Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Anti-COVID-19 Potential of Withaferin-A and Caffeic Acid Phenethyl Ester

Author(s): Vipul Kumar, Anissa Nofita Sari, Dharmender Gupta, Yoshiyuki Ishida, Keiji Terao, Sunil C. Kaul, Sudhanshu Vrati*, Durai Sundar* and Renu Wadhwa*

Volume 24, Issue 9, 2024

Published on: 24 January, 2024

Page: [830 - 842] Pages: 13

DOI: 10.2174/0115680266280720231221100004

Price: $65

Abstract

Background: The recent COVID-19 (coronavirus disease 2019) pandemic triggered research on the development of new vaccines/drugs, repurposing of clinically approved drugs, and assessment of natural anti-COVID-19 compounds. Based on the gender difference in the severity of the disease, such as a higher number of men hospitalized and in intense care units, variations in sex hormones have been predicted to play a role in disease susceptibility. Cell surface receptors (Angiotensin-Converting Enzyme 2; ACE2 and a connected transmembrane protease serine 2- TMPSS2) are upregulated by androgens. Conversely, androgen antagonists have also been shown to lower ACE2 levels, implying their usefulness in COVID-19 management.

Objectives: In this study, we performed computational and cell-based assays to investigate the anti- COVID-19 potential of Withaferin-A and Caffeic acid phenethyl ester, natural compounds from Withania somnifera and honeybee propolis, respectively.

Methods: Structure-based computational approach was adopted to predict binding stability, interactions, and dynamics of the two test compounds to three target proteins (androgen receptor, ACE2, and TMPRSS2). Further, in vitro, cell-based experimental approaches were used to investigate the effect of compounds on target protein expression and SARS-CoV-2 replication.

Results: Computation and experimental analyses revealed that (i) CAPE, but not Wi-A, can act as androgen antagonist and hence inhibit the transcriptional activation function of androgen receptor, (ii) while both Wi-A and CAPE could interact with ACE2 and TMPRSS2, Wi-A showed higher binding affinity, and (iii) combination of Wi-A and CAPE (Wi-ACAPE) caused strong downregulation of ACE2 and TMPRSS2 expression and inhibition of virus infection.

Conclusion: Wi-A and CAPE possess multimodal anti-COVID-19 potential, and their combination (Wi-ACAPE) is expected to provide better activity and hence warrant further attention in the laboratory and clinic.

« Previous
Graphical Abstract

[1]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[2]
Kumar, V.; Singh, J.; Hasnain, S.E.; Sundar, D. Possible link between higher transmissibility of alpha, kappa and delta variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity. Int. J. Mol. Sci., 2021, 22(17), 9131.
[http://dx.doi.org/10.3390/ijms22179131] [PMID: 34502041]
[3]
Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they closely related? Clin Microbiol Infect, 2020, 26, 729-734.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026]
[4]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[5]
Gheshlaghi, S.Z.; Nakhaei, E.; Ebrahimi, A.; Jafari, M.; Shahraki, A.; Rezazadeh, S.; Saberinasab, E.; Nowroozi, A.; Hosseini, S.S. Analysis of medicinal and therapeutic potential of Withania somnifera derivatives against COVID-19. J. Biomol. Struct. Dyn., 2022, 41(14), 6883-6893.
[http://dx.doi.org/10.1080/07391102.2022.2112977] [PMID: 35993530]
[6]
Afar, D.E.; Vivanco, I.; Hubert, R.S.; Kuo, J.; Chen, E.; Saffran, D.C.; Raitano, A.B.; Jakobovits, A. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res., 2001, 61(4), 1686-1692.
[PMID: 11245484]
[7]
Gunst, J.D.; Staerke, N.B.; Pahus, M.H.; Kristensen, L.H.; Bodilsen, J.; Lohse, N.; Dalgaard, L.S.; Brønnum, D.; Fröbert, O.; Hønge, B.; Johansen, I.S.; Monrad, I.; Erikstrup, C.; Rosendal, R.; Vilstrup, E.; Mariager, T.; Bove, D.G.; Offersen, R.; Shakar, S.; Cajander, S.; Jørgensen, N.P.; Sritharan, S.S.; Breining, P.; Jespersen, S.; Mortensen, K.L.; Jensen, M.L.; Kolte, L.; Frattari, G.S.; Larsen, C.S.; Storgaard, M.; Nielsen, L.P.; Tolstrup, M.; Sædder, E.A.; Østergaard, L.J.; Ngo, H.T.T.; Jensen, M.H.; Højen, J.F.; Kjolby, M.; Søgaard, O.S. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. EClinicalMedicine, 2021, 35, 100849.
[http://dx.doi.org/10.1016/j.eclinm.2021.100849] [PMID: 33903855]
[8]
Deng, Q.; Rasool, R.; Russell, R.M.; Natesan, R.; Asangani, I.A. Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. iScience, 2021, 24(3), 102254.
[http://dx.doi.org/10.1016/j.isci.2021.102254] [PMID: 33681723]
[9]
Davey, R.A.; Grossmann, M. Androgen receptor structure, function and biology: From bench to bedside. Clin. Biochem. Rev., 2016, 37(1), 3-15.
[PMID: 27057074]
[10]
Dai, C.; Heemers, H.; Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med., 2017, 7(9), a030452.
[http://dx.doi.org/10.1101/cshperspect.a030452] [PMID: 28389515]
[11]
Rathkopf, D.; Scher, H.I. Androgen receptor antagonists in castration-resistant prostate cancer. Cancer J., 2013, 19(1), 43-49.
[http://dx.doi.org/10.1097/PPO.0b013e318282635a] [PMID: 23337756]
[12]
Kolvenbag, G.J.C.M.; Nash, A. Bicalutamide dosages used in the treatment of prostate cancer. Prostate, 1999, 39(1), 47-53.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19990401)39:1<47::AID-PROS8>3.0.CO;2-X] [PMID: 10221266]
[13]
Gedeborg, R.; Styrke, J.; Loeb, S.; Garmo, H.; Stattin, P. Androgen deprivation therapy and excess mortality in men with prostate cancer during the initial phase of the COVID-19 pandemic. PLoS One, 2021, 16(10), e0255966.
[http://dx.doi.org/10.1371/journal.pone.0255966] [PMID: 34618806]
[14]
Bashir, A.; Nabi, M.; Tabassum, N.; Afzal, S.; Ayoub, M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Front. Pharmacol., 2023, 14, 1049334.
[http://dx.doi.org/10.3389/fphar.2023.1049334] [PMID: 37063285]
[15]
Taysi, S.; Algburi, F.S.; Taysi, M.E.; Caglayan, C. Caffeic acid phenethyl ester: A review on its pharmacological importance, and its association with free radicals, COVID -19, and radiotherapy. Phytother. Res., 2023, 37(3), 1115-1135.
[http://dx.doi.org/10.1002/ptr.7707] [PMID: 36562210]
[16]
Sari, A.N.; Bhargava, P.; Dhanjal, J.K.; Putri, J.F.; Radhakrishnan, N.; Shefrin, S.; Ishida, Y.; Terao, K.; Sundar, D.; Kaul, S.C.; Wadhwa, R. Combination of withaferin-a and CAPE provides superior anticancer potency: Bioinformatics and experimental evidence to their molecular targets and mechanism of action. Cancers, 2020, 12(5), 1160.
[http://dx.doi.org/10.3390/cancers12051160] [PMID: 32380701]
[17]
Bhargava, P.; Kumari, A.; Putri, J.F.; Ishida, Y.; Terao, K.; Kaul, S.C.; Sundar, D.; Wadhwa, R. Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: Bioinformatics and experimental evidences. Cell Stress Chaperones, 2018, 23(5), 1055-1068.
[http://dx.doi.org/10.1007/s12192-018-0915-0] [PMID: 29869000]
[18]
Bhargava, P.; Malik, V.; Liu, Y.; Ryu, J.; Kaul, S.C.; Sundar, D.; Wadhwa, R. Molecular insights into withaferin-a-induced senescence: Bioinformatics and experimental evidence to the role of NFκB and CARF. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(2), 183-191.
[http://dx.doi.org/10.1093/gerona/gly107] [PMID: 29718136]
[19]
Yu, Y.; Katiyar, S.P.; Sundar, D.; Kaul, Z.; Miyako, E.; Zhang, Z.; Kaul, S.C.; Reddel, R.R.; Wadhwa, R. Withaferin-A kills cancer cells with and without telomerase: Chemical, computational and experimental evidences. Cell Death Dis., 2017, 8(4), e2755.
[http://dx.doi.org/10.1038/cddis.2017.33] [PMID: 28425984]
[20]
Bohl, C.E.; Gao, W.; Miller, D.D.; Bell, C.E.; Dalton, J.T. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl. Acad. Sci., 2005, 102(17), 6201-6206.
[http://dx.doi.org/10.1073/pnas.0500381102] [PMID: 15833816]
[21]
Fraser, B.J.; Beldar, S.; Seitova, A.; Hutchinson, A.; Mannar, D.; Li, Y.; Kwon, D.; Tan, R.; Wilson, R.P.; Leopold, K.; Subramaniam, S.; Halabelian, L.; Arrowsmith, C.H.; Bénard, F. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nat. Chem. Biol., 2022, 18(9), 963-971.
[http://dx.doi.org/10.1038/s41589-022-01059-7] [PMID: 35676539]
[22]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[23]
a) Protein Preparation Wizard, Epik, Impact, Prime, LigPrep, Glide; Schrödinger, LLC: New York, NY, 2020. ;
b) Desmond Molecular Dynamics System, D. E; Shaw Research: New York, NY, 2020. ;
c) Maestro-Desmond Interoperability Tools; Schrödinger Release: New York, NY, 2020.
[24]
Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput., 2019, 15(3), 1863-1874.
[http://dx.doi.org/10.1021/acs.jctc.8b01026] [PMID: 30768902]
[25]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[26]
Academic version of Desmond integrated with Schrödinger Release 2020-1: Maestro, 2; Schrödinger, L.N.Y.: NY, USA, 2020.
[27]
Wang, Z.; Wang, X.; Li, Y.; Lei, T.; Wang, E.; Li, D.; Kang, Y.; Zhu, F.; Hou, T. farPPI: A webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics, 2019, 35(10), 1777-1779.
[http://dx.doi.org/10.1093/bioinformatics/bty879] [PMID: 30329012]
[28]
Altuwaijri, S.; Lee, D.K.; Chuang, K.H.; Ting, H.J.; Yang, Z.; Xu, Q.; Tsai, M.Y.; Yeh, S.; Hanchett, L.A.; Chang, H.C.; Chang, C. Androgen receptor regulates expression of skeletal muscle-specific proteins and muscle cell types. Endocr. J., 2004, 25(1), 27-32.
[http://dx.doi.org/10.1385/ENDO:25:1:27] [PMID: 15545703]
[29]
Heinlein, C.A.; Chang, C. Androgen receptor in prostate cancer. Endocr. Rev., 2004, 25(2), 276-308.
[http://dx.doi.org/10.1210/er.2002-0032] [PMID: 15082523]
[30]
Cai, C.; Wang, H.; Xu, Y.; Chen, S.; Balk, S.P. Reactivation of androgen receptor-regulated TMPRSS2: ERG gene expression in castration-resistant prostate cancer. Cancer Res., 2009, 69(15), 6027-6032.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0395] [PMID: 19584279]
[31]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[32]
Dai, Y.J.; Hu, F.; Li, H.; Huang, H.Y.; Wang, D.W.; Liang, Y. A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection. Ann. Transl. Med., 2020, 8(7), 481.
[http://dx.doi.org/10.21037/atm.2020.03.61] [PMID: 32395525]
[33]
Shrimp, J.H.; Kales, S.C.; Sanderson, P.E.; Simeonov, A.; Shen, M.; Hall, M.D. An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. ACS Pharmacol. Transl. Sci., 2020, 3(5), 997-1007.
[http://dx.doi.org/10.1021/acsptsci.0c00106] [PMID: 33062952]
[34]
Meyerholz, D.K.; Reznikov, L.R. Influence of SARS-CoV-2 on airway mucus production: A review and proposed model. Vet. Pathol., 2022, 59(4), 578-585.
[http://dx.doi.org/10.1177/03009858211058837] [PMID: 34794359]
[35]
McKee, D.L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res., 2020, 157, 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[36]
Dhanjal, J.K.; Kumar, V.; Garg, S.; Subramani, C.; Agarwal, S.; Wang, J.; Zhang, H.; Kaul, A.; Kalra, R.S.; Kaul, S.C.; Vrati, S.; Sundar, D.; Wadhwa, R. Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides. Int. J. Biol. Macromol., 2021, 184, 297-312.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.015] [PMID: 34118289]
[37]
Reddy Vegivinti, C.T.; Pederson, J.M.; Saravu, K.; Gupta, N.; Barrett, A.; Davis, A.R.; Kallmes, K.M.; Evanson, K.W. Remdesivir therapy in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. Ann. Med. Surg., 2021, 62, 43-48.
[http://dx.doi.org/10.1016/j.amsu.2020.12.051] [PMID: 33489115]
[38]
Batumalaie, K.; Amin, M.A.; Murugan, D.D.; Sattar, M.Z.A.; Abdullah, N.A. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation. Sci. Rep., 2016, 6(1), 27236.
[http://dx.doi.org/10.1038/srep27236] [PMID: 27250532]
[39]
Wadhwa, R.; Nigam, N.; Bhargava, P.; Dhanjal, J.K.; Goyal, S.; Grover, A.; Sundar, D.; Ishida, Y.; Terao, K.; Kaul, S.C. Molecular characterization and enhancement of anticancer activity of caffeic acid phenethyl ester by γ cyclodextrin. J. Cancer, 2016, 7(13), 1755-1771.
[http://dx.doi.org/10.7150/jca.15170] [PMID: 27698914]
[40]
Bhargava, P.; Mahanta, D.; Kaul, A.; Ishida, Y.; Terao, K.; Wadhwa, R.; Kaul, S.C. Experimental evidence for therapeutic potentials of propolis. Nutrients, 2021, 13(8), 2528.
[http://dx.doi.org/10.3390/nu13082528] [PMID: 34444688]
[41]
Kumar, V.; Sari, A.N.; Meidinna, H.N.; Kaul, A.; Basu, B.; Ishida, Y.; Terao, K.; Kaul, S.C.; Vrati, S.; Sundar, D.; Wadhwa, R. Computational and experimental evidence of the ANTI-COVID -19 potential of honeybee propolis ingredients, caffeic acid phenethyl ester and artepillin c. Phytother. Res., 2023, 37(9), 3651-3654.
[http://dx.doi.org/10.1002/ptr.7717] [PMID: 36757055]
[42]
Kumar, V.; Sari, A.N.; Meidinna, H.N.; Dhanjal, J.K.; Subramani, C.; Basu, B.; Kaul, S.C.; Vrati, S.; Sundar, D.; Wadhwa, R. Computational and in vitro experimental analyses of the anti-COVID-19 potential of Mortaparib and MortaparibPlus. Biosci. Rep., 2021, 41(10), BSR20212156.
[http://dx.doi.org/10.1042/BSR20212156] [PMID: 34605873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy