanueva, L.; Torregroza, M.; Zambrano, A.; Holeckova, P.; Kral, Z.; Melichar, B.; Prausova, J.; Vosmik, M.; Andersen, M.; Gyldenkerne, N.; Jurgens, H.; Putnik, K.; Reinikainen, P.; Gruenwald, V.; Laban, S.; Aravantinos, G.; Boukovinas, I.; Georgoulias, V.; Psyrri, A.; Kwong, D.; Al-Farhat, Y.; Csoszi, T.; Erfan, J.; Horvai, G.; Landherr, L.; Remenar, E.; Ruzsa, A.; Szota, J.; Billan, S.; Gluck, I.; Gutfeld, O.; Popovtzer, A.; Benasso, M.; Bui, S.; Ferrari, V.; Licitra, L.; Nole, F.; Fujii, T.; Fujimoto, Y.; Hanai, N.; Hara, H.; Matsumoto, K.; Mitsugi, K.; Monden, N.; Nakayama, M.; Okami, K.; Oridate, N.; Shiga, K.; Shimizu, Y.; Sugasawa, M.; Tahara, M.; Takahashi, M.; Takahashi, S.; Tanaka, K.; Ueda, T.; Yamaguchi, H.; Yamazaki, T.; Yasumatsu, R.; Yokota, T.; Yoshizaki, T.; Kudaba, I.; Stara, Z.; Wan Ishak, W.Z.; Cheah, S.K.; Aguilar Ponce, J.; Gonzalez Mendoza, R.; Hernandez Hernandez, C.; Medina Soto, F.; Buter, J.; Hoeben, A.; Oosting, S.; Suijkerbuijk, K.; Bratland, A.; Brydoey, M.; Alvarez, R.; Mas, L.; Caguioa, P.; Querol, J.; Regala, E.E.; Tamayo, M.B.; Villegas, E.M.; Kawecki, A.; Karpenko, A.; Klochikhin, A.; Smolin, A.; Zarubenkov, O.; Goh, B.C.; Cohen, G.; du Toit, J.; Jordaan, C.; Landers, G.; Ruff, P.; Szpak, W.; Tabane, N.; Brana, I.; Iglesias Docampo, L.; Lavernia, J.; Mesia, R.; Abel, E.; Muratidu, V.; Nielsen, N.; Cristina, V.; Rordorf, T.; Rothschild, S.; Hong, R-L.; Wang, H-M.; Yang, M-H.; Yeh, S-P.; Yen, C-J.; Ngamphaiboon, N.; Soparattanapaisarn, N.; Sriuranpong, V.; Aksoy, S.; Cicin, I.; Ekenel, M.; Harputluoglu, H.; Ozyilkan, O.; Harrington, K.; Agarwala, S.; Ali, H.; Alter, R.; Anderson, D.; Bruce, J.; Burtness, B.; Campbell, N.; Conde, M.; Deeken, J.; Edenfield, W.; Feldman, L.; Gaughan, E.; Goueli, B.; Halmos, B.; Hegde, U.; Hunis, B.; Jotte, R.; Karnad, A.; Khan, S.; Laudi, N.; Laux, D.; Martincic, D.; McCune, S.; McGaughey, D.; Misiukiewicz, K.; Mulford, D.; Nadler, E.; Neupane, P.; Nunnink, J.; Ohr, J.; O’Malley, M.; Patson, B.; Paul, D.; Popa, E.; Powell, S.; Redman, R.; Rella, V.; Rocha Lima, C.; Sivapiragasam, A.; Su, Y.; Sukari, A.; Wong, S.; Yilmaz, E.; Yorio, J. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet, 2019, 394(10212), 1915-1928.
[http://dx.doi.org/10.1016/S0140-6736(19)32591-7] [PMID: 31679945]
[106]
Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; Rodríguez-Cid, J.; Wilson, J.; Sugawara, S.; Kato, T.; Lee, K.H.; Cheng, Y.; Novello, S.; Halmos, B.; Li, X.; Lubiniecki, G.M.; Piperdi, B.; Kowalski, D.M. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med., 2018, 379(21), 2040-2051.
[http://dx.doi.org/10.1056/NEJMoa1810865] [PMID: 30280635]
[107]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[108]
Hughes, P.E.; Caenepeel, S.; Wu, L.C. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol., 2016, 37(7), 462-476.
[http://dx.doi.org/10.1016/j.it.2016.04.010] [PMID: 27216414]
[109]
Grosser, R.; Cherkassky, L.; Chintala, N.; Adusumilli, P.S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell, 2019, 36(5), 471-482.
[http://dx.doi.org/10.1016/j.ccell.2019.09.006] [PMID: 31715131]
[110]
Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol., 2018, 18(11), 671-688.
[http://dx.doi.org/10.1038/s41577-018-0061-z] [PMID: 30209347]
[111]
Al Zein, M.; Boukhdoud, M.; Shammaa, H.; Mouslem, H.; El Ayoubi, L.M.; Iratni, R.; Issa, K.; Khachab, M.; Assi, H.I.; Sahebkar, A.; Eid, A.H. Immunotherapy and immunoevasion of colorectal cancer. Drug Discov. Today, 2023, 28(9), 103669.
[http://dx.doi.org/10.1016/j.drudis.2023.103669] [PMID: 37328052]
[112]
Roy, D.; Gilmour, C.; Patnaik, S.; Wang, L.L. Combinatorial blockade for cancer immunotherapy: Targeting emerging immune checkpoint receptors. Front. Immunol., 2023, 14, 1264327.
[http://dx.doi.org/10.3389/fimmu.2023.1264327] [PMID: 37928556]
[113]
Anyaegbu, C.C.; Lake, R.A.; Heel, K.; Robinson, B.W.; Fisher, S.A. Chemotherapy enhances cross-presentation of nuclear tumor antigens. PLoS One, 2014, 9(9), e107894.
[http://dx.doi.org/10.1371/journal.pone.0107894] [PMID: 25243472]
[114]
Arora, R.; Malhotra, P.; Chawla, R.; Gupta, D.; Sharma, R.K. IndHerbMed Can Ther Prev. 2010. Available from : https://www.sciencedirect.com/journal/journal-of-herbal-medicine
[115]
Borse, S.P.; Singh, D.P.; Nivsarkar, M. Understanding the relevance of herb–drug interaction studies with special focus on interplays: A prerequisite for integrative medicine. Porto Biomed. J., 2019, 4(2), e15.
[http://dx.doi.org/10.1016/j.pbj.0000000000000015] [PMID: 31595257]
[116]
Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci., 2018, 19(3), 686.
[http://dx.doi.org/10.3390/ijms19030686] [PMID: 29495598]
[117]
Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med., 2002, 113(9), 71-88.
[http://dx.doi.org/10.1016/S0002-9343(01)00995-0] [PMID: 12566142]
[118]
Banyal, A.; Tiwari, S.; Sharma, A.; Chanana, I.; Patel, S.K.; Kulshrestha, S.; Kumar, P. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges. Biotech, 2023, 13, 1-7.
[119]
Wang, C.; Aguilar, A.; Ojima, I. Strategies for the drug discovery and development of taxane anticancer therapeutics. Expert Opin. Drug Discov., 2022, 17(11), 1193-1207.
[http://dx.doi.org/10.1080/17460441.2022.2131766] [PMID: 36200759]
[120]
Buzun, K.; Bielawska, A.; Bielawski, K.; Gornowicz, A. DNA topoisomerases as molecular targets for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1781-1799.
[http://dx.doi.org/10.1080/14756366.2020.1821676] [PMID: 32975138]
[121]
Motyka, S.; Jafernik, K.; Ekiert, H.; Sharifi-Rad, J.; Calina, D.; Al-Omari, B.; Szopa, A.; Cho, W.C. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed. Pharmacother., 2023, 158, 114145.
[http://dx.doi.org/10.1016/j.biopha.2022.114145] [PMID: 36586242]
[122]
Kikuyama, F.; Suzuki, S.; Jibiki, A.; Yokoyama, Y.; Kawazoe, H.; Kitanaka, S.; Nakamura, T. Ingenol mebutate inhibits the growth of pancreatic cancer cells in vitro via STING with an efficacy comparable to that of clinically used anticancer agents. J. Nat. Med., 2023, 77(2), 343-351.
[http://dx.doi.org/10.1007/s11418-023-01682-1] [PMID: 36694038]
[123]
Du, G.H.; Wang, Z.; Li, L.; Du, GH. Homoharringtonine. Nat Smal Mol Drug Plant, 2018, 521-527.
[124]
Hura, N.; Sawant, A.V.; Kumari, A.; Guchhait, S.K.; Panda, D. Combretastatin-inspired heterocycles as antitubulin anticancer agents. ACS Omega, 2018, 3(8), 9754-9769.
[http://dx.doi.org/10.1021/acsomega.8b00996] [PMID: 31459105]
[125]
Alsamri, H.; El Hasasna, H.; Al Dhaheri, Y.; Eid, A.H.; Attoub, S.; Iratni, R. Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3. Front. Oncol., 2019, 9, 743.
[http://dx.doi.org/10.3389/fonc.2019.00743] [PMID: 31456939]
[126]
Alsamri, H.; Hasasna, H.E.; Baby, B.; Alneyadi, A.; Dhaheri, Y.A.; Ayoub, M.A.; Eid, A.H.; Vijayan, R.; Iratni, R. Carnosol is a novel inhibitor of p300 acetyltransferase in breast cancer. Front. Oncol., 2021, 11, 664403.
[http://dx.doi.org/10.3389/fonc.2021.664403] [PMID: 34055630]
[127]
Alsamri, H.; Alneyadi, A.; Muhammad, K.; Ayoub, M.A.; Eid, A.; Iratni, R. Carnosol induces p38-mediated ER stress response and autophagy in human breast cancer cells. Front. Oncol., 2022, 12, 911615.
[http://dx.doi.org/10.3389/fonc.2022.911615] [PMID: 35712465]
[128]
Kou, X.; Wang, X.; Ji, R.; Liu, L.; Qiao, Y.; Lou, Z.; Ma, C.; Li, S.; Wang, H.; Ho, C.T. Occurrence, biological activity and metabolism of 6-shogaol. Food Funct., 2018, 9(3), 1310-1327.
[http://dx.doi.org/10.1039/C7FO01354J] [PMID: 29417118]
[129]
Catanzaro, E.; Canistro, D.; Pellicioni, V.; Vivarelli, F.; Fimognari, C. Anticancer potential of allicin: A review. Pharmacol. Res., 2022, 177, 106118.
[http://dx.doi.org/10.1016/j.phrs.2022.106118] [PMID: 35134476]
[130]
Alos, H.C.; Billones, J.B.; Castillo, A.L.; Vasquez, R.D. Alpinumisoflavone against cancer pro-angiogenic targets: in silico, in vitro, and In ovo evaluation. Daru, 2022, 30(2), 273-288.
[http://dx.doi.org/10.1007/s40199-022-00445-9] [PMID: 35925539]
[131]
Malik, Z.; Parveen, R.; Parveen, B.; Zahiruddin, S.; Aasif Khan, M.; Khan, A.; Massey, S.; Ahmad, S.; Husain, S.A. Anticancer potential of andrographolide from Andrographis paniculata (Burm.f.) Nees and its mechanisms of action. J. Ethnopharmacol., 2021, 272, 113936.
[http://dx.doi.org/10.1016/j.jep.2021.113936] [PMID: 33610710]
[132]
Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an anticancer agent. Phytother. Res., 2020, 34(8), 1812-1828.
[http://dx.doi.org/10.1002/ptr.6647] [PMID: 32059077]
[133]
Ke, M.; Zhang, Z.; Xu, B.; Zhao, S.; Ding, Y.; Wu, X.; Wu, R.; Lv, Y.; Dong, J. Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cells. Int. Immunopharmacol., 2019, 75, 105824.
[http://dx.doi.org/10.1016/j.intimp.2019.105824] [PMID: 31437792]
[134]
Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother., 2022, 146, 112442.
[http://dx.doi.org/10.1016/j.biopha.2021.112442] [PMID: 35062053]
[135]
Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[136]
Oh, S.T.; Lee, S.; Hua, C.; Koo, B.S.; Pak, S.C.; Kim, D.I.; Jeon, S.; Shin, B.A. Decursin induces apoptosis in glioblastoma cells, but not in glial cells via a mitochondria-related caspase pathway. Korean J. Physiol. Pharmacol., 2019, 23(1), 29-35.
[http://dx.doi.org/10.4196/kjpp.2019.23.1.29] [PMID: 30627007]
[137]
Zhang, W.; Su, J.; Xu, H.; Yu, S.; Liu, Y.; Zhang, Y.; Sun, L.; Yue, Y.; Zhou, X. Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells. PLoS One, 2017, 12(6), e0179672.
[http://dx.doi.org/10.1371/journal.pone.0179672] [PMID: 28617852]
[138]
Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941.
[http://dx.doi.org/10.1080/10408398.2016.1231168] [PMID: 27645804]
[139]
Akkol, E.K.; Tatlı, I.I.; Karatoprak, G.Ş.; Ağar, O.T.; Yücel, Ç.; Sobarzo-Sánchez, E.; Capasso, R. Is emodin with anticancer effects completely innocent? Two sides of the coin. Cancers, 2021, 13(11), 2733.
[http://dx.doi.org/10.3390/cancers13112733] [PMID: 34073059]
[140]
Hsiao, Y.C.; Peng, S.F.; Lai, K.C.; Liao, C.L.; Huang, Y.P.; Lin, C.C.; Lin, M.L.; Liu, K.C.; Tsai, C.C.; Ma, Y.S.; Chung, J.G. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environ. Toxicol., 2019, 34(4), 443-456.
[http://dx.doi.org/10.1002/tox.22698] [PMID: 30618158]
[141]
Joo, J.H.; Hong, S.S.; Cho, Y.R.; Seo, D.W. 10-Gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity. Oncol Rep., 2016, 35, 779-84.
[http://dx.doi.org/10.1002/ptr.6134] [PMID: 30009484]
[142]
Zhang, Z.; Yang, L.; Hou, J.; Tian, S.; Liu, Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J. Ethnopharmacol., 2021, 267, 113635.
[http://dx.doi.org/10.1016/j.jep.2020.113635] [PMID: 33246112]
[143]
Liu, K.; Zhao, F.; Yan, J.; Xia, Z.; Jiang, D.; Ma, P. Hispidulin: A promising flavonoid with diverse anti-cancer properties. Life Sci., 2020, 259, 118395.
[http://dx.doi.org/10.1016/j.lfs.2020.118395] [PMID: 32905830]
[144]
Kim, J.S.; Jeong, S.K.; Oh, S.J.; Lee, C.G.; Kang, Y.R.; Jo, W.S.; Jeong, M.H. The resveratrol analogue, HS‑1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth. Int. J. Oncol., 2020, 56(6), 1405-1416.
[http://dx.doi.org/10.3892/ijo.2020.5017] [PMID: 32236622]
[145]
Deng, N.; Qiao, M.; Li, Y.; Liang, F.; Li, J.; Liu, Y. Anticancer effects of licochalcones: A review of the mechanisms. Front. Pharmacol., 2023, 14, 1074506.
[http://dx.doi.org/10.3389/fphar.2023.1074506] [PMID: 36755942]
[146]
Nagini, S.; Nivetha, R.; Palrasu, M.; Mishra, R. Nimbolide, a neem limonoid, is a promising candidate for the anticancer drug arsenal. J. Med. Chem., 2021, 64(7), 3560-3577.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02239] [PMID: 33739088]
[147]
Xu, J.; Wu, Y.; Lu, G.; Xie, S.; Ma, Z.; Chen, Z.; Shen, H.M.; Xia, D. Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol., 2017, 12, 198-207.
[http://dx.doi.org/10.1016/j.redox.2017.02.017] [PMID: 28258023]
[148]
Lin, W.S.; Leland, J.V.; Ho, C.T.; Pan, M.H. Occurrence, bioavailability, anti-inflammatory, and anticancer effects of pterostilbene. J. Agric. Food Chem., 2020, 68(46), 12788-12799.
[http://dx.doi.org/10.1021/acs.jafc.9b07860] [PMID: 32064876]
[149]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[150]
Su, X.; Jiang, X.; Meng, L.; Dong, X.; Shen, Y.; Xin, Y. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/5438179] [PMID: 29977456]
[151]
Islam, M.T.; Khalipha, A.B.R.; Bagchi, R.; Mondal, M.; Smrity, S.Z.; Uddin, S.J.; Shilpi, J.A.; Rouf, R. Anticancer activity of thymol: A literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life, 2019, 71(1), 9-19.
[http://dx.doi.org/10.1002/iub.1935] [PMID: 30308112]
[152]
Asaduzzaman Khan, M.; Tania, M.; Fu, S.; Fu, J. Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget, 2017, 8(31), 51907-51919.
[http://dx.doi.org/10.18632/oncotarget.17206] [PMID: 28881699]
[153]
Yin, R.; Li, T.; Tian, J.X.; Xi, P.; Liu, R.H. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 568-574.
[http://dx.doi.org/10.1080/10408398.2016.1203755] [PMID: 27469428]
[154]
Atteeq, M. Evaluating anticancer properties of Withaferin A—a potent phytochemical. Front. Pharmacol., 2022, 13, 975320.
[http://dx.doi.org/10.3389/fphar.2022.975320] [PMID: 36339589]
[155]
Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The role of curcumin in cancer treatment. Biomedicines, 2021, 9(9), 1086.
[http://dx.doi.org/10.3390/biomedicines9091086] [PMID: 34572272]
[156]
Wang, Y.; Lai, H.; Fan, X.; Luo, L.; Duan, F.; Jiang, Z.; Wang, Q.; Leung, E.L.H.; Liu, L.; Yao, X. Gossypol inhibits non-small cell lung cancer cells proliferation by targeting EGFRL858R/T790M. Front. Pharmacol., 2018, 9, 728.
[http://dx.doi.org/10.3389/fphar.2018.00728] [PMID: 30038571]
[157]
Sohel, M.; Biswas, P.; Al Amin, M.; Hossain, M.A.; Sultana, H.; Dey, D.; Aktar, S.; Setu, A.; Khan, M.S.; Paul, P.; Islam, M.N.; Rahman, M.A.; Kim, B.; Al Mamun, A. Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes, 2022, 10(2), 415.
[http://dx.doi.org/10.3390/pr10020415]
[158]
Liu, Q.; Hodge, J.; Wang, J.; Wang, Y.; Wang, L.; Singh, U.P.; Li, Y.; Yao, Y.; Wang, D.; Ai, W.; Nagarkatti, P.; Chen, H.; Xu, P.; Murphy, E.A.; Fan, D. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation. Theranostics, 2020, 10(18), 8365-8381.
[http://dx.doi.org/10.7150/thno.45395] [PMID: 32724475]
[159]
Giuli, M.V.; Hanieh, P.N.; Giuliani, E.; Rinaldi, F.; Marianecci, C.; Screpanti, I.; Checquolo, S.; Carafa, M. Current trends in ATRA delivery for cancer therapy. Pharmaceutics, 2020, 12(8), 707.
[http://dx.doi.org/10.3390/pharmaceutics12080707] [PMID: 32731612]
[160]
Chow, S.; Berek, J.S.; Dorigo, O. Development of therapeutic vaccines for ovarian cancer. Vaccines, 2020, 8(4), 657.
[http://dx.doi.org/10.3390/vaccines8040657] [PMID: 33167428]
[161]
Paul, S.; Roy, D.; Pati, S.; Sa, G. The adroitness of andrographolide as a natural weapon against colorectal cancer. Front. Pharmacol., 2021, 12, 731492.
[http://dx.doi.org/10.3389/fphar.2021.731492] [PMID: 34795581]
[162]
Wu, K.; Yang, Q.; Mu, Y.; Zhou, L.; Liu, Y.; Zhou, Q.; He, B. Berberine inhibits the proliferation of colon cancer cells by inactivating Wnt/β-catenin signaling. Int. J. Oncol., 2012, 41(1), 292-298.
[PMID: 22469784]
[163]
Baster, Z.; Li, L.; Kukkurainen, S.; Chen, J.; Pentikäinen, O.; Győrffy, B.; Hytönen, V.P.; Zhu, H.; Rajfur, Z.; Huang, C. Cyanidin-3-glucoside binds to talin and modulates colon cancer cell adhesions and 3D growth. FASEB J., 2020, 34(2), 2227-2237.
[http://dx.doi.org/10.1096/fj.201900945R] [PMID: 31916632]
[164]
Ni, X.; Shang, F.S.; Wang, T.F.; Wu, D.J.; Chen, D.G.; Zhuang, B. Ellagic acid induces apoptosis and autophagy in colon cancer through the AMPK/mTOR pathway. Tissue Cell, 2023, 81, 102032.
[http://dx.doi.org/10.1016/j.tice.2023.102032] [PMID: 36701898]
[165]
Wang, Y.; Yuan, A.J.; Wu, Y.J.; Wu, L.M.; Zhang, L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J. Funct. Foods, 2023, 100, 105384.
[http://dx.doi.org/10.1016/j.jff.2022.105384]
[166]
Xue, N.; Zhou, Q.; Ji, M.; Jin, J.; Lai, F.; Chen, J.; Zhang, M.; Jia, J.; Yang, H.; Zhang, J.; Li, W.; Jiang, J.; Chen, X. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci. Rep., 2017, 7(1), 39011.
[http://dx.doi.org/10.1038/srep39011] [PMID: 28045028]
[167]
Chen, T.; da Fonseca, C.; Schönthal, A. Intranasal perillyl alcohol for glioma therapy: molecular mechanisms and clinical development. Int. J. Mol. Sci., 2018, 19(12), 3905.
[http://dx.doi.org/10.3390/ijms19123905] [PMID: 30563210]
[168]
Ng, Q.S.; Mandeville, H.; Goh, V.; Alonzi, R.; Milner, J.; Carnell, D.; Meer, K.; Padhani, A.R.; Saunders, M.I.; Hoskin, P.J. Phase Ib trial of radiotherapy in combination with combretastatin-A4-phosphate in patients with non-small-cell lung cancer, prostate adenocarcinoma, and squamous cell carcinoma of the head and neck. Ann. Oncol., 2012, 23(1), 231-237.
[http://dx.doi.org/10.1093/annonc/mdr332] [PMID: 21765046]
[169]
Starska-Kowarska, K. Dietary carotenoids in head and neck cancer—molecular and clinical implications. Nutrients, 2022, 14(3), 531.
[http://dx.doi.org/10.3390/nu14030531] [PMID: 35276890]
[170]
Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther., 2020, 45(1), 16-28.
[http://dx.doi.org/10.1111/jcpt.13039] [PMID: 31545523]
[171]
Koltai, T.; Fliegel, L. Role of silymarin in cancer treatment: Facts, hypotheses, and questions. J Evid Based Integr Med., 2022, 27
[http://dx.doi.org/10.1177/2515690X211068826]
[172]
Mirahmadi, M.; Azimi-Hashemi, S.; Saburi, E.; Kamali, H.; Pishbin, M.; Hadizadeh, F. Potential inhibitory effect of lycopene on prostate cancer. Biomed. Pharmacother., 2020, 129, 110459.
[http://dx.doi.org/10.1016/j.biopha.2020.110459] [PMID: 32768949]
[173]
Carastro, L.; Vallebuona, E.; Cordova, R.; Gannon, A.; Kim, S.; Costello, C.; Declet-Bauzo, R.; Kumar, N.; Park, J.; Polyphenon, E. Polyphenon E effects on gene expression in PC-3 prostate cancer cells. Int. J. Mol. Sci., 2022, 23(22), 14328.
[http://dx.doi.org/10.3390/ijms232214328] [PMID: 36430806]
[174]
Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Córdova Martínez, A.; Seco-Calvo, J. Iron and physical activity: Bioavailability enhancers, properties of black pepper (bioperine®) and potential applications. Nutrients, 2020, 12(6), 1886.
[http://dx.doi.org/10.3390/nu12061886] [PMID: 32599787]
[175]
Berkow, R.L.; Schlabach, L.; Dodson, R.; Benjamin, W.H., Jr; Pettit, G.R.; Rustagi, P.; Kraft, A.S. in vivo administration of the anticancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase C activity. Cancer Res., 1993, 53(12), 2810-2815.
[PMID: 8504423]
[176]
Velmurugan, B.K.; Lin, J.T.; Mahalakshmi, B.; Chuang, Y.C.; Lin, C.C.; Lo, Y.S.; Hsieh, M.J.; Chen, M.K. Luteolin-7-O-glucoside inhibits oral cancer cell migration and invasion by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomolecules, 2020, 10(4), 502.
[http://dx.doi.org/10.3390/biom10040502] [PMID: 32224968]
[177]
Roshani, M.; Jafari, A.; Loghman, A.; Sheida, A.H.; Taghavi, T.; Tamehri Zadeh, S.S.; Hamblin, M.R.; Homayounfal, M.; Mirzaei, H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed. Pharmacother., 2022, 153, 113274.
[http://dx.doi.org/10.1016/j.biopha.2022.113274] [PMID: 35724505]
[178]
Iwasa, S.; Morizane, C.; Okusaka, T.; Ueno, H.; Ikeda, M.; Kondo, S.; Tanaka, T.; Nakachi, K.; Mitsunaga, S.; Kojima, Y.; Hagihara, A.; Hiraoka, N. Cisplatin and etoposide as first-line chemotherapy for poorly differentiated neuroendocrine carcinoma of the hepatobiliary tract and pancreas. Jpn. J. Clin. Oncol., 2010, 40(4), 313-318.
[http://dx.doi.org/10.1093/jjco/hyp173] [PMID: 20047862]
[179]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[180]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[181]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[182]
Wenzel, E.; Somoza, V. Metabolism and bioavailability oftrans-resveratrol. Mol. Nutr. Food Res., 2005, 49(5), 472-481.
[http://dx.doi.org/10.1002/mnfr.200500010] [PMID: 15779070]
[183]
Shen, L.; Ji, H.F.; Jiang, D.M.; Li, J. Nanoparticle formulations enhance the bioavailability of resveratrol: An in-vitro assessment. J. Pharm. Pharmacol., 2012, 64, 889-897.
[184]
Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural products as anticancer agents: Current status and future perspectives. Molecules, 2022, 27(23), 8367.
[http://dx.doi.org/10.3390/molecules27238367] [PMID: 36500466]
[185]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy