Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Mini-Review Article

Bridging the Mind and Gut: Uncovering the Intricacies of Neurotransmitters, Neuropeptides, and their Influence on Neuropsychiatric Disorders

Author(s): Saumya Gupta, Susha Dinesh* and Sameer Sharma

Volume 24, Issue 1, 2024

Published on: 23 January, 2024

Page: [2 - 21] Pages: 20

DOI: 10.2174/0118715249271548231115071021

Price: $65

conference banner
Abstract

Background: The gut-brain axis (GBA) is a bidirectional signaling channel that facilitates communication between the gastrointestinal tract and the brain. Recent research on the gut-brain axis demonstrates that this connection enables the brain to influence gut function, which in turn influences the brain and its cognitive functioning. It is well established that malfunctioning of this axis adversely affects both systems' ability to operate effectively.

Objective: Dysfunctions in the GBA have been associated with disorders of gut motility and permeability, intestinal inflammation, indigestion, constipation, diarrhea, IBS, and IBD, as well as neuropsychiatric and neurodegenerative disorders like depression, anxiety, schizophrenia, autism, Alzheimer's, and Parkinson's disease. Multiple research initiatives have shown that the gut microbiota, in particular, plays a crucial role in the GBA by participating in the regulation of a number of key neurochemicals that are known to have significant effects on the mental and physical well-being of an individual.

Methods: Several studies have investigated the relationship between neuropsychiatric disorders and imbalances or disturbances in the metabolism of neurochemicals, often leading to concomitant gastrointestinal issues and modifications in gut flora composition. The interaction between neurological diseases and gut microbiota has been a focal point within this research. The novel therapeutic interventions in neuropsychiatric conditions involving interventions such as probiotics, prebiotics, and dietary modifications are outlined in this review.

Results: The findings of multiple studies carried out on mice show that modulating and monitoring gut microbiota can help treat symptoms of such diseases, which raises the possibility of the use of probiotics, prebiotics, and even dietary changes as part of a new treatment strategy for neuropsychiatric disorders and their symptoms.

Conclusion: The bidirectional communication between the gut and the brain through the gut-brain axis has revealed profound implications for both gastrointestinal and neurological health. Malfunctions in this axis have been connected to a range of disorders affecting gut function as well as cognitive and neuropsychiatric well-being. The emerging understanding of the role of gut microbiota in regulating key neurochemicals opens up possibilities for novel treatment approaches for conditions like depression, anxiety, and neurodegenerative diseases.

Graphical Abstract

[1]
Tsigos, C.; Chrousos, G.P. Hypothalamic–pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4), 865-871.
[http://dx.doi.org/10.1016/S0022-3999(02)00429-4] [PMID: 12377295]
[2]
Mayer, E.A.; Savidge, T.; Shulman, R.J. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology, 2014, 146(6), 1500-1512.
[http://dx.doi.org/10.1053/j.gastro.2014.02.037] [PMID: 24583088]
[3]
Alkasir, R.; Li, J.; Li, X.; Jin, M.; Zhu, B. Human gut microbiota: The links with dementia development. Protein Cell, 2017, 8(2), 90-102.
[http://dx.doi.org/10.1007/s13238-016-0338-6] [PMID: 27866330]
[4]
Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res., 2018, 1693(Pt B), 128-133.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015] [PMID: 29903615]
[5]
Kaelberer, M.M.; Rupprecht, L.E.; Liu, W.W.; Weng, P.; Bohórquez, D.V. Neuropod cells: The emerging biology of gut-brain sensory transduction. Annu. Rev. Neurosci., 2020, 43(1), 337-353.
[http://dx.doi.org/10.1146/annurev-neuro-091619-022657] [PMID: 32101483]
[6]
Jameson, K.G.; Olson, C.A.; Kazmi, S.A.; Hsiao, E.Y. Toward understanding microbiome-neuronal signaling. Mol. Cell, 2020, 78(4), 577-583.
[http://dx.doi.org/10.1016/j.molcel.2020.03.006] [PMID: 32275853]
[7]
Aresti Sanz, J.; El Aidy, S. Microbiota and gut neuropeptides: A dual action of antimicrobial activity and neuroimmune response. Psychopharmacology, 2019, 236(5), 1597-1609.
[http://dx.doi.org/10.1007/s00213-019-05224-0] [PMID: 30997526]
[8]
Leonard, B.E. The HPA and immune axes in stress: The involvement of the serotonergic system. Eur. Psychiatry, 2005, 20(S3)(Suppl. 3), S302-S306.
[http://dx.doi.org/10.1016/S0924-9338(05)80180-4] [PMID: 16459240]
[9]
Collins, S.M.; Bercik, P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 2009, 136(6), 2003-2014.
[http://dx.doi.org/10.1053/j.gastro.2009.01.075] [PMID: 19457424]
[10]
Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; Li, L.; Ruan, B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun., 2015, 48, 186-194.
[http://dx.doi.org/10.1016/j.bbi.2015.03.016] [PMID: 25882912]
[11]
Bhattarai, Y.; Muniz Pedrogo, D.A.; Kashyap, P.C. Irritable bowel syndrome: A gut microbiota-related disorder? Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(1), G52-G62.
[http://dx.doi.org/10.1152/ajpgi.00338.2016] [PMID: 27881403]
[12]
Jeffery, I.B.; O’Toole, P.W.; Öhman, L.; Claesson, M.J.; Deane, J.; Quigley, E.M.M.; Simrén, M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut, 2012, 61(7), 997-1006.
[http://dx.doi.org/10.1136/gutjnl-2011-301501] [PMID: 22180058]
[13]
Banerjee, A.; Sarkhel, S.; Sarkar, R.; Dhali, G.K. Anxiety and depression in irritable bowel syndrome. Indian J. Psychol. Med., 2017, 39(6), 741-745.
[http://dx.doi.org/10.4103/IJPSYM.IJPSYM_46_17] [PMID: 29284804]
[14]
Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci., 2014, 264(8), 651-660.
[http://dx.doi.org/10.1007/s00406-014-0502-z] [PMID: 24705634]
[15]
Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial genes, brain & behaviour-epigenetic regulation of the gut–brain axis. Genes Brain Behav., 2014, 13(1), 69-86.
[http://dx.doi.org/10.1111/gbb.12109] [PMID: 24286462]
[16]
Wang, S.; Ishima, T.; Qu, Y.; Shan, J.; Chang, L.; Wei, Y.; Zhang, J.; Pu, Y.; Fujita, Y.; Tan, Y.; Wang, X.; Ma, L.; Wan, X.; Hammock, B.D.; Hashimoto, K. Ingestion of Faecalibaculum rodentium causes depression-like phenotypes in resilient Ephx2 knock-out mice: A role of brain–gut–microbiota axis via the subdiaphragmatic vagus nerve. J. Affect. Disord., 2021, 292, 565-573.
[http://dx.doi.org/10.1016/j.jad.2021.06.006] [PMID: 34147969]
[17]
Yang, C.; Fujita, Y.; Ren, Q.; Ma, M.; Dong, C.; Hashimoto, K. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci. Rep., 2017, 7(1), 45942.
[http://dx.doi.org/10.1038/srep45942] [PMID: 28368029]
[18]
Li, N.; Wang, Q.; Wang, Y.; Sun, A.; Lin, Y.; Jin, Y.; Li, X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress, 2019, 22(5), 592-602.
[http://dx.doi.org/10.1080/10253890.2019.1617267] [PMID: 31124390]
[19]
Gareau, M.G.; Wine, E.; Rodrigues, D.M.; Cho, J.H.; Whary, M.T.; Philpott, D.J.; MacQueen, G.; Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60(3), 307-317.
[http://dx.doi.org/10.1136/gut.2009.202515] [PMID: 20966022]
[20]
Nadeem, I.; Rahman, M.Z.; Ad-Dab’bagh, Y.; Akhtar, M. Effect of probiotic interventions on depressive symptoms: A narrative review evaluating systematic reviews. Psychiatry Clin. Neurosci., 2019, 73(4), 154-162.
[http://dx.doi.org/10.1111/pcn.12804] [PMID: 30499231]
[21]
Liang, S.; Wang, T.; Hu, X.; Luo, J.; Li, W.; Wu, X.; Duan, Y.; Jin, F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience, 2015, 310, 561-577.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.033] [PMID: 26408987]
[22]
Roy Sarkar, S.; Mitra Mazumder, P.; Banerjee, S. Probiotics protect against gut dysbiosis associated decline in learning and memory. J. Neuroimmunol., 2020, 348, 577390.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577390] [PMID: 32956951]
[23]
Guida, F.; Turco, F.; Iannotta, M.; De Gregorio, D.; Palumbo, I.; Sarnelli, G.; Furiano, A.; Napolitano, F.; Boccella, S.; Luongo, L.; Mazzitelli, M.; Usiello, A.; De Filippis, F.; Iannotti, F.A.; Piscitelli, F.; Ercolini, D.; de Novellis, V.; Di Marzo, V.; Cuomo, R.; Maione, S. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun., 2018, 67, 230-245.
[http://dx.doi.org/10.1016/j.bbi.2017.09.001] [PMID: 28890155]
[24]
Luo, J.; Wang, T.; Liang, S.; Hu, X.; Li, W.; Jin, F. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci. China Life Sci., 2014, 57(3), 327-335.
[http://dx.doi.org/10.1007/s11427-014-4615-4] [PMID: 24554471]
[25]
Wang, P.; Tu, K.; Cao, P.; Yang, Y.; Zhang, H.; Qiu, X.T.; Zhang, M.M.; Wu, X.J.; Yang, H.; Chen, T. Antibiotics-induced intestinal dysbacteriosis caused behavioral alternations and neuronal activation in different brain regions in mice. Mol. Brain, 2021, 14(1), 49.
[http://dx.doi.org/10.1186/s13041-021-00759-w] [PMID: 33676528]
[26]
Gupta, S.; Masand, P.S.; Kaplan, D.; Bhandary, A.; Hendricks, S. The relationship between schizophrenia and irritable bowel syndrome (IBS). Schizophr. Res., 1997, 23(3), 265-268.
[http://dx.doi.org/10.1016/S0920-9964(96)00099-0] [PMID: 9075306]
[27]
Eaton, W.; Mortensen, P.B.; Agerbo, E.; Byrne, M.; Mors, O.; Ewald, H. Coeliac disease and schizophrenia: Population based case control study with linkage of Danish national registers. BMJ, 2004, 328(7437), 438-439.
[http://dx.doi.org/10.1136/bmj.328.7437.438] [PMID: 14976100]
[28]
Kirkpatrick, B.; Miller, B.J. Inflammation and schizophrenia. Schizophr. Bull., 2013, 39(6), 1174-1179.
[http://dx.doi.org/10.1093/schbul/sbt141] [PMID: 24072812]
[29]
Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry, 2011, 70(7), 663-671.
[http://dx.doi.org/10.1016/j.biopsych.2011.04.013] [PMID: 21641581]
[30]
Severance, E.G.; Dickerson, F.; Yolken, R.H. Complex gastrointestinal and endocrine sources of inflammation in schizophrenia. Front. Psychiatry, 2020, 11, 549.
[http://dx.doi.org/10.3389/fpsyt.2020.00549] [PMID: 32625121]
[31]
Hand, T.W.; Dos Santos, L.M.; Bouladoux, N.; Molloy, M.J.; Pagán, A.J.; Pepper, M.; Maynard, C.L.; Elson, C.O., III; Belkaid, Y. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science, 2012, 337(6101), 1553-1556.
[http://dx.doi.org/10.1126/science.1220961] [PMID: 22923434]
[32]
Mortensen, P.B.; Nørgaard-Pedersen, B.; Waltoft, B.L.; Sørensen, T.L.; Hougaard, D.; Torrey, E.F.; Yolken, R.H. Toxoplasma gondii as a risk factor for early-onset schizophrenia: Analysis of filter paper blood samples obtained at birth. Biol. Psychiatry, 2007, 61(5), 688-693.
[http://dx.doi.org/10.1016/j.biopsych.2006.05.024] [PMID: 16920078]
[33]
Mills, S.; Shanahan, F.; Stanton, C.; Hill, C.; Coffey, A.; Ross, R.P. Movers and shakers. Gut Microbes, 2013, 4(1), 4-16.
[http://dx.doi.org/10.4161/gmic.22371] [PMID: 23022738]
[34]
Ding, H.; Yi, X.; Zhang, X.; Wang, H.; Liu, H.; Mou, W.W. Imbalance in the gut Microbiota of children with autism spectrum disorders. Front. Cell. Infect. Microbiol., 2021, 11, 572752.
[http://dx.doi.org/10.3389/fcimb.2021.572752] [PMID: 34790583]
[35]
Taniya, M.A.; Chung, H.J.; Al Mamun, A.; Alam, S.; Aziz, M.A.; Emon, N.U.; Islam, M.M.; Hong, S.T.; Podder, B.R.; Ara Mimi, A.; Aktar Suchi, S.; Xiao, J. Role of gut microbiome in autism spectrum disorder and its therapeutic regulation. Front. Cell. Infect. Microbiol., 2022, 12, 915701.
[http://dx.doi.org/10.3389/fcimb.2022.915701] [PMID: 35937689]
[36]
Williams, B.L.; Hornig, M.; Parekh, T.; Lipkin, W.I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 2012, 3(1), e00261-e11.
[http://dx.doi.org/10.1128/mBio.00261-11] [PMID: 22233678]
[37]
Williams, B.L.; Hornig, M.; Buie, T.; Bauman, M.L.; Cho Paik, M.; Wick, I.; Bennett, A.; Jabado, O.; Hirschberg, D.L.; Lipkin, W.I. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 2011, 6(9), e24585.
[http://dx.doi.org/10.1371/journal.pone.0024585] [PMID: 21949732]
[38]
Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol., 2011, 11(1), 22.
[http://dx.doi.org/10.1186/1471-230X-11-22] [PMID: 21410934]
[39]
Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 2013, 8(7), e68322.
[http://dx.doi.org/10.1371/journal.pone.0068322] [PMID: 23844187]
[40]
Forsythe, P.; Kunze, W.; Bienenstock, J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med., 2016, 14(1), 58.
[http://dx.doi.org/10.1186/s12916-016-0604-8] [PMID: 27090095]
[41]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[42]
Brookes, S.J.H.; Spencer, N.J.; Costa, M.; Zagorodnyuk, V.P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(5), 286-296.
[http://dx.doi.org/10.1038/nrgastro.2013.29] [PMID: 23438947]
[43]
Grenham, S.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gut-microbe communication in health and disease. Front. Physiol., 2011, 2, 94.
[http://dx.doi.org/10.3389/fphys.2011.00094] [PMID: 22162969]
[44]
Appleton, J. The gut-brain axis: Influence of microbiota on mood and mental health. Integr. Med., 2018, 17(4), 28-32.
[PMID: 31043907]
[45]
McVey Neufeld, K.A.; Mao, Y.K.; Bienenstock, J.; Foster, J.A.; Kunze, W.A. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil., 2013, 25(2), 183-e88.
[http://dx.doi.org/10.1111/nmo.12049] [PMID: 23181420]
[46]
Azzam, I.; Gilad, S.; Limor, R.; Stern, N.; Greenman, Y. Ghrelin stimulation by hypothalamic–pituitary–adrenal axis activation depends on increasing cortisol levels. Endocr. Connect., 2017, 6(8), 847-855.
[http://dx.doi.org/10.1530/EC-17-0212] [PMID: 29038331]
[47]
Picciotto, M.R. Galanin and addiction. Cell. Mol. Life Sci., 2008, 65(12), 1872-1879.
[http://dx.doi.org/10.1007/s00018-008-8151-x] [PMID: 18500649]
[48]
Mayer, EA; Tillisch, K; Gupta, A Gut/brain axis and the microbiota. J. Clin. Invest. 3, 2015, 125, 926-38.
[http://dx.doi.org/10.1172/JCI76304]
[49]
Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M-L.; Licinio, J.; Wesselingh, S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry, 2016, 21(6), 738-748.
[http://dx.doi.org/10.1038/mp.2016.50] [PMID: 27090305]
[50]
Wang, Y.; Kasper, L.H. The role of microbiome in central nervous system disorders. Brain Behav. Immun., 2014, 38, 1-12.
[http://dx.doi.org/10.1016/j.bbi.2013.12.015] [PMID: 24370461]
[51]
Macfabe, D. Autism: metabolism, mitochondria, and the microbiome. Glob. Adv. Health Med., 2013, 2(6), 52-66.
[http://dx.doi.org/10.7453/gahmj.2013.089] [PMID: 24416709]
[52]
DuPont, H.L. Review article: evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Aliment. Pharmacol. Ther., 2014, 39(10), 1033-1042.
[http://dx.doi.org/10.1111/apt.12728] [PMID: 24665829]
[53]
Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Irritable bowel syndrome: A microbiome-gut-brain axis disorder? World J. Gastroenterol., 2014, 20(39), 14105-14125.
[http://dx.doi.org/10.3748/wjg.v20.i39.14105] [PMID: 25339800]
[54]
Forsythe, P.; Kunze, W.A.; Bienenstock, J. On communication between gut microbes and the brain. Curr. Opin. Gastroenterol., 2012, 28(6), 557-562.
[http://dx.doi.org/10.1097/MOG.0b013e3283572ffa] [PMID: 23010679]
[55]
Meldrum, B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr., 2000, 130(Suppl. 4), 1007S-1015S.
[http://dx.doi.org/10.1093/jn/130.4.1007S] [PMID: 10736372]
[56]
Chang, C.H.; Lin, C.H.; Lane, H.Y. D-glutamate and gut microbiota in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(8), 2676.
[http://dx.doi.org/10.3390/ijms21082676] [PMID: 32290475]
[57]
Kaelberer, M.M.; Buchanan, K.L.; Klein, M.E.; Barth, B.B.; Montoya, M.M.; Shen, X.; Bohórquez, D.V. A gut-brain neural circuit for nutrient sensory transduction. Science, 2018, 361(6408), eaat5236.
[http://dx.doi.org/10.1126/science.aat5236] [PMID: 30237325]
[58]
Auteri, M.; Zizzo, M.G.; Serio, R. GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacol. Res., 2015, 93, 11-21.
[http://dx.doi.org/10.1016/j.phrs.2014.12.001] [PMID: 25526825]
[59]
Strandwitz, P.; Kim, K.H.; Terekhova, D.; Liu, J.K.; Sharma, A.; Levering, J.; McDonald, D.; Dietrich, D.; Ramadhar, T.R.; Lekbua, A.; Mroue, N.; Liston, C.; Stewart, E.J.; Dubin, M.J.; Zengler, K.; Knight, R.; Gilbert, J.A.; Clardy, J.; Lewis, K. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol., 2018, 4(3), 396-403.
[http://dx.doi.org/10.1038/s41564-018-0307-3] [PMID: 30531975]
[60]
Noorian, A.R.; Taylor, G.M.; Annerino, D.M.; Greene, J.G. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J. Comp. Neurol., 2011, 519(17), 3387-3401.
[http://dx.doi.org/10.1002/cne.22679] [PMID: 21618236]
[61]
Luqman, A.; Nega, M.; Nguyen, M.T.; Ebner, P.; Götz, F. SadA-expressing staphylococci in the human gut show increased cell adherence and internalization. Cell Rep., 2018, 22(2), 535-545.
[http://dx.doi.org/10.1016/j.celrep.2017.12.058] [PMID: 29320746]
[62]
Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines, 2022, 10(2), 436.
[http://dx.doi.org/10.3390/biomedicines10020436] [PMID: 35203645]
[63]
Bove, C.; Anselmi, L.; Travagli, R.A. Altered gastric tone and motility response to brain-stem dopamine in a rat model of parkinsonism. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 317(1), G1-G7.
[http://dx.doi.org/10.1152/ajpgi.00076.2019] [PMID: 31042398]
[64]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2), 264-276.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[65]
Sang, Q.; Young, H.M. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat. Rec., 1998, 251(2), 185-199.
[http://dx.doi.org/10.1002/(SICI)1097-0185(199806)251:2<185:AID-AR6>3.0.CO;2-Y] [PMID: 9624448]
[66]
Horiuchi, Y.; Kimura, R.; Kato, N.; Fujii, T.; Seki, M.; Endo, T.; Kato, T.; Kawashima, K. Evolutional study on acetylcholine expression. Life Sci., 2003, 72(15), 1745-1756.
[http://dx.doi.org/10.1016/S0024-3205(02)02478-5] [PMID: 12559395]
[67]
Chen, Y.; Xu, J.; Chen, Y. Regulation of neurotransmitters by the gut Microbiota and effects on cognition in neurological disorders. Nutrients, 2021, 13(6), 2099.
[http://dx.doi.org/10.3390/nu13062099] [PMID: 34205336]
[68]
Wei, P.; Keller, C.; Li, L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput. Struct. Biotechnol. J., 2020, 18, 843-851.
[http://dx.doi.org/10.1016/j.csbj.2020.02.018] [PMID: 32322366]
[69]
Chandrasekharan, B.; Nezami, B.G.; Srinivasan, S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(11), G949-G957.
[http://dx.doi.org/10.1152/ajpgi.00493.2012] [PMID: 23538492]
[70]
Vouldoukis, I.; Shai, Y.; Nicolas, P.; Mor, A. Broad spectrum antibiotic activity of skin-PYY. FEBS Lett., 1996, 380(3), 237-240.
[http://dx.doi.org/10.1016/0014-5793(96)00050-6] [PMID: 8601432]
[71]
El Karim, I.A.; Linden, G.J.; Orr, D.F.; Lundy, F.T. Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol., 2008, 200(1-2), 11-16.
[http://dx.doi.org/10.1016/j.jneuroim.2008.05.014] [PMID: 18603306]
[72]
Koon, H.W.; Pothoulakis, C. Immunomodulatory properties of substance P: The gastrointestinal system as a model. Ann. N. Y. Acad. Sci., 2006, 1088(1), 23-40.
[http://dx.doi.org/10.1196/annals.1366.024] [PMID: 17192554]
[73]
Váradi, J.; Harazin, A.; Fenyvesi, F.; Réti-Nagy, K.; Gogolák, P.; Vámosi, G.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Vasvári, G.; Róka, E.; Haines, D.; Deli, M.A.; Vecsernyés, M. Alpha-melanocyte stimulating hormone protects against cytokine-induced barrier damage in caco-2 intestinal epithelial monolayers. PLoS One, 2017, 12(1), e0170537.
[http://dx.doi.org/10.1371/journal.pone.0170537] [PMID: 28103316]
[74]
Cutuli, M.; Cristiani, S.; Lipton, J.M.; Catania, A. Antimicrobial effects of α-MSH peptides. J. Leukoc. Biol., 2000, 67(2), 233-239.
[http://dx.doi.org/10.1002/jlb.67.2.233] [PMID: 10670585]
[75]
Masman, M.F.; Rodrı´guez, A.M.; Svetaz, L.; Zacchino, S.A.; Somlai, C.; Csizmadia, I.G.; Penke, B.; Enriz, R.D. Synthesis and conformational analysis of His-Phe-Arg-Trp-NH2 and analogues with antifungal properties. Bioorg. Med. Chem., 2006, 14(22), 7604-7614.
[http://dx.doi.org/10.1016/j.bmc.2006.07.007] [PMID: 16926096]
[76]
Delgado, M.; Anderson, P.; Garcia-Salcedo, J.A.; Caro, M.; Gonzalez-Rey, E. Neuropeptides kill African trypanosomes by targeting intracellular compartments and inducing autophagic-like cell death. Cell Death Differ., 2009, 16(3), 406-416.
[http://dx.doi.org/10.1038/cdd.2008.161] [PMID: 19057622]
[77]
Iwasaki, M.; Akiba, Y.; Kaunitz, J.D. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: Focus on the gastrointestinal system. F1000 Res., 2019, 8, 1629.
[http://dx.doi.org/10.12688/f1000research.18039.1] [PMID: 31559013]
[78]
Ogoshi, M. Calcitonin Gene-Related Peptide. In: Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research;; , 2016; pp. 235-237.
[http://dx.doi.org/10.1016/B978-0-12-801028-0.00171-9]
[79]
Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe, 2014, 16(4), 495-503.
[http://dx.doi.org/10.1016/j.chom.2014.09.001] [PMID: 25263219]
[80]
Brekke, E.; Morken, T.S.; Walls, A.B.; Waagepetersen, H.; Schousboe, A.; Sonnewald, U. Anaplerosis for glutamate synthesis in the neonate and in adulthood. Advances in Neurobiology; Springer International Publishing: Cham, 2016, pp. 43-58.
[81]
Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 2021, 196, 108719.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108719] [PMID: 34273389]
[82]
Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise Thomas, E.; Bell, J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5(1), 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[83]
Nakayama, Y.; Hashimoto, K.; Sawada, Y.; Sokabe, M.; Kawasaki, H.; Martinac, B. Corynebacterium glutamicum mechanosensitive channels: Towards unpuzzling “glutamate efflux” for amino acid production. Biophys. Rev., 2018, 10(5), 1359-1369.
[http://dx.doi.org/10.1007/s12551-018-0452-1] [PMID: 30209745]
[84]
Filpa, V.; Moro, E.; Protasoni, M.; Crema, F.; Frigo, G.; Giaroni, C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology, 2016, 111, 14-33.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.024] [PMID: 27561972]
[85]
Mishra, P.K.; Adusumilli, M.; Deolal, P.; Mason, G.F.; Kumar, A.; Patel, A.B. Impaired neuronal and astroglial metabolic activity in chronic unpredictable mild stress model of depression: Reversal of behavioral and metabolic deficit with lanicemine. Neurochem. Int., 2020, 137, 104750.
[http://dx.doi.org/10.1016/j.neuint.2020.104750] [PMID: 32360130]
[86]
Lee, S.E.; Lee, Y.; Lee, G.H. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch. Pharm. Res., 2019, 42(12), 1031-1039.
[http://dx.doi.org/10.1007/s12272-019-01196-z] [PMID: 31786745]
[87]
Otaru, N.; Ye, K.; Mujezinovic, D.; Berchtold, L.; Constancias, F.; Cornejo, F.A.; Krzystek, A.; de Wouters, T.; Braegger, C.; Lacroix, C.; Pugin, B. GABA production by human intestinal Bacteroides spp.: Prevalence, regulation, and role in acid stress tolerance. Front. Microbiol., 2021, 12, 656895.
[http://dx.doi.org/10.3389/fmicb.2021.656895] [PMID: 33936013]
[88]
Duranti, S.; Ruiz, L.; Lugli, G.A.; Tames, H.; Milani, C.; Mancabelli, L.; Mancino, W.; Longhi, G.; Carnevali, L.; Sgoifo, A.; Margolles, A.; Ventura, M.; Ruas-Madiedo, P.; Turroni, F. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci. Rep., 2020, 10(1), 14112.
[http://dx.doi.org/10.1038/s41598-020-70986-z] [PMID: 32839473]
[89]
Patterson, E.; Ryan, P.M.; Wiley, N.; Carafa, I.; Sherwin, E.; Moloney, G.; Franciosi, E.; Mandal, R.; Wishart, D.S.; Tuohy, K.; Ross, R.P.; Cryan, J.F.; Dinan, T.G.; Stanton, C. Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome. Sci. Rep., 2019, 9(1), 16323.
[http://dx.doi.org/10.1038/s41598-019-51781-x] [PMID: 31704943]
[90]
Ting Wong, C.G.; Bottiglieri, T.; Snead, O.C. III GABA? -hydroxybutyric acid, and neurological disease. Ann. Neurol., 2003, 54(S6), S3-S12.
[http://dx.doi.org/10.1002/ana.10696] [PMID: 12891648]
[91]
McCutcheon, R.A.; Abi-Dargham, A.; Howes, O.D. Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends Neurosci., 2019, 42(3), 205-220.
[http://dx.doi.org/10.1016/j.tins.2018.12.004] [PMID: 30621912]
[92]
Eisenhofer, G.; Åneman, A.; Friberg, P.; Hooper, D.; Fåndriks, L.; Lonroth, H.; Hunyady, B.; Mezey, E. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab., 1997, 82(11), 3864-3871.
[http://dx.doi.org/10.1210/jcem.82.11.4339] [PMID: 9360553]
[93]
Al-Jahmany, A.A.; Schultheiss, G.; Diener, M. Effects of dopamine on ion transport across the rat distal colon. Pflugers Arch., 2004, 448(6), 605-612.
[http://dx.doi.org/10.1007/s00424-004-1299-9] [PMID: 15235915]
[94]
Vaughan, C.J.; Aherne, A.M.; Lane, E.; Power, O.; Carey, R.M.; O’Connell, D.P. Identification and regional distribution of the dopamine D 1A receptor in the gastrointestinal tract. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(2), R599-R609.
[http://dx.doi.org/10.1152/ajpregu.2000.279.2.R599] [PMID: 10938251]
[95]
Hartstra, A.V.; Schüppel, V.; Imangaliyev, S.; Schrantee, A.; Prodan, A.; Collard, D.; Levin, E.; Dallinga-Thie, G.; Ackermans, M.T.; Winkelmeijer, M.; Havik, S.R.; Metwaly, A.; Lagkouvardos, I.; Nier, A.; Bergheim, I.; Heikenwalder, M.; Dunkel, A.; Nederveen, A.J.; Liebisch, G.; Mancano, G.; Claus, S.P.; Benítez-Páez, A.; la Fleur, S.E.; Bergman, J.J.; Gerdes, V.; Sanz, Y.; Booij, J.; Kemper, E.; Groen, A.K.; Serlie, M.J.; Haller, D.; Nieuwdorp, M. Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Mol. Metab., 2020, 42, 101076.
[http://dx.doi.org/10.1016/j.molmet.2020.101076] [PMID: 32916306]
[96]
Liao, J.F.; Cheng, Y.F.; Li, S.W.; Lee, W.T.; Hsu, C.C.; Wu, C.C.; Jeng, O.J.; Wang, S.; Tsai, Y.C. Lactobacillus plantarum PS128 ameliorates 2,5-Dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influences on the microbiota–gut-brain-axis. Brain Res. Bull., 2019, 153, 59-73.
[http://dx.doi.org/10.1016/j.brainresbull.2019.07.027] [PMID: 31351942]
[97]
Liao, J.F.; Cheng, Y.F.; You, S.T.; Kuo, W.C.; Huang, C.W.; Chiou, J.J.; Hsu, C.C.; Hsieh-Li, H.M.; Wang, S.; Tsai, Y.C. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav. Immun., 2020, 90, 26-46.
[http://dx.doi.org/10.1016/j.bbi.2020.07.036] [PMID: 32739365]
[98]
Shaw, W. Elevated urinary glyphosate and Clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: A case study. Integr. Med., 2017, 16(1), 50-57.
[PMID: 28223908]
[99]
Taj, A.; Jamil, N. Bioconversion of tyrosine and tryptophan derived biogenic amines by neuropathogenic bacteria. Biomolecules, 2018, 8(1), 10.
[http://dx.doi.org/10.3390/biom8010010] [PMID: 29438351]
[100]
Xue, R.; Zhang, H.; Pan, J.; Du, Z.; Zhou, W.; Zhang, Z.; Tian, Z.; Zhou, R.; Bai, L. Peripheral dopamine controlled by gut microbes inhibits invariant natural killer T cell-mediated hepatitis. Front. Immunol., 2018, 9, 2398.
[http://dx.doi.org/10.3389/fimmu.2018.02398] [PMID: 30386344]
[101]
Helton, S.G.; Lohoff, F.W. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics, 2015, 16(5), 541-553.
[http://dx.doi.org/10.2217/pgs.15.15] [PMID: 25916524]
[102]
Glavin, G.B.; Szabo, S. Dopamine in gastrointestinal disease. Dig. Dis. Sci., 1990, 35(9), 1153-1161.
[http://dx.doi.org/10.1007/BF01537589] [PMID: 2202571]
[103]
Bailey, M.T.; Cryan, J.F. The microbiome as a key regulator of brain, behavior and immunity: Commentary on the 2017 named series. Brain Behav. Immun., 2017, 66, 18-22.
[http://dx.doi.org/10.1016/j.bbi.2017.08.017] [PMID: 28843452]
[104]
Saraf, M.K.; Piccolo, B.D.; Bowlin, A.K.; Mercer, K.E.; LeRoith, T.; Chintapalli, S.V.; Shankar, K.; Badger, T.M.; Yeruva, L. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome, 2017, 5(1), 77.
[http://dx.doi.org/10.1186/s40168-017-0297-z] [PMID: 28705171]
[105]
Singhal, M.; Manzella, C.; Soni, V.; Alrefai, W.A.; Saksena, S.; Hecht, G.A.; Dudeja, P.K.; Gill, R.K. Role of SHP2 protein tyrosine phosphatase in SERT inhibition by enteropathogenic E. coli (EPEC). Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(5), G443-G449.
[http://dx.doi.org/10.1152/ajpgi.00011.2017] [PMID: 28209599]
[106]
Banskota, S.; Regmi, S.C.; Gautam, J.; Gurung, P.; Lee, Y.J.; Ku, S.K.; Lee, J.H.; Lee, J.; Chang, H.W.; Park, S.J.; Kim, J.A. Serotonin disturbs colon epithelial tolerance of commensal E. coli by increasing NOX2-derived superoxide. Free Radic. Biol. Med., 2017, 106, 196-207.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.02.034] [PMID: 28216386]
[107]
Chen, Y.C.; Seyedsayamdost, M.R.; Ringstad, N. A microbial metabolite synergizes with endogenous serotonin to trigger C. elegans reproductive behavior. Proc. Natl. Acad. Sci. USA, 2020, 117(48), 30589-30598.
[http://dx.doi.org/10.1073/pnas.2017918117] [PMID: 33199611]
[108]
Lin, S.H.; Lee, L.T.; Yang, Y.K. Serotonin and mental disorders: A concise review on molecular neuroimaging evidence. Clin. Psychopharmacol. Neurosci., 2014, 12(3), 196-202.
[http://dx.doi.org/10.9758/cpn.2014.12.3.196] [PMID: 25598822]
[109]
Amenta, F.; Tayebati, S. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr. Med. Chem., 2008, 15(5), 488-498.
[http://dx.doi.org/10.2174/092986708783503203] [PMID: 18289004]
[110]
Inazu, M. Functional expression of choline transporters in the blood–brain barrier. Nutrients, 2019, 11(10), 2265.
[http://dx.doi.org/10.3390/nu11102265] [PMID: 31547050]
[111]
Koussoulas, K.; Swaminathan, M.; Fung, C.; Bornstein, J.C.; Foong, J.P.P. Neurally released GABA acts via GABAC receptors to modulate Ca2+ transients evoked by trains of synaptic inputs, but not responses evoked by single stimuli, in myenteric neurons of mouse ileum. Front. Physiol., 2018, 9, 97.
[http://dx.doi.org/10.3389/fphys.2018.00097] [PMID: 29487540]
[112]
Matilla, M.A.; Velando, F.; Tajuelo, A.; Martín-Mora, D.; Xu, W.; Sourjik, V.; Gavira, J.A.; Krell, T. Chemotaxis of the human pathogen pseudomonas aeruginosa to the neurotransmitter acetylcholine. MBio, 2022, 13(2), e03458-e21.
[http://dx.doi.org/10.1128/mbio.03458-21] [PMID: 35254130]
[113]
Ramirez, V.T.; Godinez, D.R.; Brust-Mascher, I.; Nonnecke, E.B.; Castillo, P.A.; Gardner, M.B.; Tu, D.; Sladek, J.A.; Miller, E.N.; Lebrilla, C.B.; Bevins, C.L.; Gareau, M.G.; Reardon, C. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathog., 2019, 15(4), e1007719.
[http://dx.doi.org/10.1371/journal.ppat.1007719] [PMID: 30973939]
[114]
Al-Barazie, R.M.; Bashir, G.H.; Qureshi, M.M.; Mohamed, Y.A.; Al-Sbiei, A.; Tariq, S.; Lammers, W.J.; al-Ramadi, B.K.; Fernandez-Cabezudo, M.J. Cholinergic activation enhances resistance to oral salmonella infection by modulating innate immune defense mechanisms at the intestinal barrier. Front. Immunol., 2018, 9, 551.
[http://dx.doi.org/10.3389/fimmu.2018.00551] [PMID: 29616040]
[115]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[116]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[117]
Holzer, P.; Reichmann, F.; Farzi, A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides, 2012, 46(6), 261-274.
[http://dx.doi.org/10.1016/j.npep.2012.08.005] [PMID: 22979996]
[118]
Bedoui, S.; Kawamura, N.; Straub, R.H.; Pabst, R.; Yamamura, T.; von Hörsten, S. Relevance of Neuropeptide Y for the neuroimmune crosstalk. J. Neuroimmunol., 2003, 134(1-2), 1-11.
[http://dx.doi.org/10.1016/S0165-5728(02)00424-1] [PMID: 12507767]
[119]
Longo, A.; Fadda, M.; Brasso, C.; Mele, P.; Palanza, P.; Nanavaty, I.; Bertocchi, I.; Oberto, A.; Eva, C. Conditional inactivation of Npy1r gene in mice induces behavioural inflexibility and orbitofrontal cortex hyperactivity that are reversed by escitalopram. Neuropharmacology, 2018, 133, 12-22.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.018] [PMID: 29353053]
[120]
Domin, H.; Szewczyk, B.; Pochwat, B.; Woźniak, M.; Śmiałowska, M. Antidepressant-like activity of the neuropeptide Y Y5 receptor antagonist Lu AA33810: Behavioral, molecular, and immunohistochemical evidence. Psychopharmacology, 2017, 234(4), 631-645.
[http://dx.doi.org/10.1007/s00213-016-4495-3] [PMID: 27975125]
[121]
Hamamah, S.; Covasa, M. Gut Microbiota restores central neuropeptide deficits in germ-free mice. Int. J. Mol. Sci., 2022, 23(19), 11756.
[http://dx.doi.org/10.3390/ijms231911756] [PMID: 36233056]
[122]
Maymon, N.; Mizrachi Zer-Aviv, T.; Sabban, E.L.; Akirav, I. Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD. Neuropharmacology, 2020, 162, 107804.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107804] [PMID: 31622603]
[123]
Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases. Front. Neurosci., 2019, 13, 869.
[http://dx.doi.org/10.3389/fnins.2019.00869] [PMID: 31481869]
[124]
Pain, S.; Vergote, J.; Gulhan, Z.; Bodard, S.; Chalon, S.; Gaillard, A. Inflammatory process in Parkinson disease: neuroprotection by neuropeptide Y. Fundam. Clin. Pharmacol., 2019, 33(5), 544-548.
[http://dx.doi.org/10.1111/fcp.12464] [PMID: 30866091]
[125]
Biaggini, K.; Borrel, V.; Szunerits, S.; Boukherroub, R.; N’Diaye, A.; Zébré, A.; Bonnin-Jusserand, M.; Duflos, G.; Feuilloley, M.; Drider, D.; Déchelotte, P.; Connil, N. Substance P enhances lactic acid and tyramine production in Enterococcus faecalis V583 and promotes its cytotoxic effect on intestinal Caco-2/TC7 cells. Gut Pathog., 2017, 9(1), 20.
[http://dx.doi.org/10.1186/s13099-017-0171-3] [PMID: 28439299]
[126]
N’Diaye, A.; Mijouin, L.; Hillion, M.; Diaz, S.; Konto-Ghiorghi, Y.; Percoco, G.; Chevalier, S.; Lefeuvre, L.; Harmer, N.J.; Lesouhaitier, O.; Feuilloley, M.G.J. Effect of Substance P in Staphylococcus aureus and Staphylococcus epidermidis Virulence: Implication for Skin Homeostasis. Front. Microbiol., 2016, 7, 506.
[http://dx.doi.org/10.3389/fmicb.2016.00506] [PMID: 27148195]
[127]
Graefe, S.B.; Rahimi, N.; Mohiuddin, S.S. Biochemistry, Substance P; StatPearls Publishing, 2023.
[128]
Singh, M.; Mukhopadhyay, K. Alpha-melanocyte stimulating hormone: An emerging anti-inflammatory antimicrobial peptide. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/874610] [PMID: 25140322]
[129]
Zeng, M.; Shao, A.; Li, H.; Tang, Y.; Li, Q.; Guo, Z.; Wu, C.; Cheng, Y.; Tian, H.; Zhu, W.H. Peptide receptor-targeted fluorescent probe: Visualization and discrimination between chronic and acute ulcerative colitis. ACS Appl. Mater. Interfaces, 2017, 9(15), 13029-13036.
[http://dx.doi.org/10.1021/acsami.7b00936] [PMID: 28349696]
[130]
Huang, H.H. Chen, L.Y.; Doong, M.L.; Chang, S.C.; Chen, C.Y. α-melanocyte stimulating hormone modulates the central acyl ghrelin-induced stimulation of feeding, gastrointestinal motility, and colonic secretion. Drug Des. Devel. Ther., 2017, 11, 2377-2386.
[http://dx.doi.org/10.2147/DDDT.S143749] [PMID: 28860709]
[131]
Peñate-Medina, T.; Damoah, C.; Benezra, M.; Will, O.; Kairemo, K.; Humbert, J.; Sebens, S.; Peñate-Medina, O. Alpha-MSH targeted liposomal nanoparticle for imaging in inflammatory bowel disease (IBD). Curr. Pharm. Des., 2020, 26(31), 3840-3846.
[http://dx.doi.org/10.2174/18734286MTA49NDce3] [PMID: 32718282]
[132]
Delgado, M.; Ganea, D. Vasoactive intestinal peptide: A neuropeptide with pleiotropic immune functions. Amino Acids, 2013, 45(1), 25-39.
[http://dx.doi.org/10.1007/s00726-011-1184-8] [PMID: 22139413]
[133]
Casado-Bedmar, M.; Heil, S.D.S.; Myrelid, P.; Söderholm, J.D.; Keita, Å.V. Upregulation of intestinal mucosal mast cells expressing VPAC1 in close proximity to vasoactive intestinal polypeptide in inflammatory bowel disease and murine colitis. Neurogastroenterol. Motil., 2019, 31(3), e13503.
[http://dx.doi.org/10.1111/nmo.13503] [PMID: 30407703]
[134]
Firouzabadi, S.G.; Kariminejad, R.; Vameghi, R.; Darvish, H.; Ghaedi, H.; Banihashemi, S.; Firouzkouhi Moghaddam, M.; Jamali, P.; Mofidi Tehrani, H.F.; Dehghani, H.; Narooie-Nejad, M.; Jamshidi, J.; Tafakhori, A.; Sadabadi, S.; Najmabadi, H.; Behjati, F. Copy number variants in patients with autism and additional clinical features: Report of VIPR2 duplication and a novel microduplication syndrome. Mol. Neurobiol., 2017, 54(9), 7019-7027.
[http://dx.doi.org/10.1007/s12035-016-0202-y] [PMID: 27796743]
[135]
Seillet, C.; Luong, K.; Tellier, J.; Jacquelot, N.; Shen, R.D.; Hickey, P.; Wimmer, V.C.; Whitehead, L.; Rogers, K.; Smyth, G.K.; Garnham, A.L.; Ritchie, M.E.; Belz, G.T. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol., 2020, 21(2), 168-177.
[http://dx.doi.org/10.1038/s41590-019-0567-y] [PMID: 31873294]
[136]
Therapeutic efficacy of stable analogues of vasoactive intestinal peptide against pathogens. Available from: https://www.google.com/search?client=safari&rls=en&q=Therapeutic+Efficacy+of+Stable+Analogues+of+Vasoactive+Intestinal+Peptide+against+Pathogens*&ie=UTF-8&oe=UTF-8 (Accessed on: August 30, 2023).
[137]
Simon, R.A.; Barazanji, N.; Jones, M.P.; Bednarska, O.; Icenhour, A.; Engström, M.; Hamilton, J.P.; Keita, Å.V.; Walter, S. Vasoactive intestinal polypeptide plasma levels associated with affective symptoms and brain structure and function in healthy females. Sci. Rep., 2021, 11(1), 1406.
[http://dx.doi.org/10.1038/s41598-020-80873-2] [PMID: 33446759]
[138]
Smolilo, D.J.; Hibberd, T.J.; Costa, M.; Wattchow, D.A.; De Fontgalland, D.; Spencer, N.J. Intrinsic sensory neurons provide direct input to motor neurons and interneurons in mouse distal colon via varicose baskets. J. Comp. Neurol., 2020, 528(12), 2033-2043.
[http://dx.doi.org/10.1002/cne.24872] [PMID: 32003462]
[139]
Shinohara, K.; Watabe, A.M.; Nagase, M.; Okutsu, Y.; Takahashi, Y.; Kurihara, H.; Kato, F. Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur. J. Neurosci., 2017, 46(6), 2149-2160.
[http://dx.doi.org/10.1111/ejn.13662] [PMID: 28833700]
[140]
Pujo, J.; De Palma, G.; Lu, J.; Galipeau, H.J.; Surette, M.G.; Collins, S.M.; Bercik, P. Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production. Gut Microbes, 2023, 15(1), 2188874.
[http://dx.doi.org/10.1080/19490976.2023.2188874] [PMID: 36939195]
[141]
Croop, R.; Goadsby, P.J.; Stock, D.A.; Conway, C.M.; Forshaw, M.; Stock, E.G.; Coric, V.; Lipton, R.B. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: A randomised, phase 3, double-blind, placebo-controlled trial. Lancet, 2019, 394(10200), 737-745.
[http://dx.doi.org/10.1016/S0140-6736(19)31606-X] [PMID: 31311674]
[142]
Lipton, R.B.; Croop, R.; Stock, E.G.; Stock, D.A.; Morris, B.A.; Frost, M.; Dubowchik, G.M.; Conway, C.M.; Coric, V.; Goadsby, P.J. Rimegepant, an oral calcitonin gene–related peptide receptor antagonist, for migraine. N. Engl. J. Med., 2019, 381(2), 142-149.
[http://dx.doi.org/10.1056/NEJMoa1811090] [PMID: 31291516]
[143]
Lipton, R.B.; Dodick, D.W.; Ailani, J.; Lu, K.; Finnegan, M.; Szegedi, A.; Trugman, J.M. Effect of ubrogepant vs placebo on pain and the most bothersome associated symptom in the acute treatment of migraine: The ACHIEVE II randomized clinical trial. JAMA, 2019, 322(19), 1887-1898.
[http://dx.doi.org/10.1001/jama.2019.16711] [PMID: 31742631]
[144]
Ailani, J.; Lipton, R.B.; Goadsby, P.J.; Guo, H.; Miceli, R.; Severt, L.; Finnegan, M.; Trugman, J.M. Atogepant for the preventive treatment of migraine. N. Engl. J. Med., 2021, 385(8), 695-706.
[http://dx.doi.org/10.1056/NEJMoa2035908] [PMID: 34407343]
[145]
Ailani, J.; Lipton, R.B.; Hutchinson, S.; Knievel, K.; Lu, K.; Butler, M.; Yu, S.Y.; Finnegan, M.; Severt, L.; Trugman, J.M. Long-term safety evaluation of ubrogepant for the acute treatment of migraine: Phase 3, randomized, 52-week extension trial. Headache, 2020, 60(1), 141-152.
[http://dx.doi.org/10.1111/head.13682] [PMID: 31913519]
[146]
Satarker, S.; Bojja, S.L.; Gurram, P.C.; Mudgal, J.; Arora, D.; Nampoothiri, M. Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells, 2022, 11(7), 1139.
[http://dx.doi.org/10.3390/cells11071139] [PMID: 35406702]
[147]
Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol., 2019, 10, 1008.
[http://dx.doi.org/10.3389/fphar.2019.01008] [PMID: 31572186]
[148]
Pchitskaya, E.; Popugaeva, E.; Bezprozvanny, I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium, 2018, 70, 87-94.
[http://dx.doi.org/10.1016/j.ceca.2017.06.008] [PMID: 28728834]
[149]
García-Cazorla, À.; Artuch, R. Neurotransmitter disorders. In: Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease; Rosenberg, R.N.; Pascual, J.M., Eds.; Elsevier: San Diego, CA, 2020; pp. 917-929.
[http://dx.doi.org/10.1016/B978-0-12-813955-4.00067-2]
[150]
Brennenstuhl, H; Jung-Klawitter, S; Assmann, B; Opladen, T Inherited disorders of neurotransmitters: Classification and practical approaches for diagnosis and treatment. Neuropediatrics, 2019, 50, 002-14.
[http://dx.doi.org/10.1055/s-0038-1673630]
[151]
Mastrangelo, M. Epilepsy in inherited neurotransmitter disorders: Spotlights on pathophysiology and clinical management. Metab. Brain Dis., 2021, 36(1), 29-43.
[http://dx.doi.org/10.1007/s11011-020-00635-x] [PMID: 33095372]
[152]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[153]
Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med., 2011, 73(2), 114-126.
[http://dx.doi.org/10.1097/PSY.0b013e31820ad12b] [PMID: 21257974]
[154]
Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci., 2012, 13(7), 465-477.
[http://dx.doi.org/10.1038/nrn3257] [PMID: 22678511]
[155]
Liu, S.; Guo, R.; Liu, F.; Yuan, Q.; Yu, Y.; Ren, F. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr. Dis. Treat., 2020, 16, 859-869.
[http://dx.doi.org/10.2147/NDT.S243551] [PMID: 32280227]
[156]
Bharwani, A.; Bala, A.; Surette, M.; Bienenstock, J.; Vigod, S.N.; Taylor, V.H. Gut microbiome patterns associated with treatment response in patients with major depressive disorder. Can. J. Psychiatry, 2020, 65(4), 278-280.
[http://dx.doi.org/10.1177/0706743719900464] [PMID: 31958990]
[157]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[158]
Ge, X.; Pan, J.; Liu, Y.; Wang, H.; Zhou, W.; Wang, X. Intestinal crosstalk between Microbiota and serotonin and its impact on gut motility. Curr. Pharm. Biotechnol., 2018, 19(3), 190-195.
[http://dx.doi.org/10.2174/1389201019666180528094202] [PMID: 29804531]
[159]
Golofast, B.; Vales, K. The connection between microbiome and schizophrenia. Neurosci. Biobehav. Rev., 2020, 108, 712-731.
[http://dx.doi.org/10.1016/j.neubiorev.2019.12.011] [PMID: 31821833]
[160]
Nemani, K.; Hosseini Ghomi, R.; McCormick, B.; Fan, X. Schizophrenia and the gut–brain axis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 56, 155-160.
[http://dx.doi.org/10.1016/j.pnpbp.2014.08.018] [PMID: 25240858]
[161]
Zhu, F.; Guo, R.; Wang, W.; Ju, Y.; Wang, Q.; Ma, Q.; Sun, Q.; Fan, Y.; Xie, Y.; Yang, Z.; Jie, Z.; Zhao, B.; Xiao, L.; Yang, L.; Zhang, T.; Liu, B.; Guo, L.; He, X.; Chen, Y.; Chen, C.; Gao, C.; Xu, X.; Yang, H.; Wang, J.; Dang, Y.; Madsen, L.; Brix, S.; Kristiansen, K.; Jia, H.; Ma, X. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol. Psychiatry, 2020, 25(11), 2905-2918.
[http://dx.doi.org/10.1038/s41380-019-0475-4] [PMID: 31391545]
[162]
Zhu, F.; Ju, Y.; Wang, W.; Wang, Q.; Guo, R.; Ma, Q.; Sun, Q.; Fan, Y.; Xie, Y.; Yang, Z.; Jie, Z.; Zhao, B.; Xiao, L.; Yang, L.; Zhang, T.; Feng, J.; Guo, L.; He, X.; Chen, Y.; Chen, C.; Gao, C.; Xu, X.; Yang, H.; Wang, J.; Dang, Y.; Madsen, L.; Brix, S.; Kristiansen, K.; Jia, H.; Ma, X. Metagenome-wide association of gut microbiome features for schizophrenia. Nat. Commun., 2020, 11(1), 1612.
[http://dx.doi.org/10.1038/s41467-020-15457-9] [PMID: 32235826]
[163]
Zheng, P.; Zeng, B.; Liu, M.; Chen, J.; Pan, J.; Han, Y.; Liu, Y.; Cheng, K.; Zhou, C.; Wang, H.; Zhou, X.; Gui, S.; Perry, S.W.; Wong, M.L.; Licinio, J.; Wei, H.; Xie, P. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv., 2019, 5(2), eaau8317.
[http://dx.doi.org/10.1126/sciadv.aau8317] [PMID: 30775438]
[164]
Nguyen, T.T.; Kosciolek, T.; Maldonado, Y.; Daly, R.E.; Martin, A.S.; McDonald, D.; Knight, R.; Jeste, D.V. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr. Res., 2019, 204, 23-29.
[http://dx.doi.org/10.1016/j.schres.2018.09.014] [PMID: 30268819]
[165]
Li, S.; Zhuo, M.; Huang, X.; Huang, Y.; Zhou, J.; Xiong, D.; Li, J.; Liu, Y.; Pan, Z.; Li, H.; Chen, J.; Li, X.; Xiang, Z.; Wu, F.; Wu, K. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ, 2020, 8, e9574.
[http://dx.doi.org/10.7717/peerj.9574] [PMID: 32821537]
[166]
Chaidez, V.; Hansen, R.L.; Hertz-Picciotto, I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord., 2014, 44(5), 1117-1127.
[http://dx.doi.org/10.1007/s10803-013-1973-x] [PMID: 24193577]
[167]
Patusco, R.; Ziegler, J. Role of probiotics in managing gastrointestinal dysfunction in children with autism spectrum disorder: An update for practitioners. Adv. Nutr., 2018, 9(5), 637-650.
[http://dx.doi.org/10.1093/advances/nmy031] [PMID: 30202938]
[168]
Barden, N. Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J. Psychiatry Neurosci., 2004, 29(3), 185-193.
[PMID: 15173895]
[169]
O’Mahony, S.M.; Marchesi, J.R.; Scully, P.; Codling, C.; Ceolho, A.M.; Quigley, E.M.M.; Cryan, J.F.; Dinan, T.G. Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry, 2009, 65(3), 263-267.
[http://dx.doi.org/10.1016/j.biopsych.2008.06.026] [PMID: 18723164]
[170]
O’Mahony, S.M.; Hyland, N.P.; Dinan, T.G.; Cryan, J.F. Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology, 2011, 214(1), 71-88.
[http://dx.doi.org/10.1007/s00213-010-2010-9] [PMID: 20886335]
[171]
De Palma, G.; Blennerhassett, P.; Lu, J.; Deng, Y.; Park, A.J.; Green, W.; Denou, E.; Silva, M.A.; Santacruz, A.; Sanz, Y.; Surette, M.G.; Verdu, E.F.; Collins, S.M.; Bercik, P. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun., 2015, 6(1), 7735.
[http://dx.doi.org/10.1038/ncomms8735] [PMID: 26218677]
[172]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[173]
Wingfield, B.; Lapsley, C.; McDowell, A.; Miliotis, G.; McLafferty, M.; O’Neill, S.M.; Coleman, S.; McGinnity, T.M.; Bjourson, A.J.; Murray, E.K. Variations in the oral microbiome are associated with depression in young adults. Sci. Rep., 2021, 11(1), 15009.
[http://dx.doi.org/10.1038/s41598-021-94498-6] [PMID: 34294835]
[174]
Szentirmai, É.; Millican, N.S.; Massie, A.R.; Kapás, L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci. Rep., 2019, 9(1), 7035.
[http://dx.doi.org/10.1038/s41598-019-43502-1] [PMID: 31065013]
[175]
Fang, H.; Tu, S.; Sheng, J.; Shao, A. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J. Cell. Mol. Med., 2019, 23(4), 2324-2332.
[http://dx.doi.org/10.1111/jcmm.14170] [PMID: 30734486]
[176]
Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; Verdu, E.F.; Collins, S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141(2), 599-609.e3,-609.e1-609.e3.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052] [PMID: 21683077]
[177]
De Palma, G.; Lynch, M.D.J.; Lu, J.; Dang, V.T.; Deng, Y.; Jury, J.; Umeh, G.; Miranda, P.M.; Pigrau Pastor, M.; Sidani, S.; Pinto-Sanchez, M.I.; Philip, V.; McLean, P.G.; Hagelsieb, M.G.; Surette, M.G.; Bergonzelli, G.E.; Verdu, E.F.; Britz-McKibbin, P.; Neufeld, J.D.; Collins, S.M.; Bercik, P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med., 2017, 9(379), eaaf6397.
[http://dx.doi.org/10.1126/scitranslmed.aaf6397] [PMID: 28251905]
[178]
Butler, M.I.; Bastiaanssen, T.F.S.; Long-Smith, C.; Morkl, S.; Berding, K.; Ritz, N.L.; Strain, C.; Patangia, D.; Patel, S.; Stanton, C.; O’Mahony, S.M.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The gut microbiome in social anxiety disorder: Evidence of altered composition and function. Transl. Psychiatry, 2023, 13(1), 95.
[http://dx.doi.org/10.1038/s41398-023-02325-5] [PMID: 36941248]
[179]
Gaykema, R.P.A.; Goehler, L.E.; Lyte, M. Brain response to cecal infection with Campylobacter jejuni: Analysis with Fos immunohistochemistry. Brain Behav. Immun., 2004, 18(3), 238-245.
[http://dx.doi.org/10.1016/j.bbi.2003.08.002] [PMID: 15050651]
[180]
Goehler, L.E.; Park, S.M.; Opitz, N.; Lyte, M.; Gaykema, R.P.A. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun., 2008, 22(3), 354-366.
[http://dx.doi.org/10.1016/j.bbi.2007.08.009] [PMID: 17920243]
[181]
Lyte, M.; Li, W.; Opitz, N.; Gaykema, R.; Goehler, L. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav., 2006, 89(3), 350-357.
[http://dx.doi.org/10.1016/j.physbeh.2006.06.019] [PMID: 16887154]
[182]
Bercik, P.; Verdu, E.F.; Foster, J.A.; Macri, J.; Potter, M.; Huang, X.; Malinowski, P.; Jackson, W.; Blennerhassett, P.; Neufeld, K.A.; Lu, J.; Khan, W.I.; Corthesy-Theulaz, I.; Cherbut, C.; Bergonzelli, G.E.; Collins, S.M. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 2010, 139(6), 2102-2112.e1.
[http://dx.doi.org/10.1053/j.gastro.2010.06.063] [PMID: 20600016]
[183]
Brown, A.S.; Derkits, E.J. Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. Am. J. Psychiatry, 2010, 167(3), 261-280.
[http://dx.doi.org/10.1176/appi.ajp.2009.09030361] [PMID: 20123911]
[184]
Galderisi, S.; Mucci, A.; Buchanan, R.W.; Arango, C. Negative symptoms of schizophrenia: New developments and unanswered research questions. Lancet Psychiatry, 2018, 5(8), 664-677.
[http://dx.doi.org/10.1016/S2215-0366(18)30050-6] [PMID: 29602739]
[185]
Desbonnet, L.; Clarke, G.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. Microbiota is essential for social development in the mouse. Mol. Psychiatry, 2014, 19(2), 146-148.
[http://dx.doi.org/10.1038/mp.2013.65] [PMID: 23689536]
[186]
Ma, X.; Asif, H.; Dai, L.; He, Y.; Zheng, W.; Wang, D.; Ren, H.; Tang, J.; Li, C.; Jin, K.; Li, Z.; Chen, X. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J. Psychiatr. Res., 2020, 123, 136-144.
[http://dx.doi.org/10.1016/j.jpsychires.2020.02.005] [PMID: 32065949]
[187]
Finegold, S.M.; Summanen, P.H.; Downes, J.; Corbett, K.; Komoriya, T. Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe, 2017, 45, 133-137.
[http://dx.doi.org/10.1016/j.anaerobe.2017.02.008] [PMID: 28215985]
[188]
Argou-Cardozo, I.; Zeidán-Chuliá, F. Clostridium bacteria and autism spectrum conditions: A systematic review and hypothetical contribution of environmental glyphosate levels. Med. Sci., 2018, 6(2), 29.
[http://dx.doi.org/10.3390/medsci6020029] [PMID: 29617356]
[189]
Sandler, R.H.; Finegold, S.M.; Bolte, E.R.; Buchanan, C.P.; Maxwell, A.P.; Väisänen, M.L.; Nelson, M.N.; Wexler, H.M. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol., 2000, 15(7), 429-435.
[http://dx.doi.org/10.1177/088307380001500701] [PMID: 10921511]
[190]
Golubeva, A.V.; Joyce, S.A.; Moloney, G.; Burokas, A.; Sherwin, E.; Arboleya, S.; Flynn, I.; Khochanskiy, D.; Moya-Pérez, A.; Peterson, V.; Rea, K.; Murphy, K.; Makarova, O.; Buravkov, S.; Hyland, N.P.; Stanton, C.; Clarke, G.; Gahan, C.G.M.; Dinan, T.G.; Cryan, J.F. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine, 2017, 24, 166-178.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.020] [PMID: 28965876]
[191]
Iglesias-Vázquez, L.; Van Ginkel Riba, G.; Arija, V.; Canals, J. Composition of gut Microbiota in children with autism spectrum disorder: A systematic review and meta-analysis. Nutrients, 2020, 12(3), 792.
[http://dx.doi.org/10.3390/nu12030792] [PMID: 32192218]
[192]
Bourassa, M.W.; Alim, I.; Bultman, S.J.; Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett., 2016, 625, 56-63.
[http://dx.doi.org/10.1016/j.neulet.2016.02.009] [PMID: 26868600]
[193]
Chen, G.; Chiang, W.L.; Shu, B.C.; Guo, Y.L.; Chiou, S.T.; Chiang, T. Associations of caesarean delivery and the occurrence of neurodevelopmental disorders, asthma or obesity in childhood based on Taiwan birth cohort study. BMJ Open, 2017, 7(9), e017086.
[http://dx.doi.org/10.1136/bmjopen-2017-017086] [PMID: 28963295]
[194]
Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J., 2007, 1(1), 56-66.
[http://dx.doi.org/10.1038/ismej.2007.3] [PMID: 18043614]
[195]
Yang, L.; Lu, X.; Nossa, C.W.; Francois, F.; Peek, R.M.; Pei, Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology, 2009, 137(2), 588-597.
[http://dx.doi.org/10.1053/j.gastro.2009.04.046] [PMID: 19394334]
[196]
Warner, B.B. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr. Res., 2019, 85(2), 216-224.
[http://dx.doi.org/10.1038/s41390-018-0191-9] [PMID: 30283047]
[197]
Eshraghi, R.S.; Deth, R.C.; Mittal, R.; Aranke, M.; Kay, S.I.S.; Moshiree, B.; Eshraghi, A.A. Early disruption of the microbiome leading to decreased antioxidant capacity and epigenetic changes: Implications for the rise in autism. Front. Cell. Neurosci., 2018, 12, 256.
[http://dx.doi.org/10.3389/fncel.2018.00256] [PMID: 30158857]
[198]
Firth, J.; Gangwisch, J.E.; Borsini, A.; Wootton, R.E.; Mayer, E.A. Food and mood: How do diet and nutrition affect mental wellbeing? BMJ, 2020, 369, m2382.
[http://dx.doi.org/10.1136/bmj.m2382] [PMID: 32601102]
[199]
Radjabzadeh, D.; Bosch, J.A.; Uitterlinden, A.G.; Zwinderman, A.H.; Ikram, M.A.; van Meurs, J.B.J.; Luik, A.I.; Nieuwdorp, M.; Lok, A.; van Duijn, C.M.; Kraaij, R.; Amin, N. Gut microbiome-wide association study of depressive symptoms. Nat. Commun., 2022, 13(1), 7128.
[http://dx.doi.org/10.1038/s41467-022-34502-3] [PMID: 36473852]
[200]
Wallace, C.J.K.; Milev, R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry, 2017, 16(1), 14.
[http://dx.doi.org/10.1186/s12991-017-0138-2] [PMID: 28239408]
[201]
Schachter, J.; Martel, J.; Lin, C.S.; Chang, C.J.; Wu, T.R.; Lu, C.C.; Ko, Y.F.; Lai, H.C.; Ojcius, D.M.; Young, J.D. Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain Behav. Immun., 2018, 69, 1-8.
[http://dx.doi.org/10.1016/j.bbi.2017.08.026] [PMID: 28888668]
[202]
Chen, X.; D’Souza, R.; Hong, S.T. The role of gut microbiota in the gut-brain axis: Current challenges and perspectives. Protein Cell, 2013, 4(6), 403-414.
[http://dx.doi.org/10.1007/s13238-013-3017-x] [PMID: 23686721]
[203]
Simrén, M.; Barbara, G.; Flint, H.J.; Spiegel, B.M.R.; Spiller, R.C.; Vanner, S.; Verdu, E.F.; Whorwell, P.J.; Zoetendal, E.G. Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut, 2013, 62(1), 159-176.
[http://dx.doi.org/10.1136/gutjnl-2012-302167] [PMID: 22730468]
[204]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy