Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Green Synthesis of Silver Nanoparticles using Coriandrum sativum and Murraya koenigii Leaf Extract and its Thrombolytic Activity

Author(s): Priyanca Pram, Nikita Mishra, Mohanasrinivasan Vaithilingam, Merlyn Keziah Samuel, Maneesha Mohanan, Neeti Kothari and Subathra Devi Chandrasekaran*

Volume 22, Issue 2, 2024

Published on: 23 January, 2024

Page: [230 - 239] Pages: 10

DOI: 10.2174/0118715257279159240118050207

Price: $65

Abstract

Background: Plants have been used for ages in traditional medicine, and it is exciting to perceive how recent research has recognized the bioactive compounds liable for their beneficial effects. Green synthesis of metal nanoparticles is a hastily emergent research area in nanotechnology. This study describes the synthesis of silver nanoparticles (AgNPs) using Coriandrum sativum and Murraya koenigii leaf extract and its thrombolytic activity.

Objective: The aim of the study was to determine the clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles.

Methods: Leaves of Coriandrum sativum and Murraya koenigii were collected. Methanolic extraction of the plant sample was done through a Soxhlet extractor. The methanolic extract obtained from both the leaves was subjected to GC-MS analysis. The synthesized NPs from leaf extracts were monitored for analysis, where the typical X-ray diffraction pattern and its diffraction peaks were identified. 3D image of the NPs was analysed by Atomic Force Microscopy. The surface charge of nanoparticles was identified by Zeta potential. The Clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles were analysed by the modified Holmstorm method.

Results: The thrombolytic property of the methanolic extract of plants Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 45.99% activity, and Murraya koenigii extract with 66.56% activity. The nanoparticles (Nps) from Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 58.29% activity, and NPs from Murraya koenigii with 54.04% activity. Coriandrum sativum in GC-MS exhibited 3 peaks, whereas Murraya koenigii extract showed five peaks with notable bioactive compounds.

Conclusion: These NPs were further used for biomedical applications after being fixed by an organic encapsulation agent. The present research reveals the usefulness of Coriandrum sativum and Murraya koenigii for the environmentally friendly manufacture of silver nanoparticles.

Graphical Abstract

[1]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[2]
Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng., 2009, 32(1), 79-84.
[http://dx.doi.org/10.1007/s00449-008-0224-6] [PMID: 18438688]
[3]
Santos, K.O.; Elias, W.C.; Signori, A.M.; Giacomelli, F.C.; Yang, H.; Domingos, J.B. Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. J. Phys. Chem. C, 2012, 116(7), 4594-4604.
[http://dx.doi.org/10.1021/jp2087169]
[4]
Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Indust. Chem., 2013, 1-6.
[http://dx.doi.org/10.1186/2228-5547-4-29]
[5]
Sadowski, S.L. Congenital cardiac disease in the newborn infant: Past, present, and future. Crit. Care Nurs. Clin. North Am., 2009, 21(1), 37-48, vi.
[http://dx.doi.org/10.1016/j.ccell.2008.10.001] [PMID: 19237042]
[6]
Ceriello, A. The post-prandial state and cardiovascular disease: Relevance to diabetes mellitus. Diabetes Metab. Res. Rev., 2000, 16(2), 125-132.
[http://dx.doi.org/10.1002/(SICI)1520-7560(200003/04)16:2<125::AID-DMRR90>3.0.CO;2-4] [PMID: 10751752]
[7]
Zhang, Y.; Xu, C. Recent progresses in the protein engineering of thrombolytic agents. Beijing Da Xue Xue Bao Zi Ran Ke Xue Bao, 2000, 286-294.
[8]
Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; Pyne, S.; Misra, A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp., 2009, 348(1-3), 212-216.
[http://dx.doi.org/10.1016/j.colsurfa.2009.07.021]
[9]
Habeeb Rahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol., 2022, 115-144.
[http://dx.doi.org/10.1049/nbt2.12078]
[10]
Sathyavathi, R.; Krishna, M.B.; Rao, S.V.; Saritha, R.; Rao, D.N. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett., 2010, 3(2), 138-143.
[http://dx.doi.org/10.1166/asl.2010.1099]
[11]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[12]
Nadaf, S.J.; Jadhav, N.R.; Naikwadi, H.S.; Savekar, P.L.; Sapkal, I.D.; Kambli, M.M.; Desai, I.A. Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects. OpenNano., 2022, 8, 100076.
[13]
Vivekanandhan, S.; Christensen, L.; Misra, M.; Kumar Mohanty, A. Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bio nanocomposite films. J. Biomater. Nanobiotechnol., 2012, 3(3), 371-376.
[http://dx.doi.org/10.4236/jbnb.2012.33035]
[14]
Daniel, S.C.G.K.; Kumar, R.; Sathish, V.; Sivakumar, M.; Sunitha, S.; Sironmani, T.A. Green synthesis (Ocimum tenuiflorum) of silver nanoparticles and toxicity studies in zebra fish (Danio rerio) model. Int. J. NanoSci. Nanotechnol., 2011, 103-117.
[15]
Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A.R.; Singh, R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res., 2011, 13(7), 2981-2988.
[http://dx.doi.org/10.1007/s11051-010-0193-y]
[16]
Philip, D.; Unni, C.; Aromal, S.A.; Vidhu, V.K. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(2), 899-904.
[http://dx.doi.org/10.1016/j.saa.2010.12.060] [PMID: 21215687]
[17]
Scandar, S.; Zadra, C.; Marcotullio, M.C. Coriander (Coriandrum sativum) polyphenols and their nutraceutical value against obesity and metabolic syndrome. Molecules, 2023, 28(10), 4187.
[http://dx.doi.org/10.3390/molecules28104187] [PMID: 37241925]
[18]
Al-Khayri, J.M.; Banadka, A.; Nandhini, M.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M. Essential oil from Coriandrum sativum: A review on its phytochemistry and biological activity. Molecules, 2023, 28(2), 696.
[http://dx.doi.org/10.3390/molecules28020696] [PMID: 36677754]
[19]
Önder, A. Coriander and its phytoconstituents for the beneficial effects. In: Potential of essential oils; Intechopen, 2018.
[20]
Parsaeyan, N. The effect of coriander seed powder consumption on atherosclerotic and cardioprotective indices of type 2 diabetic patients. Iranian J. Diab. Obesity, 2012.
[21]
Chithra, V.; Leelamma, S. Hypolipidemic effect of coriander seeds (Coriandrum sativum): Mechanism of action. Plant Foods Hum. Nutr., 1997, 51(2), 167-172.
[http://dx.doi.org/10.1023/A:1007975430328] [PMID: 9527351]
[22]
de Almeida Melo, E.; Bion, F.M.; Filho, J.M.; Guerra, N.B. In vivo antioxidant effect of aqueous and etheric coriander (Coriandrum sativum L.) extracts. Eur. J. Lipid Sci. Technol., 2003, 105(9), 483-487.
[http://dx.doi.org/10.1002/ejlt.200300811]
[23]
Kesari, A.N.; Kesari, S.; Singh, S.K.; Gupta, R.K.; Watal, G. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J. Ethnopharmacol., 2007, 112(2), 305-311.
[http://dx.doi.org/10.1016/j.jep.2007.03.023] [PMID: 17467937]
[24]
Venumadhuri, R.; Madhuri, D.; Sravanthi, K.; Aruna, B.; Babu, N.B.; Nagarajan, G. Evaluation of in-vitro anti-inflammatory and anti-oxidant activity on hydro-alcoholic extract of Murraya koenigii aerial parts; Indian J. Res. Pharma. Biotechnol, 2016, p. 61.
[25]
Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg. Chem. Appl., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/4649506] [PMID: 31354799]
[26]
Sharma, A.; Golhani, S.; Rehman, M.B. Coriandrum sativum: A potential source of therapeutic compound against cardiovascular diseases. Int. J. Adv. Res., 2018, 6(5), 1138-1144.
[http://dx.doi.org/10.21474/IJAR01/7139]
[27]
Shalini, R.; Pushpa, A. A study on thrombolytic, cytotoxic and antioxidant potential of murraya koenigii. Int. J. Pharm. Sci. Rev. Res., 2013.
[28]
Larson, E.C.; Pond, C.D.; Rai, P.P.; Matainaho, T.K.; Piskaut, P.; Franklin, M.R.; Barrows, L.R. Traditional preparations and methanol extracts of medicinal plants from papua new guinea exhibit similar cytochrome P450 inhibition. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/7869710]
[29]
Astiti, N.P.A.; Ramona, Y. GC-MS analysis of active and applicable compounds in methanol extract of sweet star fruit (Averrhoa carambola L.) leaves. Hayati J. Biosci., 2021, 28(1), 12.
[http://dx.doi.org/10.4308/hjb.28.1.12]
[30]
Ashtaputrey, S.D.; Ashtaputrey, P.D.; Rathod, G. Eco-friendly green synthesis and characterization of silver nanoparticles derived from Murraya koenigii leaves extract. Asian J. Chem., 2017, 29(9), 1966-1968.
[http://dx.doi.org/10.14233/ajchem.2017.20680]
[31]
Rasheed, T.; Bilal, M.; Iqbal, H.M.N.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces, 2017, 158, 408-415.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.020] [PMID: 28719862]
[32]
Baghayeri, M.; Mahdavi, B.; Hosseinpor-Mohsen Abadi, Z.; Farhadi, S. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem., 2018, 32(2), e4057.
[http://dx.doi.org/10.1002/aoc.4057]
[33]
Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci., 2016, 6(3), 399-408.
[http://dx.doi.org/10.1007/s13204-015-0449-z]
[34]
Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem., 2010, 3(3), 135-140.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.008]
[35]
Paosen, S.; Saising, J.; Wira Septama, A.; Piyawan Voravuthikunchai, S. Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Mater. Lett., 2017, 209, 201-206.
[http://dx.doi.org/10.1016/j.matlet.2017.07.102]
[36]
Prasad, S.; Kashyap, R.S.; Deopujari, J.Y.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb. J., 2006, 4(1), 14.
[http://dx.doi.org/10.1186/1477-9560-4-14] [PMID: 16968529]
[37]
Sushila Devi, S.; Arya, N. Green synthesis of nanoparticles from plant materials. Vigyan Varta., 2022, 3(12), 146-148.
[38]
Khan, M.Z.H.; Tareq, F.K.; Hossen, M.A.; Roki, M.N.A.M. Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. J. Eng. Sci. Technol., 2018, 158-166.
[39]
Azeez, M.A.; Durodola, F.A.; Lateef, A.; Yekeen, T.A.; Adubi, A.O.; Oladipo, I.C.; Adebayo, E.A.; Badmus, J.A.; Abawulem, A.O. Green synthesized novel silver nanoparticles and their application as anticoagulant and thrombolytic agents: A perspective. IOP Conf. Series Mater. Sci. Eng., 2020, 012043.
[http://dx.doi.org/10.1088/1757-899X/805/1/012043]
[40]
Mahmudin, L.; Suharyadi, E.; Utomo, A.B.S.; Abraha, K. Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. J. Mod. Phys., 2015, 6(8), 1071-1076.
[http://dx.doi.org/10.4236/jmp.2015.68111]
[41]
Lateef, A.; Ojo, S.A.; Elegbede, J.A.; Akinola, P.O.; Akanni, E.O. Nanomedical applications of nanoparticles for blood coagulation disorders. Environm. Nanotechnol., 2018, 243-277.
[http://dx.doi.org/10.1007/978-3-319-76090-2_8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy