Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Nanostructured Iron (III)-Copper (II) Binary Oxide as a Highly Efficient Magnetically Recoverable Nanocatalyst for Facile One-pot Synthesis of 2, 4, 5-trisubstituted Imidazole and 1, 4-dihydro Pyridine Derivatives under Solvent-free Conditions

Author(s): Dhananjay N. Gaikwad, Suresh T. Gaikwad*, Rajesh K. Manjul, Anjali S. Rajbhoj and Dayanand M. Suryavanshi

Volume 21, Issue 8, 2024

Published on: 25 January, 2024

Page: [687 - 694] Pages: 8

DOI: 10.2174/0115701786277621231226160450

Price: $65

conference banner
Abstract

The Fe (III)-Cu (II) binary oxide magnetic nanocatalyst emerges as an environmentally friendly and highly efficient solid acid catalyst, demonstrating remarkable utility in the one-pot synthesis of 2, 4, 5-trisubstituted imidazole and 1,4-dihydropyridine compounds, all achieved under solvent-free conditions. A facile co-precipitation method was used to synthesize nanostructured Fe-Cu binary oxide. Notably, this Fe-Cu binary oxide magnetic nanocatalyst proves its eco-friendly credentials as an exceptionally efficient and reusable catalyst, offering ease of handling, recovery, and multiple uses with minimal reactivity loss. Furthermore, the Fe (III)-Cu (II) binary oxide magnetic nanocatalyst's magnetic separability enhances its practicality, allowing for effortless catalyst retrieval after reactions. Significantly, the structural characteristics are meticulously elucidated through advanced analytical techniques, including 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. This work presents a versatile and sustainable solution for catalysis, with wide-reaching implications for green chemistry and the development of reusable, efficient catalysts for organic synthesis. The exceptional performance and eco-friendliness of the Fe-Cu binary oxide magnetic nanocatalyst underscore its practical significance. Fe-Cu binary oxide magnetic nanocatalyst exhibits the highest catalytic activity compared to others. The employment of this catalyst consistently delivers excellent yields in the target reactions, highlighting its potential to contribute positively to sustainable chemical processes.

Graphical Abstract

[1]
Rani, N.; Sharma, A.; Singh, R. Mini Rev. Org. Chem., 2014, 12(1), 34-65.
[http://dx.doi.org/10.2174/1570193X11666141028235010]
[2]
Waje, P.A.; Tiwari, K.J. Int. J. Mod. Pharm. Res., 2023, 7(1), 40-48.
[3]
Tolomeu, H.V.; Fraga, C.A.M. Molecules, 2023, 28(2), 838.
[http://dx.doi.org/10.3390/molecules28020838] [PMID: 36677894]
[4]
Manjul, R.K.; Gaikwad, S.T.; Gade, V.B.; Rajbhoj, A.S.; Jopale, M.K.; Patil, S.M.; Gaikwad, D.N.; Suryavanshi, D.M.; Goskulwad, S.P.; Shinde, S.D. Lett. Org. Chem., 2023, 20(10), 967-975.
[http://dx.doi.org/10.2174/1570178620666230510122033]
[5]
Hassanzadeh, A.F.; Bahrami, S.; Maleki, A. Proceedings, 2019, 41, 6654.
[http://dx.doi.org/10.3390/ecsoc-23-06654]
[6]
Hajizadeh, Z.; Radinekiyan, F.; Eivazzadeh-keihan, R.; Maleki, A. Sci. Rep., 2020, 10(1), 11671.
[http://dx.doi.org/10.1038/s41598-020-68426-z] [PMID: 32669578]
[7]
Kalhor, M.; Zarnegar, Z. RSC Advances, 2019, 9(34), 19333-19346.
[http://dx.doi.org/10.1039/C9RA02910A] [PMID: 35519374]
[8]
Javad, S.; Zohre, Z. Iran. J. Catal., 2012, 2(3), 121-128.
[9]
Ali, M.; Hamed, M.; Reza, P. RSC Advances, 2016, 6, 13657-13665.
[http://dx.doi.org/10.1039/C5RA21350A]
[10]
Zohre, Z.; Javad, S. New J. Chem., 2014, 38, 4555-4565.
[http://dx.doi.org/10.1039/C4NJ00645C]
[11]
Shadan, K.; Hossein, N.; Setareh, M. Dalton Trans., 2023, 52, 1257-1267.
[http://dx.doi.org/10.1039/D2DT03021G] [PMID: 36607334]
[12]
Fattahi, B.; Dekamin, M.G. Sci. Rep., 2023, 13(1), 401.
[http://dx.doi.org/10.1038/s41598-023-27408-7] [PMID: 36624142]
[13]
Sakhdari, M.; Amoozadeh, A.; Kolvari, E. Heterocycl. Commun., 2021, 27(1), 71-78.
[http://dx.doi.org/10.1515/hc-2020-0125]
[14]
Ebrahim, T.; Abolghasem, D.; Amir, K.; Nasrinsadat, H. Iran. Chem. Commun, 2019, 7, 174-185.
[15]
Allahresani, A.; Mohammadpour Sangani, M.; Nasseri, M.A. Appl. Organomet. Chem., 2020, 34(9), e5759.
[http://dx.doi.org/10.1002/aoc.5759]
[16]
Otokesh, S.; Koukabi, N.; Kolvari, E.; Amoozadeh, A.; Malmir, M.; Azhar, S. S. Afr. J. Chem., 2015, 68, 15-20.
[http://dx.doi.org/10.17159/0379-4350/2015/v68a3]
[17]
Shinde, S.T.; Kanade, K.G.; Gawade, R.B.; Hinge, V.B.; Shinde, M.D.; Bankar, D.B.; Thorat, N.M.; Amalnerkar, D.P. RSC Advances, 2023, 13(35), 24767-24776.
[http://dx.doi.org/10.1039/D3RA04277D] [PMID: 37601590]
[18]
Sadeghzadeh, S.M.; Nasseri, M.A. Catal. Today, 2013, 217, 80-85.
[http://dx.doi.org/10.1016/j.cattod.2013.07.018]
[19]
Safaei-Ghomi, J.; Ghasemzadeh, M.A.; Mehrabi, M. Sci. Iran., 2013, 20, 549-554.
[20]
Xiao-Li, H.; Xiao-Shan, C.; Ke-Ling, L.; Wei, L. J. Catal., 2022, 411, 226-234.
[http://dx.doi.org/10.1016/j.jcat.2022.05.016]
[21]
Shu-ao, H.; Wei, L.; Xiao, W.; Qiong, M.; Min, L.; Wei, X.; Xue-chuan, W. Chen-hui. Z. Appl. Surf. Sci., 2020, 506, 144948.
[http://dx.doi.org/10.1016/j.apsusc.2019.144948]
[22]
An, P.; Ruikuan, X.; Yun, Z.; Yingliang, F.; Weizhen, W.; Sifan, Z.; Zinan, H.; Lihua, Z.; Guoliang, C.; Zhiqing, Y.; Qingsheng, G.; Hengqiang, Y.; Congxiao, S.; Bing, H.C.; Zhengxiao, G. Energy Environ. Sci., 2023, 16, 1035-1048.
[http://dx.doi.org/10.1039/D2EE02785B]
[23]
An, P.; Guang, L.; Lihua, Z.; Zinan, H.; Jinyu, Y.; Yu-Chung, C.; Sameh, M.O.; Chih-Wen, P.; Qingsheng, G.; Bing, H.C.; Rafael, L. Adv. Funct. Mater., 2022, 32(51), 2208587.
[http://dx.doi.org/10.1002/adfm.202208587]
[24]
Sifan, Z.; An, P.; Guang, L.; Lihua, Z.; Guoda, L.; Fengshun, W.; Shuting, L.; Wenqi, C.; Bing, H.C.; Rafael, L. Green Chem., 2022, 24, 2438-2450.
[http://dx.doi.org/10.1039/D1GC04799J]
[25]
Kazemi, M. Synth. Commun., 2020, 50, 1-19.
[http://dx.doi.org/10.1080/00397911.2019.1686644]
[26]
Kamalzare, P.; Mirza, B.; Soleimani-Amiri, S. J. Nanostructure Chem., 2021, 11(2), 229-243.
[http://dx.doi.org/10.1007/s40097-020-00361-x]
[27]
Ghamari, P.; Bagherzade, G.; Eshghi, H. RSC Advances, 2021, 11(8), 4339-4355.
[http://dx.doi.org/10.1039/D0RA09420J] [PMID: 35424405]
[28]
Elmira, H. Somayeh, Soleimani-A.; Mehran, K. RSC Advances, 2023, 13, 16567.
[29]
Shitole, N.V.; Shelke, K.F.; Sonar, S.S.; Sadaphal, S.A.; Shingate, B.B.; Shingare, M. SBull. Korean Chem. Soc., 2009, 30(9), 1963-1966.
[http://dx.doi.org/10.5012/bkcs.2009.30.9.1963]
[30]
Nagalakshmi, G.E-J. Chem, 2008, 5(3), 447-452.
[http://dx.doi.org/10.1155/2008/921256]
[31]
Nukala, R.; Gullapelli, K.; Konakanchi, R. Res. Chem. Intermed., 2023, 49(11), 4713-4727.
[http://dx.doi.org/10.1007/s11164-023-05090-8]
[32]
Puratchikody, A.; Gopalakrishnan, S.; Nallu, M. Indian J. Pharm. Sci., 2005, 67(6), 725-731.
[33]
Schubert, H.; Stodolka, H. J. Prakt. Chem., 1963, 22(3-4), 130-139.
[http://dx.doi.org/10.1002/prac.19630220303]
[34]
Shirole, G.D.; Shelke, S.N. Lett. Org. Chem., 2016, 13, 742-748.
[http://dx.doi.org/10.2174/1570178614666161114165113]
[35]
Kumara, P.; Hussain, K.; Kumar, A. Curr. Chem. Lett., 2014, 3, 75-84.
[http://dx.doi.org/10.5267/j.ccl.2014.1.002]
[36]
Tajbakhshi, M.; Alaee, E.; Alinezhad, H.; Khanian, M.; Jahani, F.; Khaksar, S.; Rezaee, P.; Tajbakhsh, M. Chin. J. Catal., 2012, 33, 1517-1522.
[http://dx.doi.org/10.1016/S1872-2067(11)60435-X]
[37]
Hashem, S.; Seyyede, R.; Mahdi, A. Catal. Lett., 2021, 152, 1769-1783.
[http://dx.doi.org/10.1007/s10562-021-03717-2]
[38]
Zhang, G.; Ren, Z.; Zhang, X.; Chen, J. Water Res., 2013, 47(12), 4022-4031.
[http://dx.doi.org/10.1016/j.watres.2012.11.059] [PMID: 23571113]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy