Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Short Communication

In silico Exploration of the Therapeutic Potential of Alkaloids as Anti-infective Agents

Author(s): Nidhi Rani*, Praveen Kumar, Aditya Walia and Randhir Singh

Volume 21, Issue 15, 2024

Published on: 24 January, 2024

Page: [3307 - 3318] Pages: 12

DOI: 10.2174/0115701808276535231212071700

Price: $65

Abstract

Background: Alkaloids are important phytoconstituents obtained from various plant sources.

Methods: The main objective of the study was to evaluate the anti-infective potential of alkaloids against 14α-demethylase, transpeptidase, and omicron spike protein using molecular docking studies. The potential constituents were identified and an ADMET study was performed.

Results: The study concluded that reserpine and tubocurarine exhibited potential activity against the three tested enzymes with good ADMET profile.

Conclusion: Reserpine and tubocurarine can further be explored to attain new candidates as antiinfective agents.

« Previous
[1]
Sireesha, B.; Reddy, B.V.; Basha, S.K.; Chandra, K.; Anasuya, D.; Bhavani, M. A review on pharmacological activities of alkaloids. WJCMPR, 2019, 1(6), 230-234.
[http://dx.doi.org/10.37022/WJCMPR.2019.01068]
[2]
Joanna, K. Alkaloids - Their Importance in Nature and for Human Life. In: Alkaloids; intechopen, 2019.
[http://dx.doi.org/10.5772/intechopen.85400]
[3]
Roy, A. A Review on the Alkaloids an Important Therapeutic Compound from Plants. Plant Biotechnol. J., 2017, 3(2), 1-9.
[4]
Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[5]
De Pauw, B.E. What are fungal infections? Mediterr. J. Hematol. Infect. Dis., 2011, 3(1), e2011001.
[http://dx.doi.org/10.4084/mjhid.2011.001] [PMID: 21625304]
[6]
Rani, N.; Sharma, A.; Gupta, G.; Singh, R. Imidazoles as potential antifungal agents: A review. Mini Rev. Med. Chem., 2013, 13(11), 1626-1655.
[http://dx.doi.org/10.2174/13895575113139990069] [PMID: 23815583]
[7]
Tuck, S.F.; Patel, H.; Safi, E.; Robinson, C.H. Lanosterol 14 alpha-demethylase (P45014DM): Effects of P45014DM inhibitors on sterol biosynthesis downstream of lanosterol. J. Lipid Res., 1991, 32(6), 893-902.
[http://dx.doi.org/10.1016/S0022-2275(20)41987-X] [PMID: 1940622]
[8]
Rani, N.; Singh, R.; Kumar, P. Molecular modeling study for the evaluation of natural compounds as potential lanosterol 14α-demethylase inhibitors. Lett. Drug Des. Discov., 2022, 19(5), 459-471.
[http://dx.doi.org/10.2174/1570180818666211027114007]
[9]
Rani, N.; Kumar, P.; Singh, R.; Sharma, A. Molecular docking evaluation of imidazole analogues as potent candida albicans 14α-Demethylase inhibitors. Curr. Computeraided Drug Des., 2015, 11(1), 8-20.
[http://dx.doi.org/10.2174/1573409911666150617113645] [PMID: 26081558]
[10]
Rani, N.; Kumar, P.; Singh, R. Molecular modeling studies of halogenated imidazoles against 14α- demethylase from candida albicans for treating fungal infections. Infect. Disord. Drug Targets, 2020, 20(2), 208-222.
[11]
Rani, N.; Kumar, P.; Singh, R. Molecular Modeling Study of Fluoro substituted imidazole derivatives as 14α- demethylase inhibitors. Int. J. Drug Deliv. Technol., 2017, 7(7), 297-317.
[12]
Rani, N.; Kumar, P.; Singh, R. Marketed imidazoles as antifungals: A review. Recent Advances in Drug Development; Bharti Publications, 2019, pp. 144-152.
[13]
Kelly, J.A.; Kuzin, A.P. The refined crystallographic structure of a DD-peptidase penicillin-target enzyme at 1.6 A resolution. J. Mol. Biol., 1995, 254(2), 223-236.
[http://dx.doi.org/10.1006/jmbi.1995.0613] [PMID: 7490745]
[14]
Mannar, D.; Saville, J.W.; Zhu, X.; Srivastava, S.S.; Berezuk, A.M.; Tuttle, K.S.; Marquez, A.C.; Sekirov, I.; Subramaniam, S. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex. Science, 2022, 375(6582), 760-764.
[http://dx.doi.org/10.1126/science.abn7760] [PMID: 35050643]
[15]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[16]
Rani, N.; Kumar, P.; Singh, R.; de Sousa, D.P.; Sharma, P. Current and future prospective of a versatile moiety: Imidazole. Curr. Drug Targets, 2020, 21(11), 1130-1155.
[http://dx.doi.org/10.2174/1389450121666200530203247] [PMID: 32472996]
[17]
Rani, N.; Singh, R. Design, synthesis, antimicrobial evaluation and molecular modeling study of new 2-mercaptoimidazoles (series-iii). Lett. Drug Des. Discov., 2019, 16(5), 512-521.
[http://dx.doi.org/10.2174/1570180815666181015144431]
[18]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[19]
Murail, S.; de Vries, S.; Rey, J.; Moroy, G.; Tufféry, P. SeamDock: An interactive and collaborative online docking resource to assist small compound molecular docking. Front. Mol. Biosci., 2021, 8, 716466.
[http://dx.doi.org/10.3389/fmolb.2021.716466]
[20]
Tufféry, P.; Murail, S. samuelmurail/docking_py: Docking_py, a python library for ligand protein docking. In: Zenodo; , 2020.
[http://dx.doi.org/10.5281/zenodo.4506970]
[21]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[22]
Xiong, J.; Xiang, Y.; Huang, Z.; Liu, X.; Wang, M.; Ge, G.; Chen, H.; Xu, J.; Zheng, M.; Chen, L. Structure-based virtual screening and identification of potential inhibitors of SARS-CoV-2 S-RBD and ACE2 interaction. Front Chem., 2021, 9, 740702.
[http://dx.doi.org/10.3389/fchem.2021.740702] [PMID: 34646813]
[23]
Dhankhar, P.; Dalal, V.; Singh, V.; Tomar, S.; Kumar, P. Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2. J. Biomol. Struct. Dyn., 2022, 40(9), 4084-4099.
[http://dx.doi.org/10.1080/07391102.2020.1852968] [PMID: 33251943]
[24]
Wang, Z.; Pan, H.; Sun, H.; Kang, Y.; Liu, H.; Cao, D.; Hou, T. fastDRH: A webserver to predict and analyze protein–ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief. Bioinform., 2022, 23(5), bbac201.
[http://dx.doi.org/10.1093/bib/bbac201] [PMID: 35580866]

© 2025 Bentham Science Publishers | Privacy Policy