Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Review Article

Schiff Bases: Versatile Mediators of Medicinal and Multifunctional Advancements

Author(s): Tanya Biswas, Ravi K. Mittal*, Vikram Sharma, Kanupriya and Isha Mishra

Volume 21, Issue 6, 2024

Published on: 23 January, 2024

Page: [505 - 519] Pages: 15

DOI: 10.2174/0115701786278580231126034039

Price: $65

Abstract

This review aims to shed light on the profound implications of Schiff Bases in combating a spectrum of pathogens by delving into their complex classification, synthesis, and reactions. The investigation also covers the varied molecular properties of Schiff bases, highlighting their potential use as chelating agents in coordination chemistry. Moreover, the investigation explores the discerning nature of Schiff Bases about metal ions and their adeptness in establishing intricate associations, highlighting their significance in metal coordination chemistry and specialized pharmaceutical transport mechanisms. Moreover, the review delves into the synthetic capacity of Schiff Bases, highlighting their importance in synthetic methodologies due to their exceptional adaptability, selectivity, and structural similarity to organic compounds. The methodology employs a rigorous systematic literature review to understand Schiff Bases comprehensively. This involves a meticulous analysis of various research articles and publications, allowing for a comprehensive exploration of the topic. The assessment of experimental investigations contributes to comprehending their molecular attributes, specificity for metal ions, and capacity for synthesis. The presented analysis amalgamates a multitude of sources to provide a nuanced and comprehensive viewpoint on the subject matter of Schiff Bases. The findings underscore the multifaceted utility of Schiff Bases in the fight against pathogens, their adaptability as chelating compounds, and their discerning affinity for metal ions. The examination of synthesis highlights their profound importance in synthetic methodologies and their striking resemblance to compounds found in living organisms. In conclusion, this analysis reveals Schiff Bases as highly adaptable compounds with potential in antimicrobial therapy, coordination chemistry, and precision drug delivery. The distinctive molecular attributes of these substances, functioning as chelators, contribute to their notable importance. The ability of Schiff bases to form complexes and their preference for metal ions highlight the wide range of applications for these molecules. Schiff Bases have a transformative effect on chemistry and medicine as we investigate their synthetic potential, driven by their versatility and structural similarity to biological compounds.

Graphical Abstract

[1]
Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Molecules, 2022, 27(3), 787.
[http://dx.doi.org/10.3390/molecules27030787] [PMID: 35164049]
[2]
Moss, G.P.; Smith, P.A.S.; Tavernier, D. Pure Appl. Chem., 1995, 67(8-9), 1307-1375.
[http://dx.doi.org/10.1351/pac199567081307]
[3]
Pfeiffer, P.; Breith, E.; Lübbe, E.; Tsumaki, T. Justus Liebigs Ann. Chem., 1933, 503(1), 84-130.
[http://dx.doi.org/10.1002/jlac.19335030106]
[4]
Hunter, L.; Marriott, J.A. J. Chem. Soc. (Resumed)., 1937, 2000-2003.
[5]
Sacconi, L.; Ciampolini, M.; Maggio, F.; Cavasino, F.P. J. Am. Chem. Soc., 1962, 84(17), 3246-3248.
[http://dx.doi.org/10.1021/ja00876a005]
[6]
Holm, R.H.; Swaminathan, K. Inorg. Chem., 1962, 1(3), 599-607.
[http://dx.doi.org/10.1021/ic50003a030]
[7]
Percy, G.C.; Thornton, D.A. J. Inorg. Nucl. Chem., 1972, 34(11), 3357-3367.
[http://dx.doi.org/10.1016/0022-1902(72)80230-6]
[8]
Lundgren, R.J.; Stradiotto, M. Ligand Design in Metal Chemistry: Reactivity and Catalysis; , 2016, p. 1-4.
[http://dx.doi.org/10.1002/9781118839621.ch1]
[9]
Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.; Rettig, S.J. Pure Appl. Chem., 1991, 63(6), 845-850.
[http://dx.doi.org/10.1351/pac199163060845]
[10]
Dilli, S.; Maitra, A.M.; Patsalides, E. Inorg. Chem., 1982, 21(7), 2832-2838.
[http://dx.doi.org/10.1021/ic00137a057]
[11]
Camp, C.; Chatelain, L.; Mougel, V.; Pécaut, J.; Mazzanti, M. Inorg. Chem., 2015, 54(12), 5774-5783.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00467] [PMID: 26010406]
[12]
Król-Starzomska, I.; Filarowski, A.; Rospenk, M.; Koll, A.; Melikova, S. J. Phys. Chem. A, 2004, 108(11), 2131-2138.
[http://dx.doi.org/10.1021/jp035009c]
[13]
Zhong, X.; Li, Z.; Shi, R.; Yan, L.; Zhu, Y.; Li, H. ACS Appl. Nano Mater., 2022, 5(10), 13998-14020.
[http://dx.doi.org/10.1021/acsanm.2c03477]
[14]
Tsacheva, I.; Todorova, Z.; Momekova, D.; Momekov, G.; Koseva, N. Pharmaceuticals, 2023, 16(7), 938.
[http://dx.doi.org/10.3390/ph16070938] [PMID: 37513849]
[15]
Jia, Y. Li. J. Chem. Rev., 2015, 115(3), 1597-1621.
[http://dx.doi.org/10.1021/cr400559g] [PMID: 25543900]
[16]
Vikneshvaran, S.; Velmathi, S. Surf. Interfaces, 2017, 6, 134-142.
[http://dx.doi.org/10.1016/j.surfin.2017.01.001]
[17]
Subasi, NT In: Schiff Base in Organic, Inorganic and Physical Chemistry; Intech Open, 2022.
[18]
Abdel Aziz, A.A.; Salem, A.N.M.; Sayed, M.A.; Aboaly, M.M. J. Mol. Struct., 2012, 1010, 130-138.
[http://dx.doi.org/10.1016/j.molstruc.2011.11.043]
[19]
Sinha, D.; Tiwari, A.K.; Singh, S.; Shukla, G.; Mishra, P.; Chandra, H.; Mishra, A.K. Eur. J. Med. Chem., 2008, 43(1), 160-165.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.022] [PMID: 17532543]
[20]
Ronad, P.M.; Noolvi, M.N.; Sapkal, S.; Dharbhamulla, S.; Maddi, V.S. Eur. J. Med. Chem., 2010, 45(1), 85-89.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.028] [PMID: 19837487]
[21]
Amin, R.; Krammer, B.; Abdel-Kader, N.; Verwanger, T.; El-Ansary, A. Eur. J. Med. Chem., 2010, 45(1), 372-378.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.001] [PMID: 19896248]
[22]
Karthikeyan, M.S.; Prasad, D.J.; Poojary, B.; Subrahmanya Bhat, K.; Holla, B.S.; Kumari, N.S. Bioorg. Med. Chem., 2006, 14(22), 7482-7489.
[http://dx.doi.org/10.1016/j.bmc.2006.07.015] [PMID: 16879972]
[23]
Saravanan, G.; Pannerselvam, P.; Prakash, C. J. Adv. Pharm. Technol. Res., 2010, 1(3), 320-325.
[http://dx.doi.org/10.4103/0110-5558.72426] [PMID: 22247864]
[24]
Souza, A.O.; Galetti, F.C.S.; Silva, C.L.; Bicalho, B.; Parma, M.M.; Fonseca, S.F.; Marsaioli, A.J.; Trindade, A.C.L.B.; Gil, R.P.F.; Bezerra, F.S.; Andrade-Neto, M.; Oliveira, M.C.F. Quim. Nova, 2007, 30(7), 1563-1566.
[http://dx.doi.org/10.1590/S0100-40422007000700012]
[25]
GÜmÜŞ A.; OkumuŞ V; GÜmÜŞ. S. Turk. J. Chem., 2020, 44(4), 1200-1215.
[http://dx.doi.org/10.3906/kim-2005-61] [PMID: 33488222]
[26]
Soliman, A.I.A.; Sayed, M.; Elshanawany, M.M.; Younis, O.; Ahmed, M.; Kamal El-Dean, A.M.; Abdel-Wahab, A.M.A.; Wachtveitl, J.; Braun, M.; Fatehi, P.; Tolba, M.S. ACS Omega, 2022, 7(12), 10178-10186.
[http://dx.doi.org/10.1021/acsomega.1c06636] [PMID: 35382296]
[27]
Zhang, W.; Shi, T.; Ding, G.; Punyapitak, D.; Zhu, J.; Guo, D.; Zhang, Z.; Li, J.; Cao, Y. ACS Sustain. Chem.& Eng., 2017, 5(1), 502-509.
[http://dx.doi.org/10.1021/acssuschemeng.6b01867]
[28]
Segura, J.L.; Mancheño, M.J.; Zamora, F. Chem. Soc. Rev., 2016, 45(20), 5635-5671.
[http://dx.doi.org/10.1039/C5CS00878F] [PMID: 27341661]
[29]
Abbas, G.; Al-Harrasi, A.S.; Hussain, H.; Hussain, J.; Rashid, R.; Choudhary, M.I. Pharm. Biol., 2016, 54(2), 198-206.
[http://dx.doi.org/10.3109/13880209.2015.1028080] [PMID: 25853955]
[30]
Kajal, A.; Bala, S.; Sharma, N.; Kamboj, S.; Saini, V. Int. J. Med. Chem., 2014, 2014
[http://dx.doi.org/10.1155/2014/761030]
[31]
Sonmez, F.; Gunesli, Z.; Kurt, B.Z.; Gazioglu, I.; Avci, D.; Kucukislamoglu, M. Mol. Divers., 2019, 23(4), 829-844.
[http://dx.doi.org/10.1007/s11030-018-09910-7] [PMID: 30612259]
[32]
Zanon, V.S.; Lima, J.A.; Cuya, T.; Lima, F.R.S.; da Fonseca, A.C.C.; Gomez, J.G.; Ribeiro, R.R.; França, T.C.C.; Vargas, M.D. J. Inorg. Biochem., 2019, 191, 183-193.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.019] [PMID: 30530179]
[33]
Karrouchi, K.; Chemlal, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; El Abbes Faouzi, M.; Ansar, M. Ann. Pharm. Fr., 2016, 74(6), 431-438.
[http://dx.doi.org/10.1016/j.pharma.2016.03.005] [PMID: 27107461]
[34]
Yehye, W.; Abdul Rahman, N.; Saad, O.; Ariffin, A.; Abd Hamid, S.; Alhadi, A.; Kadir, F.; Yaeghoobi, M.; Matlob, A. Molecules, 2016, 21(7), 847.
[http://dx.doi.org/10.3390/molecules21070847] [PMID: 27367658]
[35]
Alam, M.S.; Choi, J.H.; Lee, D.U. Bioorg. Med. Chem., 2012, 20(13), 4103-4108.
[http://dx.doi.org/10.1016/j.bmc.2012.04.058] [PMID: 22626550]
[36]
Abu-Dief, A.M.; Mohamed, I.M.A. Beni. Suef Univ. J. Basic Appl. Sci., 2015, 4(2), 119-133.
[PMID: 32289037]
[37]
Anupama, B.; Sunita, M.; Shiva Leela, D.; Ushaiah, B.; Gyana Kumari, C. J. Fluoresc., 2014, 24(4), 1067-1076.
[http://dx.doi.org/10.1007/s10895-014-1386-z] [PMID: 24781660]
[38]
Ceruso, M.; Carta, F.; Osman, S.M.; Alothman, Z.; Monti, S.M.; Supuran, C.T. Bioorg. Med. Chem., 2015, 23(15), 4181-4187.
[http://dx.doi.org/10.1016/j.bmc.2015.06.050] [PMID: 26145821]
[39]
Hameed, A.; al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K.M. Expert Opin. Ther. Pat., 2017, 27(1), 63-79.
[http://dx.doi.org/10.1080/13543776.2017.1252752] [PMID: 27774821]
[40]
Munro, O.Q.; Akerman, K.J.; Akerman, P. United States patent US 9,346,832, 2016.
[41]
Redshaw, C. Catalysts, 2017, 7(5), 165.
[http://dx.doi.org/10.3390/catal7050165]
[42]
Roberts, D.W.; Schultz, T.W.; Api, A.M. Chem. Res. Toxicol., 2017, 30(6), 1309-1316.
[http://dx.doi.org/10.1021/acs.chemrestox.7b00050] [PMID: 28493676]
[43]
DiRisio, R.J.; Armstrong, J.E.; Frank, M.A.; Lake, W.R.; McNamara, W.R. Dalton Trans., 2017, 46(31), 10418-10425.
[http://dx.doi.org/10.1039/C7DT01750B] [PMID: 28745763]
[44]
Upadhyay, K.K.; Kumar, A.; Upadhyay, S.; Mishra, P.C. J. Mol. Struct., 2008, 873(1-3), 5-16.
[http://dx.doi.org/10.1016/j.molstruc.2007.02.031]
[45]
Vigato, P.A.; Tamburini, S. Coord. Chem. Rev., 2004, 248(17-20), 1717-2128.
[http://dx.doi.org/10.1016/j.cct.2003.09.003]
[46]
Zhang, J.; Xu, L.; Wong, W.Y. Coord. Chem. Rev., 2018, 355, 180-198.
[http://dx.doi.org/10.1016/j.ccr.2017.08.007]
[47]
Yeap, G.Y.; Ha, S.T.; Ishizawa, N.; Suda, K.; Boey, P.L.; Kamil Mahmood, W.A. J. Mol. Struct., 2003, 658(1-2), 87-99.
[http://dx.doi.org/10.1016/S0022-2860(03)00453-8]
[48]
Clayden, J.; Greeves, N.; Warren, S. Organic chemistry; Oxford University Press: USA, 2012.
[http://dx.doi.org/10.1093/hesc/9780199270293.001.0001]
[49]
Srivastava, R. In: Recent Progress in Organometallic Chemistry; IntechOpen, 2017.
[50]
Patil, M.K.; Masand, V.H.; Maldhure, A.K. Curr. Nanosci., 2021, 17(4), 634-645.
[http://dx.doi.org/10.2174/1573413716999201127112204]
[51]
Han, Y.; Qiu, C.; Li, J.; Gao, F.; Yuan, Q.; Tang, Y.; Niu, W.; Wang, X.; Gao, X.; Gao, L. ACS Sens., 2021, 6(6), 2290-2298.
[http://dx.doi.org/10.1021/acssensors.1c00339] [PMID: 34042418]
[52]
Wang, C.; Fei, J.; Wang, K. Li. J. Angew. Chem. Int. Ed., 2020, 59(43), 18960-18963.
[http://dx.doi.org/10.1002/anie.202006994] [PMID: 32618091]
[53]
Xue, H.; Li, X.; Wang, K.; Cui, W.; Zhao, J.; Fei, J. Li. J. Chem. Commun., 2019, 55(87), 13136-13139.
[http://dx.doi.org/10.1039/C9CC07520H] [PMID: 31617550]
[54]
Yuan, T.; Fei, J.; Xu, Y.; Yang, X.; Li, J. Macromol. Rapid Commun., 2017, 38(20), 1700408.
[http://dx.doi.org/10.1002/marc.201700408] [PMID: 28841256]
[55]
Fei, J.; Zhang, H.; Wang, A.; Qin, C.; Xue, H. Li. J. Adv. Healthc. Mater., 2017, 6(7), 1601198.
[http://dx.doi.org/10.1002/adhm.201601198] [PMID: 28177202]
[56]
Gao, L.; Fei, J.; Zhao, J.; Cui, W.; Cui, Y. Li. J. Chem., 2012, 18(11), 3185-3192.
[http://dx.doi.org/10.1002/chem.201103584] [PMID: 22344618]
[57]
Ghanghas, P.; Choudhary, A.; Kumar, D.; Poonia, K. Inorg. Chem. Commun., 2021, 130, 108710.
[http://dx.doi.org/10.1016/j.inoche.2021.108710]
[58]
Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Molecules, 2013, 18(10), 12264-12289.
[http://dx.doi.org/10.3390/molecules181012264] [PMID: 24108395]
[59]
Mukhtar, S.; Hassan, A.; Morsy, N.; Hafez, T.; Hassaneen, H.; Saleh, F. Egypt. J. Chem., 2022, 65, 379-395.
[http://dx.doi.org/10.21608/ejchem.2021.79736.3920]
[60]
Hassan, A.; Askar, A.; Nossier, E.; Naglah, A.; Moustafa, G.; Al-Omar, M. Molecules, 2019, 24(17), 3130.
[http://dx.doi.org/10.3390/molecules24173130] [PMID: 31466322]
[61]
Erturk, A.G. J. Mol. Struct., 2020, 1202, 127299.
[http://dx.doi.org/10.1016/j.molstruc.2019.127299]
[62]
Bayeh, Y.; Mohammed, F.; Gebrezgiabher, M.; Elemo, F.; Getachew, M.; Thomas, M. Adv. Biol. Chem., 2020, 10(5), 127-139.
[http://dx.doi.org/10.4236/abc.2020.105010]
[63]
Wang, H.; Jiang, M.; Li, S.; Hse, C.Y.; Jin, C.; Sun, F.; Li, Z. R. Soc. Open Sci., 2017, 4(9), 170516.
[http://dx.doi.org/10.1098/rsos.170516] [PMID: 28989758]
[64]
Bhagwatrao Biradar, S.; Vithal Narte, D.; Pradip Kale, R.; Momin, K.I.; Sudewad, M.S.; Tayade, K.C.; Palke, D.G.J. Appl. Organomet. Chem., 2021, 1, 41-47.
[65]
Siddappa, K.; Mane, S.B.; Manikprabhu, D. Bioinorg. Chem. Appl., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/343540]
[66]
Warad, I.; Ali, O.; Al Ali, A.; Jaradat, N.A.; Hussein, F.; Abdallah, L.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A. Molecules, 2020, 25(9), 2253.
[http://dx.doi.org/10.3390/molecules25092253] [PMID: 32403218]
[67]
Goldenberg, M.M. P&T, 2010, 35(7), 392-415.
[PMID: 20689626]
[68]
Kulkarni, A.A.; Wankhede, S.B.; Dhawale, N.D.; Yadav, P.B.; Deore, V.V.; Gonjari, I.D. Arab. J. Chem., 2017, 10, S184-S189.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.020]
[69]
Aly, M.M.; Mohamed, Y.A.; El-Bayouki, K.A.M.; Basyouni, W.M.; Abbas, S.Y. Eur. J. Med. Chem., 2010, 45(8), 3365-3373.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.020] [PMID: 20510483]
[70]
Sadia, M.; Khan, J.; Naz, R.; Zahoor, M.; Wadood Ali Shah, S.; Ullah, R.; Naz, S.; Bari, A.; Majid Mahmood, H.; Saeed Ali, S.; Ansari, S.A.; Sohaib, M. J. King Saud Univ. Sci., 2021, 33(2), 101331.
[http://dx.doi.org/10.1016/j.jksus.2020.101331]
[71]
Mesripour, A.; Jafari, E.; Hajibeiki, M.R.; Hassanzadeh, F. Iran. J. Basic Med. Sci., 2023, 26(4), 438-444.
[PMID: 37009007]
[72]
Thomas, A.B.; Nanda, R.K.; Kothapalli, L.P.; Hamane, S.C. Arab. J. Chem., 2016, 9, S79-S90.
[http://dx.doi.org/10.1016/j.arabjc.2011.02.015]
[73]
Saadaoui, I.; Krichen, F.; Ben Salah, B.; Ben Mansour, R.; Miled, N.; Bougatef, A.; Kossentini, M. J. Mol. Struct., 2019, 1180, 344-354.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.008]
[74]
Ganguli, S.; Firdous, M.; Maity, T.S.; Bera, R.K.; Panigrahi, M. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 175-178.
[75]
Nithinchandra, K.B.; Kalluraya, B.; Aamir, S.; Shabaraya, A.R. Eur. J. Med. Chem., 2012, 54, 597-604.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.011] [PMID: 22795833]
[76]
Verma, S.K.; Verma, R.; Rakesh, K.P.; Gowda, D.C. Eur. J. Med. Chem., 2022, 6, 100087.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100087]
[77]
Mathur, P.; Mori, M.; Vyas, H.; Mor, K.; Jagtap, J.; Vadher, S.; Vyas, K.; Devkar, R.; Desai, A. ACS Omega, 2022, 7(49), 45545-45555.
[http://dx.doi.org/10.1021/acsomega.2c06177] [PMID: 36530297]
[78]
Sunil, D.; Isloor, A.M.; Shetty, P.; Nayak, P.G.; Pai, K.S.R. Arab. J. Chem., 2013, 6(1), 25-33.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.016]
[79]
Beč A.; Cindrić M.; Persoons, L.; Banjanac, M.; Radovanović V.; Daelemans, D.; Hranjec, M. Molecules, 2023, 28(9), 3720.
[http://dx.doi.org/10.3390/molecules28093720] [PMID: 37175129]
[80]
Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Eur. J. Med. Chem., 2010, 45(11), 5474-5479.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.058] [PMID: 20724039]
[81]
Diana, R.; Gentile, F.S.; Carella, A.; Di Costanzo, L.; Panunzi, B. Molecules, 2022, 27(18), 6060.
[http://dx.doi.org/10.3390/molecules27186060] [PMID: 36144794]
[82]
Omar, A.Z.; Mohamed, M.G.; Hamed, E.A.; El-atawy, M.A. J. Saudi Chem. Soc., 2023, 27(1), 101594.
[http://dx.doi.org/10.1016/j.jscs.2022.101594]
[83]
Lagerspets, E.; Lagerblom, K.; Heliövaara, E.; Hiltunen, O.M.; Moslova, K.; Nieger, M.; Repo, T. Mol. Catal., 2019, 468, 75-79.
[84]
Wang, Y.E.; Yang, D.; Huo, J.; Chen, L.; Kang, Z.; Mao, J.; Zhang, J. J. Agric. Food Chem., 2021, 69(40), 11773-11780.
[http://dx.doi.org/10.1021/acs.jafc.1c01804] [PMID: 34587736]
[85]
Mutahir, S.; Yaqoob, F.; Khan, M.A.; Alsuhaibani, A.M.; Abouzied, A.S.; Refat, M.S.; Huwaimel, B. Crystals, 2023, 13(5), 806.
[http://dx.doi.org/10.3390/cryst13050806]
[86]
Awual, M.R. Chem. Eng. J., 2017, 307, 85-94.
[http://dx.doi.org/10.1016/j.cej.2016.07.110]
[87]
Salman, M.S.; Hasan, M.N.; Hasan, M.M.; Kubra, K.T.; Sheikh, M.C.; Rehan, A.I.; Waliullah, R.M.; Rasee, A.I.; Awual, M.E.; Hossain, M.S.; Alsukaibi, A.K. J. Mol. Struct., 2023, 1282, 135259.
[http://dx.doi.org/10.1016/j.molstruc.2023.135259]
[88]
Cheng, H.; Huang, Y.; Zhu, Z.; Dong, L.; Zha, J.; Yu, M. Chem. Eng. J., 2021, 414, 128672.
[http://dx.doi.org/10.1016/j.cej.2021.128672]
[89]
Murugesan, A.; Loganathan, M.; Senthil Kumar, P.; Vo, D.V.N. Sustain. Chem. Pharm., 2021, 21, 100406.
[http://dx.doi.org/10.1016/j.scp.2021.100406]
[90]
Xu, Y.; Khan, M.A.; Wang, F.; Xia, M.; Lei, W. Appl. Clay Sci., 2018, 162, 204-213.
[http://dx.doi.org/10.1016/j.clay.2018.06.023]
[91]
Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Wan, Q.; Deng, F.; Wei, Y. Appl. Surf. Sci., 2015, 343, 19-27.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.081]
[92]
Chakrabarty, K.; Saha, P.; Ghoshal, A.K. J. Membr. Sci., 2010, 350(1-2), 395-401.
[http://dx.doi.org/10.1016/j.memsci.2010.01.016]
[93]
Ding, F.; Gao, M.; Shen, T.; Zeng, H.; Xiang, Y. Chem. Eng. J., 2018, 349, 388-396.
[http://dx.doi.org/10.1016/j.cej.2018.05.095]
[94]
Tabassam, N.; Mutahir, S.; Khan, M.A.; Khan, I.U.; Habiba, U.; Refat, M.S. Mater. Chem. Phys., 2022, 288, 126327.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126327]
[95]
Habiba, U.; Mutahir, S.; Khan, M.A.; Humayun, M.; Refat, M.S.; Munawar, K.S. Catalysts, 2022, 12(9), 1063.
[http://dx.doi.org/10.3390/catal12091063]
[96]
Saha, D.; Barakat, S.; Van Bramer, S.E.; Nelson, K.A.; Hensley, D.K.; Chen, J. ACS Appl. Mater. Interfaces, 2016, 8(49), 34132-34142.
[http://dx.doi.org/10.1021/acsami.6b12190] [PMID: 27960359]
[97]
Yek, S.M.G.; Baran, T.; Nasrollahzadeh, M.; Bakhshali-Dehkordi, R.; Baran, N.Y.; Shokouhimehr, M. Optik, 2021, 238, 166672.
[http://dx.doi.org/10.1016/j.ijleo.2021.166672]
[98]
Kubra, K.T.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Khaleque, M.A.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Awual, M.E.; Hossain, M.S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Colloids Surf. A Physicochem. Eng. Asp., 2023, 667, 131415.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131415]
[99]
Salman, M.S.; Sheikh, M.C.; Hasan, M.M.; Hasan, M.N.; Kubra, K.T.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Waliullah, R.M.; Hossain, M.S.; Khaleque, M.A.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Appl. Surf. Sci., 2023, 622, 157008.
[http://dx.doi.org/10.1016/j.apsusc.2023.157008]
[100]
Jawad, A.H.; Mubarak, N.S.A.; Abdulhameed, A.S. Int. J. Biol. Macromol., 2020, 142, 732-741.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.014] [PMID: 31760013]
[101]
Reghioua, A.; Barkat, D.; Jawad, A.H.; Abdulhameed, A.S.; Rangabhashiyam, S.; Khan, M.R. ALOthman. Z.A. J. Polym. Environ., 2021, 29(12), 3932-3947.
[http://dx.doi.org/10.1007/s10924-021-02160-z]
[102]
Alcantara-Cobos, A.; Gutiérrez-Segura, E.; Solache-Ríos, M.; Amaya-Chávez, A.; Solís-Casados, D.A. Microporous Mesoporous Mater., 2020, 302, 110212.
[http://dx.doi.org/10.1016/j.micromeso.2020.110212]
[103]
Sharaby, C.M.; Amine, M.F.; Hamed, A.A. J. Mol. Struct., 2017, 1134, 208-216.
[http://dx.doi.org/10.1016/j.molstruc.2016.12.070]
[104]
Lasri, J.; Elsherbiny, A.S.; Eltayeb, N.E.; Haukka, M.; El-Hefnawy, M.E. J. Organomet. Chem., 2018, 866, 21-26.
[http://dx.doi.org/10.1016/j.jorganchem.2018.04.004]
[105]
Zishen, W.; Ziqi, G.; Zhenhuan, Y. Synth. React. Inorg. Met.-Org. Chem., 1990, 20(3), 335-344.
[http://dx.doi.org/10.1080/00945719008048138]
[106]
Snell, E.E.; Jenkins, W.T. J. Cell. Comp. Physiol., 1959, 54(S1), 161-177.
[http://dx.doi.org/10.1002/jcp.1030540413] [PMID: 13832270]
[107]
Cohen, M.P. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(12), 5480-5485.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.024] [PMID: 23624335]
[108]
Troschke, E.; Oschatz, M.; Ilic, I.K. Exploration, 2021, 1(3), 20210128.
[http://dx.doi.org/10.1002/EXP.20210128] [PMID: 37323689]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy