Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Could the Propionic Acid Treatment in Combination with Metformin be Safe for the Small Intestine of Diabetic Rats?

Author(s): Larysa Natrus*, Olha Lisakovska, Anton Smirnov, Yuliia Osadchuk, Serhyi Savosko and Yuliia Klys

Volume 24, Issue 11, 2024

Published on: 23 January, 2024

Page: [1335 - 1345] Pages: 11

DOI: 10.2174/0118715303273125231121062111

Price: $65

Abstract

Background: Effects of propionic acid (PA) on the cellular and molecular processes in the small intestine under type 2 diabetes mellitus (T2DM)-induced endoplasmic reticulum (ER) stress remain incompletely studied.

Objectives: The aim of the study was to assess the state of unfolded protein response (UPR) system in the small intestine of diabetic rats and to explore PA’s influence on metformin treatment.

Methods: Male Wistar rats were divided into 1) control and 2) T2DM groups, and groups receiving (14 days, orally) 3) metformin (60 mg/kg), 4) PA (60 mg/kg), and 5) PA+metformin. Western blotting, RT-PCR, and transmission electron microscopy were performed.

Results: We found that T2DM induced elevation of ER intermembrane space and UPR overactivation based on increased GRP78, ATF6 and PERK levels in small intestine. Metformin treatment led to a further UPR activation. PA supplementation partially restored enterocytes functioning via normalization of ATF6 and PERK content, while IRE1 level reached the maximum value, compared to all groups. The most pronounced effect of adaptation to the T2DMinduced ER stress was observed after combined metformin and PA action. In particular, decreased ER intermembrane space in enterocytes was detected compared to separate metformin and PA administration, which was accompanied by restored GRP78, PERK and IRE1 levels.

Conclusion: Our study proves the safety of additional therapy with propionic acid in combination with metformin for the functional state of small intestine. Due to its ability to modulate UPR signaling, PA may be considered a safe and perspective candidate for supportive therapy in T2DM, especially for neuroprotection.

Graphical Abstract

[1]
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573.
[http://dx.doi.org/10.1126/science.1241165] [PMID: 23828891]
[2]
Haghikia, A.; Jörg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.H.; May, C.; Wilck, N.; Balogh, A.; Ostermann, A.I.; Schebb, N.H.; Akkad, D.A.; Grohme, D.A.; Kleinewietfeld, M.; Kempa, S.; Thöne, J.; Demir, S.; Müller, D.N.; Gold, R.; Linker, R.A. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2015, 43(4), 817-829.
[http://dx.doi.org/10.1016/j.immuni.2015.09.007 ] [PMID: 26488817]
[3]
MacFabe, D.F. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb. Ecol. Health Dis., 2012, 23(1), 19260.
[http://dx.doi.org/10.3402/mehd.v23i0.19260] [PMID: 23990817]
[4]
Tian, G.X.; Peng, K.P.; Yu, Y.; Liang, C.B.; Xie, H.Q.; Guo, Y.Y.; Zhou, S.; Zheng, M.B.W.; Zheng, P.Y.; Yang, P.C. Propionic acid regulates immune tolerant properties in B Cells. J. Cell. Mol. Med., 2022, 26(10), 2766-2776.
[http://dx.doi.org/10.1111/jcmm.17287] [PMID: 35343043]
[5]
Zhou, M.; Li, D.; Xie, K.; Xu, L.; Kong, B.; Wang, X.; Tang, Y.; Liu, Y.; Huang, H. The short-chain fatty acid propionate improved ventricular electrical remodeling in a rat model with myocardial infarction. Food Funct., 2021, 12(24), 12580-12593.
[http://dx.doi.org/10.1039/D1FO02040D] [PMID: 34813637]
[6]
Haghikia, A.; Zimmermann, F.; Schumann, P.; Jasina, A.; Roessler, J.; Schmidt, D.; Heinze, P.; Kaisler, J.; Nageswaran, V.; Aigner, A.; Ceglarek, U.; Cineus, R.; Hegazy, A.N.; van der Vorst, E.P.C.; Döring, Y.; Strauch, C.M.; Nemet, I.; Tremaroli, V.; Dwibedi, C.; Kränkel, N.; Leistner, D.M.; Heimesaat, M.M.; Bereswill, S.; Rauch, G.; Seeland, U.; Soehnlein, O.; Müller, D.N.; Gold, R.; Bäckhed, F.; Hazen, S.L.; Haghikia, A.; Landmesser, U. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur. Heart J., 2022, 43(6), 518-533.
[http://dx.doi.org/10.1093/eurheartj/ehab644] [PMID: 34597388]
[7]
Dürholz, K.; Schmid, E.; Frech, M.; Azizov, V.; Otterbein, N.; Lucas, S.; Rauh, M.; Schett, G.; Bruns, H.; Zaiss, M.M. Microbiota-derived propionate modulates megakaryopoiesis and platelet function. Front. Immunol., 2022, 13, 908174.
[http://dx.doi.org/10.3389/fimmu.2022.908174] [PMID: 35880182]
[8]
Heimann, E.; Nyman, M.; Degerman, E. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte, 2015, 4(2), 81-88.
[http://dx.doi.org/10.4161/21623945.2014.960694] [PMID: 26167409]
[9]
Kawasoe, J.; Uchida, Y.; Kawamoto, H.; Miyauchi, T.; Watanabe, T.; Saga, K.; Tanaka, K.; Ueda, S.; Terajima, H.; Taura, K.; Hatano, E. Propionic acid, induced in gut by an inulin diet, suppresses inflammation and ameliorates liver ischemia and reperfusion injury in mice. Front. Immunol., 2022, 13, 862503.
[http://dx.doi.org/10.3389/fimmu.2022.862503] [PMID: 35572528]
[10]
Duscha, A.; Gisevius, B.; Hirschberg, S.; Yissachar, N.; Stangl, G.I.; Dawin, E.; Bader, V.; Haase, S.; Kaisler, J.; David, C.; Schneider, R.; Troisi, R.; Zent, D.; Hegelmaier, T.; Dokalis, N.; Gerstein, S.; Del Mare-Roumani, S.; Amidror, S.; Staszewski, O.; Poschmann, G.; Stühler, K.; Hirche, F.; Balogh, A.; Kempa, S.; Träger, P.; Zaiss, M.M.; Holm, J.B.; Massa, M.G.; Nielsen, H.B.; Faissner, A.; Lukas, C.; Gatermann, S.G.; Scholz, M.; Przuntek, H.; Prinz, M.; Forslund, S.K.; Winklhofer, K.F.; Müller, D.N.; Linker, R.A.; Gold, R.; Haghikia, A. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell, 2020, 180(6), 1067-1080.e16.
[http://dx.doi.org/10.1016/j.cell.2020.02.035] [PMID: 32160527]
[11]
Hoyles, L.; Snelling, T.; Umlai, U.K.; Nicholson, J.K.; Carding, S.R.; Glen, R.C.; McArthur, S. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome, 2018, 6(1), 55.
[http://dx.doi.org/10.1186/s40168-018-0439-y] [PMID: 29562936]
[12]
Borbolis, F.; Mytilinaiou, E.; Palikaras, K. The crosstalk between microbiome and mitochondrial homeostasis in neurodegeneration. Cells, 2023, 12(3), 429.
[http://dx.doi.org/10.3390/cells12030429] [PMID: 36766772]
[13]
Natrus, L.V.; Osadchuk, Y.S.; Lisakovska, O.O.; Labudzinskyi, D.O.; Klys, Y.G.; Chaikovsky, Y.B. Effect of propionic acid on diabetes-induced impairment of unfolded protein response signaling and astrocyte/microglia crosstalk in rat ventromedial nucleus of the hypothalamus. Neural Plast., 2022, 2022, 1-26.
[http://dx.doi.org/10.1155/2022/6404964] [PMID: 35103058]
[14]
Shultz, S.R.; MacFabe, D.F. Propionic acid animal model of autism. In: Comprehensive Guide to Autism; Patel, V.; Preedy, V.; Martin, C., Eds.; Springer: New York, NY, 2014.
[http://dx.doi.org/10.1007/978-1-4614-4788-7_106]
[15]
Nankova, B.B.; Agarwal, R.; MacFabe, D.F.; La Gamma, E.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One, 2014, 9(8), e103740.
[http://dx.doi.org/10.1371/journal.pone.0103740] [PMID: 25170769]
[16]
Oslowski, C.M.; Urano, F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol., 2011, 490, 71-92.
[http://dx.doi.org/10.1016/B978-0-12-385114-7.00004-0] [PMID: 21266244]
[17]
Coleman, O.I.; Haller, D. ER stress and the UPR in shaping intestinal tissue homeostasis and immunity. Front. Immunol., 2019, 10, 2825.
[http://dx.doi.org/10.3389/fimmu.2019.02825] [PMID: 31867005]
[18]
Natrus, L.V.; Osadchuk, Y.S.; Labudzinskyi, D.O.; Chaikovsky, Y.B.; Smirnov, A.S. The pathogenetic rationale of the ways of experimental type 2 diabetes mellitus modeling. Med. Sci. Ukraine, (MSU), 2019, 15(3-4), 10-18.
[http://dx.doi.org/10.32345/2664-4738.3-4.2019.02]
[19]
Zou, F.; Mao, X.; Wang, N.; Liu, J.; Ou-Yang, J. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK. Acta Pharmacol. Sin., 2009, 30(12), 1607-1615.
[http://dx.doi.org/10.1038/aps.2009.168] [PMID: 19960007]
[20]
Zhang, T.; Pan, B.S.; Zhao, B.; Zhang, L.M.; Huang, Y.L.; Sun, F.Y. Exacerbation of poststroke dementia by type 2 diabetes is associated with synergistic increases of β-secretase activation and β-amyloid generation in rat brains. Neuroscience, 2009, 161(4), 1045-1056.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.032] [PMID: 19376202]
[21]
Skovsø, S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J. Diabetes Investig., 2014, 5(4), 349-358.
[http://dx.doi.org/10.1111/jdi.12235] [PMID: 25411593]
[22]
Lam, J.; Katti, P.; Biete, M.; Mungai, M. AshShareef, S.; Neikirk, K.; Lopez, E.; Vue, Z.; Christensen, T.A.; Beasley, H.K.; Rodman, T.A.; Murray, S.A.; Salisbury, J.L.; Glancy, B.; Shao, J.; Pereira, R.O.; Abel, E.D.; Hinton, A., Jr. A universal approach to analyzing transmission electron microscopy with ImageJ. Cells, 2021, 10(9), 2177.
[http://dx.doi.org/10.3390/cells10092177] [PMID: 34571826]
[23]
Krhač, M.; Lovrenčić, M.V. Update on biomarkers of glycemic control. World J. Diabetes, 2019, 10(1), 1-15.
[http://dx.doi.org/10.4239/wjd.v10.i1.1] [PMID: 30697366]
[24]
Kaser, A.; Flak, M.B.; Tomczak, M.F.; Blumberg, R.S. The unfolded protein response and its role in intestinal homeostasis and inflammation. Exp. Cell Res., 2011, 317(19), 2772-2779.
[http://dx.doi.org/10.1016/j.yexcr.2011.07.008] [PMID: 21821022]
[25]
Eugene, S.P.; Reddy, V.S.; Trinath, J. Endoplasmic reticulum stress and intestinal inflammation: A perilous union. Front. Immunol., 2020, 11, 543022.
[http://dx.doi.org/10.3389/fimmu.2020.543022] [PMID: 33324392]
[26]
Tam, A.B.; Roberts, L.S.; Chandra, V.; Rivera, I.G.; Nomura, D.K.; Forbes, D.J.; Niwa, M. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by bistinct mechanisms. Dev. Cell, 2018, 46(3), 327-343.e7.
[http://dx.doi.org/10.1016/j.devcel.2018.04.023] [PMID: 30086303]
[27]
Ibrahim, I.M.; Abdelmalek, D.H.; Elfiky, A.A. GRP78: A cell’s response to stress. Life Sci., 2019, 226, 156-163.
[http://dx.doi.org/10.1016/j.lfs.2019.04.022] [PMID: 30978349]
[28]
Zhu, G.; Lee, A.S. Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J. Cell. Physiol., 2015, 230(7), 1413-1420.
[http://dx.doi.org/10.1002/jcp.24923] [PMID: 25546813]
[29]
Gariballa, N.; Ali, B.R. Endoplasmic reticulum associated protein degradation (ERAD) in the pathology of diseases related to TGFβ signaling pathway: Future therapeutic perspectives. Front. Mol. Biosci., 2020, 7, 575608.
[http://dx.doi.org/10.3389/fmolb.2020.575608] [PMID: 33195419]
[30]
Verjan Garcia, N.; Hong, K.U.; Matoba, N. The unfolded protein response and its implications for novel therapeutic strategies in inflammatory bowel disease. Biomedicines, 2023, 11(7), 2066.
[http://dx.doi.org/10.3390/biomedicines11072066] [PMID: 37509705]
[31]
Walters, S.N.; Luzuriaga, J.; Chan, J.Y.; Grey, S.T.; Laybutt, D.R. Influence of chronic hyperglycemia on the loss of the unfolded protein response in transplanted islets. J. Mol. Endocrinol., 2013, 51(2), 225-232.
[http://dx.doi.org/10.1530/JME-13-0016] [PMID: 23833251]
[32]
Tsuru, A.; Fujimoto, N.; Takahashi, S.; Saito, M.; Nakamura, D.; Iwano, M.; Iwawaki, T.; Kadokura, H.; Ron, D.; Kohno, K. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl. Acad. Sci. USA, 2013, 110(8), 2864-2869.
[http://dx.doi.org/10.1073/pnas.1212484110] [PMID: 23386727]
[33]
Zhang, H.S.; Chen, Y.; Fan, L.; Xi, Q.L.; Wu, G.H.; Li, X.X.; Yuan, T.L.; He, S.Q.; Yu, Y.; Shao, M.L.; Liu, Y.; Bai, C.G.; Ling, Z.Q.; Li, M.; Liu, Y.; Fang, J. The endoplasmic reticulum stress sensor IRE1α in intestinal epithelial cells is essential for protecting against colitis. J. Biol. Chem., 2015, 290(24), 15327-15336.
[http://dx.doi.org/10.1074/jbc.M114.633560] [PMID: 25925952]
[34]
Grammatiki, M.; Sagar, R.; Ajjan, R.A. Metformin: Is it still the first line in type 2 diabetes management algorithm? Curr. Pharm. Des., 2021, 27(8), 1061-1067.
[http://dx.doi.org/10.2174/1381612826666201222154616] [PMID: 33355048]
[35]
Kim, H.; Moon, S.Y.; Kim, J.S.; Baek, C.H.; Kim, M.; Min, J.Y.; Lee, S.K. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. Am. J. Physiol. Renal Physiol., 2015, 308(3), F226-F236.
[http://dx.doi.org/10.1152/ajprenal.00495.2014] [PMID: 25428127]
[36]
Duan, Q.; Song, P.; Ding, Y.; Zou, M.H. Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo. Br. J. Pharmacol., 2017, 174(13), 2140-2151.
[http://dx.doi.org/10.1111/bph.13833] [PMID: 28436023]
[37]
Simon-Szabó, L.; Kokas, M.; Mandl, J.; Kéri, G.; Csala, M. Metformin attenuates palmitate-induced endoplasmic reticulum stress, serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PLoS One, 2014, 9(6), e97868.
[http://dx.doi.org/10.1371/journal.pone.0097868] [PMID: 24896641]
[38]
Chen, Q.; Thompson, J.; Hu, Y.; Das, A.; Lesnefsky, E.J. Metformin attenuates ER stress–induced mitochondrial dysfunction. Transl. Res., 2017, 190, 40-50.
[http://dx.doi.org/10.1016/j.trsl.2017.09.003] [PMID: 29040818]
[39]
Siwecka, N.; Rozpędek, W.; Pytel, D.; Wawrzynkiewicz, A.; Dziki, A.; Dziki, Ł.; Diehl, J.A.; Majsterek, I. Dual role of endoplasmic reticulum stress-mediated unfolded protein response signaling pathway in carcinogenesis. Int. J. Mol. Sci., 2019, 20(18), 4354.
[http://dx.doi.org/10.3390/ijms20184354] [PMID: 31491919]
[40]
Natrus, L.; Osadchuk, Y.; Lisakovska, O.; Roch, T.; Babel, N.; Klys, Y.; Labudzynskyi, D.; Chaikovsky, Y. Regulation of the apoptosis/autophagy switch by propionic acid in ventromedial hypothalamus of rats with type 2 diabetes mellitus. Heliyon, 2022, 8(11), e11529.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11529] [PMID: 36439719]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy