Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Immunologic Crosstalk of Endoplasmic Reticulum Stress Signaling in Bladder Cancer

Author(s): Shun Wan, Kun-Peng Li, Chen-Yang Wang, Jian-Wei Yang, Si-Yu Chen, Hua-Bin Wang, Xiao-Ran Li* and Li Yang*

Volume 24, Issue 7, 2024

Published on: 23 January, 2024

Page: [701 - 719] Pages: 19

DOI: 10.2174/0115680096272663231121100515

Price: $65

Abstract

Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). It is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Chauhan, P.S.; Chen, K.; Babbra, R.K.; Feng, W.; Pejovic, N.; Nallicheri, A.; Harris, P.K.; Dienstbach, K.; Atkocius, A.; Maguire, L.; Qaium, F.; Szymanski, J.J.; Baumann, B.C.; Ding, L.; Cao, D.; Reimers, M.A.; Kim, E.H.; Smith, Z.L.; Arora, V.K.; Chaudhuri, A.A. Urine tumor DNA detection of minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy: A cohort study. PLoS Med., 2021, 18(8), e1003732.
[http://dx.doi.org/10.1371/journal.pmed.1003732] [PMID: 34464379]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder cancer. JAMA, 2020, 324(19), 1980-1991.
[http://dx.doi.org/10.1001/jama.2020.17598] [PMID: 33201207]
[5]
Pettenati, C.; Ingersoll, M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol., 2018, 15(10), 615-625.
[http://dx.doi.org/10.1038/s41585-018-0055-4] [PMID: 29991725]
[6]
Drake, C.G. Myeloid Resistance is not Futile: Biomarkers of Immunotherapy in Bladder Cancer. Clin. Cancer Res., 2021, 27(15), 4139-4141.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1011] [PMID: 34045294]
[7]
Kartolo, A.; Kassouf, W.; Vera-Badillo, F.E. Adjuvant immune checkpoint inhibition in muscle-invasive bladder cancer: Is it ready for prime time? Eur. Urol., 2021, 80(6), 679-681.
[http://dx.doi.org/10.1016/j.eururo.2021.07.019] [PMID: 34366212]
[8]
Trevisani, F.; Di Marco, F.; Raggi, D.; Bettiga, A.; Vago, R.; Larcher, A.; Cinque, A.; Salonia, A.; Briganti, A.; Capitanio, U.; Necchi, A.; Montorsi, F. Renal function outcomes in patients with muscle-invasive bladder cancer treated with neoadjuvant pembrolizumab and radical cystectomy in the PURE-01 study. Int. J. Cancer, 2021, 149(1), 186-190.
[http://dx.doi.org/10.1002/ijc.33554] [PMID: 33720424]
[9]
Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; Kubota, K.; Lubiniecki, G.M.; Zhang, J.; Kush, D.; Lopes, G.; Adamchuk, G.; Ahn, M-J.; Alexandru, A.; Altundag, O.; Alyasova, A.; Andrusenko, O.; Aoe, K.; Araujo, A.; Aren, O.; Arrieta Rodriguez, O.; Ativitavas, T.; Avendano, O.; Barata, F.; Barrios, C.H.; Beato, C.; Bergstrom, P.; Betticher, D.; Bolotina, L.; Bondarenko, I.; Botha, M.; Buddu, S.; Caglevic, C.; Cardona, A.; Castro, G., Jr; Castro, H.; Cay Senler, F.; Cerny, C.A.S.; Cesas, A.; Chan, G-C.; Chang, J.; Chen, G.; Chen, X.; Cheng, S.; Cheng, Y.; Cherciu, N.; Chiu, C-H.; Cho, B.C.; Cicenas, S.; Ciurescu, D.; Cohen, G.; Costa, M.A.; Danchaivijitr, P.; De Angelis, F.; de Azevedo, S.J.; Dediu, M.; Deliverski, T.; De Marchi, P.R.M.; de The Bustamante Valles, F.; Ding, Z.; Doganov, B.; Dreosti, L.; Duarte, R.; Edusma-Dy, R.; Emelyanov, S.; Erman, M.; Fan, Y.; Fein, L.; Feng, J.; Fenton, D.; Fernandes, G.; Ferreira, C.; Franke, F.A.; Freitas, H.; Fujisaka, Y.; Galindo, H.; Galvez, C.; Ganea, D.; Gil, N.; Girotto, G.; Goker, E.; Goksel, T.; Gomez Aubin, G.; Gomez Wolff, L.; Griph, H.; Gumus, M.; Hall, J.; Hart, G.; Havel, L.; He, J.; He, Y.; Hernandez Hernandez, C.; Hespanhol, V.; Hirashima, T.; Ho, C.M.J.; Horiike, A.; Hosomi, Y.; Hotta, K.; Hou, M.; How, S.H.; Hsia, T-C.; Hu, Y.; Ichiki, M.; Imamura, F.; Ivashchuk, O.; Iwamoto, Y.; Jaal, J.; Jassem, J.; Jordaan, C.; Juergens, R.A.; Kaen, D.; Kalinka-Warzocha, E.; Karaseva, N.; Karaszewska, B.; Kazarnowicz, A.; Kasahara, K.; Katakami, N.; Kato, T.; Kawaguchi, T.; Kim, J.H.; Kishi, K.; Kolek, V.; Koleva, M.; Kolman, P.; Koubkova, L.; Kowalyszyn, R.; Kowalski, D.; Koynov, K.; Ksienski, D.; Kubota, K.; Kudaba, I.; Kurata, T.; Kuusk, G.; Kuzina, L.; Laczo, I.; Ladrera, G.E.I.; Laktionov, K.; Landers, G.; Lazarev, S.; Lerzo, G.; Lesniewski Kmak, K.; Li, W.; Liam, C.K.; Lifirenko, I.; Lipatov, O.; Liu, X.; Liu, Z.; Lo, S.H.; Lopes, V.; Lopez, K.; Lu, S.; Martinengo, G.; Mas, L.; Matrosova, M.; Micheva, R.; Milanova, Z.; Miron, L.; Mok, T.; Molina, M.; Murakami, S.; Nakahara, Y.; Nguyen, T.Q.; Nishimura, T.; Ochsenbein, A.; Ohira, T.; Ohman, R.; Ong, C.K.; Ostoros, G.; Ouyang, X.; Ovchinnikova, E.; Ozyilkan, O.; Petruzelka, L.; Pham, X.D.; Picon, P.; Piko, B.; Poltoratsky, A.; Ponomarova, O.; Popelkova, P.; Purkalne, G.; Qin, S.; Ramlau, R.; Rappaport, B.; Rey, F.; Richardet, E.; Roubec, J.; Ruff, P.; Rusyn, A.; Saka, H.; Salas, J.; Sandoval, M.; Santos, L.; Sawa, T.; Seetalarom, K.; Seker, M.; Seki, N.; Seolwane, F.; Shepherd, L.; Shevnya, S.; Shimada, A.K.; Shparyk, Y.; Sinielnikov, I.; Sirbu, D.; Smaletz, O.; Soares, J.P.H.; Sookprasert, A.; Speranza, G.; Srimuninnimit, V.; Sriuranpong, V.; Stara, Z.; Su, W-C.; Sugawara, S.; Szpak, W.; Takahashi, K.; Takigawa, N.; Tanaka, H.; Tan Chun Bing, J.; Tang, Q.; Taranov, P.; Tejada, H.; Tho, L.M.; Torii, Y.; Trukhyn, D.; Turdean, M.; Turna, H.; Ursol, G.; Vanasek, J.; Varela, M.; Vallejo, M.; Vera, L.; Victorino, A-P.; Vlasek, T.; Vynnychenko, I.; Wang, B.; Wang, J.; Wang, K.; Wu, Y.; Yamada, K.; Yang, C-H.; Yokoyama, T.; Yokoyama, T.; Yoshioka, H.; Yumuk, F.; Zambrano, A.; Zarba, J.J.; Zarubenkov, O.; Zemaitis, M.; Zhang, L.; Zhang, L.; Zhang, X.; Zhao, J.; Zhou, C.; Zhou, J.; Zhou, Q.; Zippelius, A. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet, 2019, 393(10183), 1819-1830.
[http://dx.doi.org/10.1016/S0140-6736(18)32409-7] [PMID: 30955977]
[10]
Powles, T.; Kockx, M.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Szabados, B.; Pous, A.F.; Gravis, G.; Herranz, U.A.; Protheroe, A.; Ravaud, A.; Maillet, D.; Mendez, M.J.; Suarez, C.; Linch, M.; Prendergast, A.; van Dam, P.J.; Stanoeva, D.; Daelemans, S.; Mariathasan, S.; Tea, J.S.; Mousa, K.; Banchereau, R.; Castellano, D. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med., 2019, 25(11), 1706-1714.
[http://dx.doi.org/10.1038/s41591-019-0628-7] [PMID: 31686036]
[11]
Necchi, A.; Raggi, D.; Gallina, A.; Madison, R.; Colecchia, M.; Lucianò, R.; Montironi, R.; Giannatempo, P.; Farè, E.; Pederzoli, F.; Bandini, M.; Bianchi, M.; Colombo, R.; Gandaglia, G.; Fossati, N.; Marandino, L.; Capitanio, U.; Dehò, F.; Ali, S.M.; Chung, J.H.; Ross, J.S.; Salonia, A.; Briganti, A.; Montorsi, F. Updated results of PURE-01 with preliminary activity of neoadjuvant pembrolizumab in patients with muscle-invasive bladder carcinoma with variant histologies. Eur. Urol., 2020, 77(4), 439-446.
[http://dx.doi.org/10.1016/j.eururo.2019.10.026] [PMID: 31708296]
[12]
Li, R.; Zhang, J.; Gilbert, S.M.; Conejo-Garcia, J.; Mulé, J.J. Using oncolytic viruses to ignite the tumour immune microenvironment in bladder cancer. Nat. Rev. Urol., 2021, 18(9), 543-555.
[http://dx.doi.org/10.1038/s41585-021-00483-z] [PMID: 34183833]
[13]
King, A.P.; Wilson, J.J. Endoplasmic reticulum stress: An arising target for metal-based anticancer agents. Chem. Soc. Rev., 2020, 49(22), 8113-8136.
[http://dx.doi.org/10.1039/D0CS00259C] [PMID: 32597908]
[14]
Akman, M.; Belisario, D.C.; Salaroglio, I.C.; Kopecka, J.; Donadelli, M.; De Smaele, E.; Riganti, C. Hypoxia, endoplasmic reticulum stress and chemoresistance: Dangerous liaisons. J. Exp. Clin. Cancer Res., 2021, 40(1), 28.
[http://dx.doi.org/10.1186/s13046-020-01824-3] [PMID: 33423689]
[15]
Song, M.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress responses in intratumoral immune cells: Implications for cancer immunotherapy. Trends Immunol., 2019, 40(2), 128-141.
[http://dx.doi.org/10.1016/j.it.2018.12.001] [PMID: 30612925]
[16]
Katoh, Y.; Yaguchi, T.; Kubo, A.; Iwata, T.; Morii, K.; Kato, D.; Ohta, S.; Satomi, R.; Yamamoto, Y.; Oyamada, Y.; Ouchi, K.; Takahashi, S.; Ishioka, C.; Matoba, R.; Suematsu, M.; Kawakami, Y. Inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor T cell response through regulating β-catenin signaling in cancer cells and ER stress in T cells and synergizes with anti-PD-1 antibody. J. Immunother. Cancer, 2022, 10(7), e004616.
[http://dx.doi.org/10.1136/jitc-2022-004616] [PMID: 35793868]
[17]
Li, X.; Zheng, J.; Chen, S.; Meng, F.; Ning, J.; Sun, S. Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/CHOP pathway in breast cancer. Cell Death Dis., 2021, 12(4), 314.
[http://dx.doi.org/10.1038/s41419-021-03605-y] [PMID: 33762577]
[18]
Li, W.; Yang, J.; Luo, L.; Jiang, M.; Qin, B.; Yin, H.; Zhu, C.; Yuan, X.; Zhang, J.; Luo, Z.; Du, Y.; Li, Q.; Lou, Y.; Qiu, Y.; You, J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun., 2019, 10(1), 3349.
[http://dx.doi.org/10.1038/s41467-019-11269-8] [PMID: 31350406]
[19]
Lau, T.S.; Chan, L.K.Y.; Man, G.C.W.; Wong, C.H.; Lee, J.H.S.; Yim, S.F.; Cheung, T.H.; McNeish, I.A.; Kwong, J. Paclitaxel Induces Immunogenic Cell Death in Ovarian Cancer via TLR4/IKK2/SNARE-Dependent Exocytosis. Cancer Immunol. Res., 2020, 8(8), 1099-1111.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0616] [PMID: 32354736]
[20]
Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer, 2021, 21(2), 71-88.
[http://dx.doi.org/10.1038/s41568-020-00312-2] [PMID: 33214692]
[21]
Dong, H.; Adams, N.M.; Xu, Y.; Cao, J.; Allan, D.S.J.; Carlyle, J.R.; Chen, X.; Sun, J.C.; Glimcher, L.H. The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nat. Immunol., 2019, 20(7), 865-878.
[http://dx.doi.org/10.1038/s41590-019-0388-z] [PMID: 31086333]
[22]
Raines, L.N.; Zhao, H.; Wang, Y.; Chen, H.Y.; Gallart-Ayala, H.; Hsueh, P.C.; Cao, W.; Koh, Y.; Alamonte-Loya, A.; Liu, P.S.; Ivanisevic, J.; Lio, C.W.J.; Ho, P.C.; Huang, S.C.C. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat. Immunol., 2022, 23(3), 431-445.
[http://dx.doi.org/10.1038/s41590-022-01145-x] [PMID: 35228694]
[23]
Hurst, K.E.; Lawrence, K.A.; Essman, M.T.; Walton, Z.J.; Leddy, L.R.; Thaxton, J.E. Endoplasmic reticulum stress contributes to mitochondrial exhaustion of CD8+ T Cells. Cancer Immunol. Res., 2019, 7(3), 476-486.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0182] [PMID: 30659052]
[24]
Marciniak, S.J.; Chambers, J.E.; Ron, D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat. Rev. Drug Discov., 2022, 21(2), 115-140.
[http://dx.doi.org/10.1038/s41573-021-00320-3] [PMID: 34702991]
[25]
Bhardwaj, M.; Leli, N.M.; Koumenis, C.; Amaravadi, R.K. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin. Cancer Biol., 2020, 66, 116-128.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.007] [PMID: 31838023]
[26]
Oakes, S.A. Endoplasmic reticulum stress signaling in cancer cells. Am. J. Pathol., 2020, 190(5), 934-946.
[http://dx.doi.org/10.1016/j.ajpath.2020.01.010] [PMID: 32112719]
[27]
Cerezo, M.; Rocchi, S. New anti-cancer molecules targeting HSPA5/BIP to induce endoplasmic reticulum stress, autophagy and apoptosis. Autophagy, 2017, 13(1), 216-217.
[http://dx.doi.org/10.1080/15548627.2016.1246107] [PMID: 27791469]
[28]
Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 421-438.
[http://dx.doi.org/10.1038/s41580-020-0250-z] [PMID: 32457508]
[29]
da Silva, D.C.; Valentão, P.; Andrade, P.B.; Pereira, D.M. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacol. Res., 2020, 155, 104702.
[http://dx.doi.org/10.1016/j.phrs.2020.104702] [PMID: 32068119]
[30]
Madden, E.; Logue, S.E.; Healy, S.J.; Manie, S.; Samali, A. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol. Cell, 2019, 111(1), 1-17.
[http://dx.doi.org/10.1111/boc.201800050] [PMID: 30302777]
[31]
Salaroglio, I.C.; Panada, E.; Moiso, E.; Buondonno, I.; Provero, P.; Rubinstein, M.; Kopecka, J.; Riganti, C. PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol. Cancer, 2017, 16(1), 91.
[http://dx.doi.org/10.1186/s12943-017-0657-0] [PMID: 28499449]
[32]
Zundell, J.A.; Fukumoto, T.; Lin, J.; Fatkhudinov, N.; Nacarelli, T.; Kossenkov, A.V.; Liu, Q.; Cassel, J.; Hu, C.C.A.; Wu, S.; Zhang, R. Targeting the IRE1α/XBP1 endoplasmic reticulum stress response pathway in ARID1A -mutant ovarian cancers. Cancer Res., 2021, 81(20), 5325-5335.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1545] [PMID: 34548333]
[33]
Stengel, S.T.; Fazio, A.; Lipinski, S.; Jahn, M.T.; Aden, K.; Ito, G.; Wottawa, F.; Kuiper, J.W.P.; Coleman, O.I.; Tran, F.; Bordoni, D.; Bernardes, J.P.; Jentzsch, M.; Luzius, A.; Bierwirth, S.; Messner, B.; Henning, A.; Welz, L.; Kakavand, N.; Falk-Paulsen, M.; Imm, S.; Hinrichsen, F.; Zilbauer, M.; Schreiber, S.; Kaser, A.; Blumberg, R.; Haller, D.; Rosenstiel, P. Activating transcription factor 6 mediates inflammatory signals in intestinal epithelial cells upon endoplasmic reticulum stress. Gastroenterology, 2020, 159(4), 1357-1374.e10.
[http://dx.doi.org/10.1053/j.gastro.2020.06.088] [PMID: 32673694]
[34]
Louessard, M.; Bardou, I.; Lemarchand, E.; Thiebaut, A.M.; Parcq, J.; Leprince, J.; Terrisse, A.; Carraro, V.; Fafournoux, P.; Bruhat, A.; Orset, C.; Vivien, D.; Ali, C.; Roussel, B.D. Activation of cell surface GRP78 decreases endoplasmic reticulum stress and neuronal death. Cell Death Differ., 2017, 24(9), 1518-1529.
[http://dx.doi.org/10.1038/cdd.2017.35] [PMID: 28644439]
[35]
Xia, S.; Duan, W.; Liu, W.; Zhang, X.; Wang, Q. GRP78 in lung cancer. J. Transl. Med., 2021, 19(1), 118.
[http://dx.doi.org/10.1186/s12967-021-02786-6] [PMID: 33743739]
[36]
Fernandez, P.M.; Tabbara, S.O.; Jacobs, L.K.; Manning, F.C.R.; Tsangaris, T.N.; Schwartz, A.M.; Kennedy, K.A.; Patierno, S.R. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res. Treat., 2000, 59(1), 15-26.
[http://dx.doi.org/10.1023/A:1006332011207] [PMID: 10752676]
[37]
Austgen, K.; Oakes, S.A.; Ganem, D. Multiple defects, including premature apoptosis, prevent Kaposi’s sarcoma-associated herpesvirus replication in murine cells. J. Virol., 2012, 86(3), 1877-1882.
[http://dx.doi.org/10.1128/JVI.06600-11] [PMID: 22130538]
[38]
Wang, M.; Kaufman, R.J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer, 2014, 14(9), 581-597.
[http://dx.doi.org/10.1038/nrc3800] [PMID: 25145482]
[39]
Han, J.; Back, S.H.; Hur, J.; Lin, Y.H.; Gildersleeve, R.; Shan, J.; Yuan, C.L.; Krokowski, D.; Wang, S.; Hatzoglou, M.; Kilberg, M.S.; Sartor, M.A.; Kaufman, R.J. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol., 2013, 15(5), 481-490.
[http://dx.doi.org/10.1038/ncb2738] [PMID: 23624402]
[40]
Kepp, O.; Menger, L.; Vacchelli, E.; Locher, C.; Adjemian, S.; Yamazaki, T.; Martins, I.; Sukkurwala, A.Q.; Michaud, M.; Senovilla, L.; Galluzzi, L.; Kroemer, G.; Zitvogel, L. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev., 2013, 24(4), 311-318.
[http://dx.doi.org/10.1016/j.cytogfr.2013.05.001] [PMID: 23787159]
[41]
Cubillos-Ruiz, J.R.; Bettigole, S.E.; Glimcher, L.H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell, 2017, 168(4), 692-706.
[http://dx.doi.org/10.1016/j.cell.2016.12.004] [PMID: 28187289]
[42]
Chevet, E.; Hetz, C.; Samali, A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov., 2015, 5(6), 586-597.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1490] [PMID: 25977222]
[43]
Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol., 2015, 6, 260-271.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[44]
Dong, L.; Krewson, E.; Yang, L. Acidosis activates endoplasmic reticulum stress pathways through GPR4 in human vascular endothelial cells. Int. J. Mol. Sci., 2017, 18(2), 278.
[http://dx.doi.org/10.3390/ijms18020278] [PMID: 28134810]
[45]
Song, M.; Sandoval, T.A.; Chae, C.S.; Chopra, S.; Tan, C.; Rutkowski, M.R.; Raundhal, M.; Chaurio, R.A.; Payne, K.K.; Konrad, C.; Bettigole, S.E.; Shin, H.R.; Crowley, M.J.P.; Cerliani, J.P.; Kossenkov, A.V.; Motorykin, I.; Zhang, S.; Manfredi, G.; Zamarin, D.; Holcomb, K.; Rodriguez, P.C.; Rabinovich, G.A.; Conejo-Garcia, J.R.; Glimcher, L.H.; Cubillos-Ruiz, J.R. IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature, 2018, 562(7727), 423-428.
[http://dx.doi.org/10.1038/s41586-018-0597-x] [PMID: 30305738]
[46]
Riesenberg, B.P.; Hunt, E.G.; Tennant, M.D.; Hurst, K.E.; Andrews, A.M.; Leddy, L.R.; Neskey, D.M.; Hill, E.G.; Rivera, G.O.R.; Paulos, C.M.; Gao, P.; Thaxton, J.E. Stress-mediated attenuation of translation undermines t-cell activity in cancer. Cancer Res., 2022, 82(23), 4386-4399.
[http://dx.doi.org/10.1158/0008-5472.CAN-22-1744] [PMID: 36126165]
[47]
Carew, J.S.; Nawrocki, S.T.; Krupnik, Y.V.; Dunner, K., Jr; McConkey, D.J.; Keating, M.J.; Huang, P. Targeting endoplasmic reticulum protein transport: A novel strategy to kill malignant B cells and overcome fludarabine resistance in CLL. Blood, 2006, 107(1), 222-231.
[http://dx.doi.org/10.1182/blood-2005-05-1923] [PMID: 16144803]
[48]
Chen, T.C.; Wang, W.; Golden, E.B.; Thomas, S.; Sivakumar, W.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H. Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett., 2011, 302(2), 100-108.
[http://dx.doi.org/10.1016/j.canlet.2010.11.008] [PMID: 21257259]
[49]
Lu, T.; Gu, M.; Zhao, Y.; Zheng, X.; Xing, C. Autophagy contributes to falcarindiol-induced cell death in breast cancer cells with enhanced endoplasmic reticulum stress. PLoS One, 2017, 12(4), e0176348.
[http://dx.doi.org/10.1371/journal.pone.0176348] [PMID: 28441457]
[50]
Yardim, A.; Kandemir, F.M.; Ozdemir, S.; Kucukler, S.; Comakli, S.; Gur, C.; Celik, H. Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways. Neurotoxicology, 2020, 81, 137-146.
[http://dx.doi.org/10.1016/j.neuro.2020.10.001] [PMID: 33038355]
[51]
Yamamoto, S.; Egashira, N. Pathological mechanisms of bortezomib-induced peripheral neuropathy. Int. J. Mol. Sci., 2021, 22(2), 888.
[http://dx.doi.org/10.3390/ijms22020888] [PMID: 33477371]
[52]
Tanimukai, H.; Kanayama, D.; Omi, T.; Takeda, M.; Kudo, T. Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem. Biophys. Res. Commun., 2013, 437(1), 151-155.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.057] [PMID: 23806691]
[53]
Bezu, L.; Sauvat, A.; Humeau, J.; Gomes-da-Silva, L.C.; Iribarren, K.; Forveille, S.; Garcia, P.; Zhao, L.; Liu, P.; Zitvogel, L.; Senovilla, L.; Kepp, O.; Kroemer, G. eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ., 2018, 25(8), 1375-1393.
[http://dx.doi.org/10.1038/s41418-017-0044-9] [PMID: 29358668]
[54]
Panaretakis, T.; Kepp, O.; Brockmeier, U.; Tesniere, A.; Bjorklund, A.C.; Chapman, D.C.; Durchschlag, M.; Joza, N.; Pierron, G.; van Endert, P.; Yuan, J.; Zitvogel, L.; Madeo, F.; Williams, D.B.; Kroemer, G. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J., 2009, 28(5), 578-590.
[http://dx.doi.org/10.1038/emboj.2009.1] [PMID: 19165151]
[55]
Kepp, O.; Galluzzi, L.; Giordanetto, F.; Tesniere, A.; Vitale, I.; Martins, I.; Schlemmer, F.; Adjemian, S.; Zitvogel, L.; Kroemer, G. Disruption of the PP1/GADD34 complex induces calreticulin exposure. Cell Cycle, 2009, 8(23), 3971-3977.
[http://dx.doi.org/10.4161/cc.8.23.10191] [PMID: 19901557]
[56]
Xiang, Y.; Chen, L.; Liu, C.; Yi, X.; Li, L.; Huang, Y. Redirecting chemotherapeutics to the endoplasmic reticulum increases tumor immunogenicity and potentiates anti-PD-L1 therapy. Small, 2022, 18(6), 2104591.
[http://dx.doi.org/10.1002/smll.202104591] [PMID: 34859582]
[57]
Shen, X.; Deng, Y.; Chen, L.; Liu, C.; Li, L.; Huang, Y. Modulation of autophagy direction to enhance antitumor effect of endoplasmic-reticulum-targeted therapy: Left or right? Adv. Sci., 2023, 10(23), 2301434.
[http://dx.doi.org/10.1002/advs.202301434] [PMID: 37290058]
[58]
Jeon, J.; Yoon, B.; Dey, A.; Song, S.H.; Li, Y.; Joo, H.; Park, J.H. Self-immolative polymer-based immunogenic cell death inducer for regulation of redox homeostasis. Biomaterials, 2023, 295, 122064.
[http://dx.doi.org/10.1016/j.biomaterials.2023.122064] [PMID: 36827894]
[59]
Hartmann, L.; Osen, W.; Eichmüller, O.L.; Kordaß, T.; Furkel, J.; Dickes, E.; Reid, C.; Debus, J.; Brons, S.; Abdollahi, A.; Moustafa, M.; Rieken, S.; Eichmüller, S.B. Carbon ion irradiation plus CTLA4 blockade elicits therapeutic immune responses in a murine tumor model. Cancer Lett., 2022, 550, 215928.
[http://dx.doi.org/10.1016/j.canlet.2022.215928] [PMID: 36183858]
[60]
Chaurasia, M.; Gupta, S.; Das, A.; Dwarakanath, B.S.; Simonsen, A.; Sharma, K. Radiation induces EIF2AK3/PERK and ERN1/IRE1 mediated pro-survival autophagy. Autophagy, 2019, 15(8), 1391-1406.
[http://dx.doi.org/10.1080/15548627.2019.1582973] [PMID: 30773986]
[61]
Pang, X.L.; He, G.; Liu, Y.B.; Wang, Y.; Zhang, B. Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation. World J. Gastroenterol., 2013, 19(11), 1736-1748.
[http://dx.doi.org/10.3748/wjg.v19.i11.1736] [PMID: 23555162]
[62]
Xiu, Z.; Sun, T.; Yang, Y.; He, Y.; Yang, S.; Xue, X.; Yang, W. Curcumin enhanced ionizing radiation-induced immunogenic cell death in glioma cells through endoplasmic reticulum stress signaling pathways. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/5424411] [PMID: 36238646]
[63]
Zheng, X.; Jin, X.; Li, F.; Liu, X.; Liu, Y.; Ye, F.; Li, P.; Zhao, T.; Li, Q. Inhibiting autophagy with chloroquine enhances the anti-tumor effect of high-LET carbon ions via ER stress-related apoptosis. Med. Oncol., 2017, 34(2), 25.
[http://dx.doi.org/10.1007/s12032-017-0883-8] [PMID: 28070729]
[64]
Yang, P.; Feng, X.; Li, J.; Zhang, T.; Sheng, C.; Zhang, L.; Hua, J.; Wei, W.; Ding, N.; He, J.; Zhang, Y.; Wang, J.; Zhou, H. Ionizing radiation downregulates estradiol synthesis via endoplasmic reticulum stress and inhibits the proliferation of estrogen receptor- positive breast cancer cells. Cell Death Dis., 2021, 12(11), 1029.
[http://dx.doi.org/10.1038/s41419-021-04328-w] [PMID: 34716300]
[65]
Feng, X.P.; Yi, H.; Li, M.Y.; Li, X.H.; Yi, B.; Zhang, P.F.; Li, C.; Peng, F.; Tang, C.E.; Li, J.L.; Chen, Z.C.; Xiao, Z.Q. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res., 2010, 70(9), 3450-3462.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4099] [PMID: 20406978]
[66]
Biau, J.; Chautard, E.; De Koning, L.; Court, F.; Pereira, B.; Verrelle, P.; Dutreix, M. Predictive biomarkers of resistance to hypofractionated radiotherapy in high grade glioma. Radiat. Oncol., 2017, 12(1), 123.
[http://dx.doi.org/10.1186/s13014-017-0858-0] [PMID: 28754127]
[67]
Wang, K.; Klionsky, D.J. Mitochondria removal by autophagy. Autophagy, 2011, 7(3), 297-300.
[http://dx.doi.org/10.4161/auto.7.3.14502] [PMID: 21252623]
[68]
Zheng, X.; Jin, X.; Liu, X.; Liu, B.; Li, P.; Ye, F.; Zhao, T.; Chen, W.; Li, Q. Inhibition of endoplasmic reticulum stress-induced autophagy promotes the killing effect of X-rays on sarcoma in mice. Biochem. Biophys. Res. Commun., 2020, 522(3), 612-617.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.160] [PMID: 31785812]
[69]
Ramirez, M.U.; Hernandez, S.R.; Soto-Pantoja, D.R.; Cook, K.L. Endoplasmic reticulum stress pathway, the unfolded protein response, modulates immune function in the tumor microenvironment to impact tumor progression and therapeutic response. Int. J. Mol. Sci., 2019, 21(1), 169.
[http://dx.doi.org/10.3390/ijms21010169] [PMID: 31881743]
[70]
Li, A.; Song, N.J.; Riesenberg, B.P.; Li, Z. The emerging roles of endoplasmic reticulum stress in balancing immunity and tolerance in health and diseases: Mechanisms and opportunities. Front. Immunol., 2020, 10, 3154.
[http://dx.doi.org/10.3389/fimmu.2019.03154] [PMID: 32117210]
[71]
Xiong, X.; Huang, K.B.; Wang, Y.; Cao, B.; Luo, Y.; Chen, H.; Yang, Y.; Long, Y.; Liu, M.; Chan, A.S.C.; Liang, H.; Zou, T. Target profiling of an iridium(III)-based immunogenic cell death inducer unveils the engagement of unfolded protein response regulator BiP. J. Am. Chem. Soc., 2022, 144(23), 10407-10416.
[http://dx.doi.org/10.1021/jacs.2c02435] [PMID: 35658433]
[72]
Wu, J.; Rutkowski, D.T.; Dubois, M.; Swathirajan, J.; Saunders, T.; Wang, J.; Song, B.; Yau, G.D.Y.; Kaufman, R.J. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell, 2007, 13(3), 351-364.
[http://dx.doi.org/10.1016/j.devcel.2007.07.005] [PMID: 17765679]
[73]
Jiang, M.; Jia, K.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; He, Y.; Zhou, C. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm. Sin. B, 2021, 11(10), 2983-2994.
[http://dx.doi.org/10.1016/j.apsb.2021.01.003] [PMID: 34729299]
[74]
Welz, L.; Kakavand, N.; Hang, X.; Laue, G.; Ito, G.; Silva, M.G.; Plattner, C.; Mishra, N.; Tengen, F.; Ogris, C.; Jesinghaus, M.; Wottawa, F.; Arnold, P.; Kaikkonen, L.; Stengel, S.; Tran, F.; Das, S.; Kaser, A.; Trajanoski, Z.; Blumberg, R.; Roecken, C.; Saur, D.; Tschurtschenthaler, M.; Schreiber, S.; Rosenstiel, P.; Aden, K. Epithelial X-box binding protein 1 coordinates tumor protein p53-driven DNA damage responses and suppression of intestinal carcinogenesis. Gastroenterology, 2022, 162(1), 223-237.e11.
[http://dx.doi.org/10.1053/j.gastro.2021.09.057] [PMID: 34599932]
[75]
Zheng, Y.; Liu, P.; Wang, N.; Wang, S.; Yang, B.; Li, M.; Chen, J.; Situ, H.; Xie, M.; Lin, Y.; Wang, Z. Betulinic acid suppresses breast cancer metastasis by targeting grp78-mediated glycolysis and er stress apoptotic pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/8781690] [PMID: 31531187]
[76]
Féral, K.; Jaud, M.; Philippe, C.; Di Bella, D.; Pyronnet, S.; Rouault-Pierre, K.; Mazzolini, L.; Touriol, C. ER stress and unfolded protein response in leukemia: Friend, foe, or both? Biomolecules, 2021, 11(2), 199.
[http://dx.doi.org/10.3390/biom11020199] [PMID: 33573353]
[77]
Brewer, J.W.; Diehl, J.A. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci., 2000, 97(23), 12625-12630.
[http://dx.doi.org/10.1073/pnas.220247197] [PMID: 11035797]
[78]
Deng, Z.; Sun, R.; Han, X.; Zhang, Y.; Zhou, Y.; Shan, Y.; Xu, J.; Li, X.; He, F.; Fang, W. Porcine circovirus 2 activates the PERK-reactive oxygen species axis to induce p53 phosphorylation with subsequent cell cycle arrest at S phase in favor of its replication. J. Virol., 2022, 96(22), e01274-22.
[http://dx.doi.org/10.1128/jvi.01274-22] [PMID: 36300938]
[79]
Rojas-Rivera, D.; Delvaeye, T.; Roelandt, R.; Nerinckx, W.; Augustyns, K.; Vandenabeele, P.; Bertrand, M.J.M. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ., 2017, 24(6), 1100-1110.
[http://dx.doi.org/10.1038/cdd.2017.58] [PMID: 28452996]
[80]
Wang, Z.; Yin, F.; Xu, J.; Zhang, T.; Wang, G.; Mao, M.; Wang, Z.; Sun, W.; Han, J.; Yang, M.; Jiang, Y.; Hua, Y.; Cai, Z. CYT997(Lexibulin) induces apoptosis and autophagy through the activation of mutually reinforced ER stress and ROS in osteosarcoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 44.
[http://dx.doi.org/10.1186/s13046-019-1047-9] [PMID: 30704503]
[81]
Wei, W.; Li, Y.; Wang, C.; Gao, S.; Zhao, Y.; Yang, Z.; Wang, H.; Gao, Z.; Jiang, Y.; He, Y.; Zhao, L.; Gao, H.; Yao, X.; Hu, Y. Diterpenoid Vinigrol specifically activates ATF4/DDIT3-mediated PERK arm of unfolded protein response to drive non-apoptotic death of breast cancer cells. Pharmacol. Res., 2022, 182, 106285.
[http://dx.doi.org/10.1016/j.phrs.2022.106285] [PMID: 35662627]
[82]
Nguyen, H.G.; Conn, C.S.; Kye, Y.; Xue, L.; Forester, C.M.; Cowan, J.E.; Hsieh, A.C.; Cunningham, J.T.; Truillet, C.; Tameire, F.; Evans, M.J.; Evans, C.P.; Yang, J.C.; Hann, B.; Koumenis, C.; Walter, P.; Carroll, P.R.; Ruggero, D. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med., 2018, 10(439), eaar2036.
[http://dx.doi.org/10.1126/scitranslmed.aar2036] [PMID: 29720449]
[83]
Urra, H.; Dufey, E.; Avril, T.; Chevet, E.; Hetz, C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer, 2016, 2(5), 252-262.
[http://dx.doi.org/10.1016/j.trecan.2016.03.007] [PMID: 28741511]
[84]
Wheeler, M.A.; Jaronen, M.; Covacu, R.; Zandee, S.E.J.; Scalisi, G.; Rothhammer, V.; Tjon, E.C.; Chao, C.C.; Kenison, J.E.; Blain, M.; Rao, V.T.S.; Hewson, P.; Barroso, A.; Gutiérrez-Vázquez, C.; Prat, A.; Antel, J.P.; Hauser, R.; Quintana, F.J. Environmental control of astrocyte pathogenic activities in CNS Inflammation. Cell, 2019, 176(3), 581-596.e18.
[http://dx.doi.org/10.1016/j.cell.2018.12.012] [PMID: 30661753]
[85]
Lin, J.; Liu, H.; Fukumoto, T.; Zundell, J.; Yan, Q.; Tang, C.H.A.; Wu, S.; Zhou, W.; Guo, D.; Karakashev, S.; Hu, C.C.A.; Sarma, K.; Kossenkov, A.V.; Zhang, R. Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat. Commun., 2021, 12(1), 5321.
[http://dx.doi.org/10.1038/s41467-021-25684-3] [PMID: 34493732]
[86]
Gao, Q.; Li, X.; Xu, Y.; Zhang, J.; Rong, S.; Qin, Y.; Fang, J. IRE1α-targeting downregulates ABC transporters and overcomes drug resistance of colon cancer cells. Cancer Lett., 2020, 476, 67-74.
[http://dx.doi.org/10.1016/j.canlet.2020.02.007] [PMID: 32061752]
[87]
Xiao, R.; You, L.; Zhang, L.; Guo, X.; Guo, E.; Zhao, F.; Yang, B.; Li, X.; Fu, Y.; Lu, F.; Wang, Z.; Liu, C.; Peng, W.; Li, W.; Yang, X.; Dou, Y.; Liu, J.; Wang, W.; Qin, T.; Cui, Y.; Zhang, X.; Li, F.; Jin, Y.; Zeng, Q.; Wang, B.; Mills, G.B.; Chen, G.; Sheng, X.; Sun, C. Inhibiting the IRE1 α axis of the unfolded protein response enhances the antitumor effect of AZD1775 in TP53 mutant ovarian cancer. Adv. Sci., 2022, 9(21), 2105469.
[http://dx.doi.org/10.1002/advs.202105469] [PMID: 35619328]
[88]
Liang, Y.; Liang, L.; Liu, Z.; Wang, Y.; Dong, X.; Qu, L.; Gou, R.; Wang, Y.; Wang, Q.; Liu, Z.; Tang, L. Inhibition of IRE1/JNK pathway in HK-2 cells subjected to hypoxia-reoxygenation attenuates mesangial cells-derived extracellular matrix production. J. Cell. Mol. Med., 2020, 24(22), 13408-13420.
[http://dx.doi.org/10.1111/jcmm.15964] [PMID: 33043579]
[89]
Rufo, N.; Korovesis, D.; Van Eygen, S.; Derua, R.; Garg, A.D.; Finotello, F.; Vara-Perez, M.; Rožanc, J.; Dewaele, M.; de Witte, P.A.; Alexopoulos, L.G.; Janssens, S.; Sinkkonen, L.; Sauter, T.; Verhelst, S.H.L.; Agostinis, P. Stress-induced inflammation evoked by immunogenic cell death is blunted by the IRE1α kinase inhibitor KIRA6 through HSP60 targeting. Cell Death Differ., 2022, 29(1), 230-245.
[http://dx.doi.org/10.1038/s41418-021-00853-5] [PMID: 34453119]
[90]
Sheng, X.; Nenseth, H.Z.; Qu, S.; Kuzu, O.F.; Frahnow, T.; Simon, L.; Greene, S.; Zeng, Q.; Fazli, L.; Rennie, P.S.; Mills, I.G.; Danielsen, H.; Theis, F.; Patterson, J.B.; Jin, Y.; Saatcioglu, F. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat. Commun., 2019, 10(1), 323.
[http://dx.doi.org/10.1038/s41467-018-08152-3] [PMID: 30679434]
[91]
Kny, M.; Fielitz, J. Hidden Agenda - the involvement of endoplasmic reticulum stress and unfolded protein response in inflammation-induced muscle wasting. Front. Immunol., 2022, 13, 878755.
[http://dx.doi.org/10.3389/fimmu.2022.878755] [PMID: 35615361]
[92]
Di Conza, G.; Ho, P.C. ER stress responses: An emerging modulator for innate immunity. Cells, 2020, 9(3), 695.
[http://dx.doi.org/10.3390/cells9030695] [PMID: 32178254]
[93]
Van Campenhout, S.; Tilleman, L.; Lefere, S.; Vandierendonck, A.; Raevens, S.; Verhelst, X.; Geerts, A.; Van Nieuwerburgh, F.; Van Vlierberghe, H.; Devisscher, L. Myeloid-specific IRE1alpha deletion reduces tumour development in a diabetic, non-alcoholic steatohepatitis-induced hepatocellular carcinoma mouse model. Metabolism, 2020, 107, 154220.
[http://dx.doi.org/10.1016/j.metabol.2020.154220] [PMID: 32243868]
[94]
Gupta, S.; McGrath, B.; Cavener, D.R. PERK regulates the proliferation and development of insulin-secreting beta-cell tumors in the endocrine pancreas of mice. PLoS One, 2009, 4(11), e8008.
[http://dx.doi.org/10.1371/journal.pone.0008008] [PMID: 19956728]
[95]
Sunami, Y.; Ringelhan, M.; Kokai, E.; Lu, M.; O’Connor, T.; Lorentzen, A.; Weber, A.; Rodewald, A.K.; Müllhaupt, B.; Terracciano, L.; Gul, S.; Wissel, S.; Leithäuser, F.; Krappmann, D.; Riedl, P.; Hartmann, D.; Schirmbeck, R.; Strnad, P.; Hüser, N.; Kleeff, J.; Friess, H.; Schmid, R.M.; Geisler, F.; Wirth, T.; Heikenwalder, M. Canonical NF-κB signaling in hepatocytes acts as a tumor-suppressor in hepatitis B virus surface antigen-driven hepatocellular carcinoma by controlling the unfolded protein response. Hepatology, 2016, 63(5), 1592-1607.
[http://dx.doi.org/10.1002/hep.28435] [PMID: 26892811]
[96]
Hillary, R.F.; FitzGerald, U. A lifetime of stress: ATF6 in development and homeostasis. J. Biomed. Sci., 2018, 25(1), 48.
[http://dx.doi.org/10.1186/s12929-018-0453-1] [PMID: 29801500]
[97]
Harapas, C.R.; Idiiatullina, E.; Al-Azab, M.; Hrovat-Schaale, K.; Reygaerts, T.; Steiner, A.; Laohamonthonkul, P.; Davidson, S.; Yu, C.H.; Booty, L.; Masters, S.L. Organellar homeostasis and innate immune sensing. Nat. Rev. Immunol., 2022, 22(9), 535-549.
[http://dx.doi.org/10.1038/s41577-022-00682-8] [PMID: 35197578]
[98]
Rashid, F.; Dzakah, E.E.; Wang, H.; Tang, S. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta. Virus Res., 2021, 296, 198350.
[http://dx.doi.org/10.1016/j.virusres.2021.198350] [PMID: 33626380]
[99]
Iida, J.; Ishii, S.; Nakajima, Y.; Sessler, D.I.; Teramae, H.; Kageyama, K.; Maeda, S.; Anada, N.; Shibasaki, M.; Sawa, T.; Nakayama, Y. Hyperglycaemia augments lipopolysaccharide-induced reduction in rat and human macrophage phagocytosis via the endoplasmic stress-C/EBP homologous protein pathway. Br. J. Anaesth., 2019, 123(1), 51-59.
[http://dx.doi.org/10.1016/j.bja.2019.03.040] [PMID: 31084986]
[100]
Stadhouders, R.; Lubberts, E.; Hendriks, R.W. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J. Autoimmun., 2018, 87, 1-15.
[http://dx.doi.org/10.1016/j.jaut.2017.12.007] [PMID: 29275836]
[101]
Wu, H.; Zheng, S.; Zhang, J.; Xu, S.; Miao, Z. Cadmium induces endoplasmic reticulum stress-mediated apoptosis in pig pancreas via the increase of Th1 cells. Toxicology, 2021, 457, 152790.
[http://dx.doi.org/10.1016/j.tox.2021.152790] [PMID: 33891997]
[102]
Lu, G.; Li, Q.; Liu, J.; Jia, Y.; Tang, J.; Zhang, X. Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4+ T cells against apoptosis and immune dysregulation in sepsis. IUBMB Life, 2022, 74(11), 1070-1080.
[http://dx.doi.org/10.1002/iub.2666] [PMID: 35859520]
[103]
So, J.S. Roles of endoplasmic reticulum stress in immune responses. Mol. Cells, 2018, 41(8), 705-716.
[PMID: 30078231]
[104]
Thaxton, J.E.; Wallace, C.; Riesenberg, B.; Zhang, Y.; Paulos, C.M.; Beeson, C.C.; Liu, B.; Li, Z. Modulation of endoplasmic reticulum stress controls CD4+ T-cell activation and antitumor function. Cancer Immunol. Res., 2017, 5(8), 666-675.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0081] [PMID: 28642246]
[105]
Xu, Y.; Melo-Cardenas, J.; Zhang, Y.; Gau, I.; Wei, J.; Montauti, E.; Zhang, Y.; Gao, B.; Jin, H.; Sun, Z.; Lee, S.M.; Fang, D. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine–induced ER stress response. JCI Insight, 2019, 4(5), e121887.
[http://dx.doi.org/10.1172/jci.insight.121887] [PMID: 30843874]
[106]
Cao, Y.; Trillo-Tinoco, J.; Sierra, R.A.; Anadon, C.; Dai, W.; Mohamed, E.; Cen, L.; Costich, T.L.; Magliocco, A.; Marchion, D.; Klar, R.; Michel, S.; Jaschinski, F.; Reich, R.R.; Mehrotra, S.; Cubillos-Ruiz, J.R.; Munn, D.H.; Conejo-Garcia, J.R.; Rodriguez, P.C. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat. Commun., 2019, 10(1), 1280.
[http://dx.doi.org/10.1038/s41467-019-09263-1] [PMID: 30894532]
[107]
Thevenot, P.T.; Sierra, R.A.; Raber, P.L.; Al-Khami, A.A.; Trillo-Tinoco, J.; Zarreii, P.; Ochoa, A.C.; Cui, Y.; Del Valle, L.; Rodriguez, P.C. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity, 2014, 41(3), 389-401.
[http://dx.doi.org/10.1016/j.immuni.2014.08.015] [PMID: 25238096]
[108]
Barrow, A.D.; Edeling, M.A.; Trifonov, V.; Luo, J.; Goyal, P.; Bohl, B.; Bando, J.K.; Kim, A.H.; Walker, J.; Andahazy, M.; Bugatti, M.; Melocchi, L.; Vermi, W.; Fremont, D.H.; Cox, S.; Cella, M.; Schmedt, C.; Colonna, M. Natural killer cells control tumor growth by sensing a growth factor. Cell, 2018, 172(3), 534-548.e19.
[http://dx.doi.org/10.1016/j.cell.2017.11.037] [PMID: 29275861]
[109]
Van Elssen, C.H.M.J.; Ciurea, S.O. NK cell alloreactivity in acute myeloid leukemia in the post-transplant cyclophosphamide era. Am. J. Hematol., 2020, 95(12), 1590-1598.
[http://dx.doi.org/10.1002/ajh.25983] [PMID: 32857869]
[110]
Zakiryanova, G.; Kustova, E.; Urazalieva, N.; Baimuchametov, E.; Nakisbekov, N.; Shurin, M. Abnormal expression of c-Myc oncogene in NK cells in patients with cancer. Int. J. Mol. Sci., 2019, 20(3), 756.
[http://dx.doi.org/10.3390/ijms20030756] [PMID: 30754645]
[111]
Wang, Y.; Zhang, Y.; Yi, P.; Dong, W.; Nalin, A.P.; Zhang, J.; Zhu, Z.; Chen, L.; Benson, D.M.; Mundy-Bosse, B.L.; Freud, A.G.; Caligiuri, M.A.; Yu, J. The IL-15–AKT–XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat. Immunol., 2019, 20(1), 10-17.
[http://dx.doi.org/10.1038/s41590-018-0265-1] [PMID: 30538328]
[112]
Manoury, B.; Maisonneuve, L.; Podsypanina, K. The role of endoplasmic reticulum stress in the MHC class I antigen presentation pathway of dendritic cells. Mol. Immunol., 2022, 144, 44-48.
[http://dx.doi.org/10.1016/j.molimm.2022.02.007] [PMID: 35184022]
[113]
Mogilenko, D.A.; Haas, J.T.; L’homme, L.; Fleury, S.; Quemener, S.; Levavasseur, M.; Becquart, C.; Wartelle, J.; Bogomolova, A.; Pineau, L.; Molendi-Coste, O.; Lancel, S.; Dehondt, H.; Gheeraert, C.; Melchior, A.; Dewas, C.; Nikitin, A.; Pic, S.; Rabhi, N.; Annicotte, J.S.; Oyadomari, S.; Velasco-Hernandez, T.; Cammenga, J.; Foretz, M.; Viollet, B.; Vukovic, M.; Villacreces, A.; Kranc, K.; Carmeliet, P.; Marot, G.; Boulter, A.; Tavernier, S.; Berod, L.; Longhi, M.P.; Paget, C.; Janssens, S.; Staumont-Sallé, D.; Aksoy, E.; Staels, B.; Dombrowicz, D. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell, 2019, 177(5), 1201-1216.e19.
[http://dx.doi.org/10.1016/j.cell.2019.03.018] [PMID: 31031005]
[114]
Cubillos-Ruiz, J.R.; Bettigole, S.E.; Glimcher, L.H. Molecular pathways: Immunosuppressive roles of IRE1α-XBP1 signaling in dendritic cells of the tumor microenvironment. Clin. Cancer Res., 2016, 22(9), 2121-2126.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1570] [PMID: 26979393]
[115]
Tian, S.; Liu, Z.; Donahue, C.; Falo, L.D., Jr; You, Z. Genetic targeting of the active transcription factor XBP1s to dendritic cells potentiates vaccine-induced prophylactic and therapeutic antitumor immunity. Mol. Ther., 2012, 20(2), 432-442.
[http://dx.doi.org/10.1038/mt.2011.183] [PMID: 21934655]
[116]
Cubillos-Ruiz, J.R.; Silberman, P.C.; Rutkowski, M.R.; Chopra, S.; Perales-Puchalt, A.; Song, M.; Zhang, S.; Bettigole, S.E.; Gupta, D.; Holcomb, K.; Ellenson, L.H.; Caputo, T.; Lee, A.H.; Conejo-Garcia, J.R.; Glimcher, L.H. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell, 2015, 161(7), 1527-1538.
[http://dx.doi.org/10.1016/j.cell.2015.05.025] [PMID: 26073941]
[117]
Tognarelli, E.I.; Retamal-Díaz, A.; Farías, M.A.; Duarte, L.F.; Palomino, T.F.; Ibañez, F.J.; Riedel, C.A.; Kalergis, A.M.; Bueno, S.M.; González, P.A. Pharmacological inhibition of IRE-1 alpha activity in herpes simplex virus type 1 and type 2-infected dendritic cells enhances t cell activation. Front. Immunol., 2022, 12, 764861.
[http://dx.doi.org/10.3389/fimmu.2021.764861] [PMID: 35069537]
[118]
Lu, C.; Liu, Z.; Klement, J.D.; Yang, D.; Merting, A.D.; Poschel, D.; Albers, T.; Waller, J.L.; Shi, H.; Liu, K. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J. Immunother. Cancer, 2021, 9(7), e002624.
[http://dx.doi.org/10.1136/jitc-2021-002624] [PMID: 34326167]
[119]
Song, D.; Zhou, Z.; Zhang, D.; Wu, J.; Hao, Q.; Zhao, L.; Ren, H.; Zhang, B. Identification of an endoplasmic reticulum stress-related gene signature to evaluate the immune status and predict the prognosis of hepatocellular carcinoma. Front. Genet., 2022, 13, 850200.
[http://dx.doi.org/10.3389/fgene.2022.850200] [PMID: 35711939]
[120]
Liu, J.; Fan, L.; Yu, H.; Zhang, J.; He, Y.; Feng, D.; Wang, F.; Li, X.; Liu, Q.; Li, Y.; Guo, Z.; Gao, B.; Wei, W.; Wang, H.; Sun, G. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology, 2019, 70(1), 241-258.
[http://dx.doi.org/10.1002/hep.30607] [PMID: 30854665]
[121]
Chen, Z.; Wu, Q.; Ding, Y.; Zhou, W.; Liu, R.; Chen, H.; Zhou, J.; Feng, J.; Chen, C. YD277 suppresses triple-negative breast cancer partially through activating the endoplasmic reticulum stress pathway. Theranostics, 2017, 7(8), 2339-2349.
[http://dx.doi.org/10.7150/thno.17555] [PMID: 28740556]
[122]
Vieri, M.; Preisinger, C.; Schemionek, M.; Salimi, A.; Patterson, J.B.; Samali, A.; Brümmendorf, T.H.; Appelmann, I.; Kharabi Masouleh, B. Targeting of BCR-ABL1 and IRE1α induces synthetic lethality in Philadelphia-positive acute lymphoblastic leukemia. Carcinogenesis, 2021, 42(2), 272-284.
[http://dx.doi.org/10.1093/carcin/bgaa095] [PMID: 32915195]
[123]
Papandreou, I.; Denko, N.C.; Olson, M.; Van Melckebeke, H.; Lust, S.; Tam, A.; Solow-Cordero, D.E.; Bouley, D.M.; Offner, F.; Niwa, M.; Koong, A.C. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood, 2011, 117(4), 1311-1314.
[http://dx.doi.org/10.1182/blood-2010-08-303099] [PMID: 21081713]
[124]
Jain, B.P. An overview of unfolded protein response signaling and its role in cancer. Cancer Biother. Radiopharm., 2017, 32(8), 275-281.
[http://dx.doi.org/10.1089/cbr.2017.2309] [PMID: 29053418]
[125]
Brewer, J.W.; Hendershot, L.M.; Sherr, C.J.; Diehl, J.A. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8505-8510.
[http://dx.doi.org/10.1073/pnas.96.15.8505] [PMID: 10411905]
[126]
Christianson, J.C.; Ye, Y. Cleaning up in the endoplasmic reticulum: Ubiquitin in charge. Nat. Struct. Mol. Biol., 2014, 21(4), 325-335.
[http://dx.doi.org/10.1038/nsmb.2793] [PMID: 24699081]
[127]
Wu, Z.; Wang, C.; Zhang, Z.; Liu, W.; Xu, H.; Wang, H.; Wang, Y.; Zhang, W.; Wang, S.L. High expression of derlin-1 is associated with the malignancy of bladder cancer in a chinese han population. PLoS One, 2016, 11(12), e0168351.
[http://dx.doi.org/10.1371/journal.pone.0168351] [PMID: 27977784]
[128]
Wu, C.H.; Silvers, C.R.; Messing, E.M.; Lee, Y.F. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. J. Biol. Chem., 2019, 294(9), 3207-3218.
[http://dx.doi.org/10.1074/jbc.RA118.006682] [PMID: 30593508]
[129]
Yan, X.; Chen, M.; Xiao, C.; Fu, J.; Sun, X.; Hu, Z.; Zhou, H. Effect of unfolded protein response on the immune infiltration and prognosis of transitional cell bladder cancer. Ann. Med., 2021, 53(1), 1049-1059.
[http://dx.doi.org/10.1080/07853890.2021.1918346] [PMID: 34187252]
[130]
Zhang, H.H.; Li, C.; Ren, J.W.; Liu, L.; Du, X.H.; Gao, J.; Liu, T.; Li, S.Z. OTUB1 facilitates bladder cancer progression by stabilizing ATF6 in response to endoplasmic reticulum stress. Cancer Sci., 2021, 112(6), 2199-2209.
[http://dx.doi.org/10.1111/cas.14876] [PMID: 33686769]
[131]
Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[132]
Liu, Z.; Gu, S.; Lu, T.; Wu, K.; Li, L.; Dong, C.; Zhou, Y. IFI6 depletion inhibits esophageal squamous cell carcinoma progression through reactive oxygen species accumulation via mitochondrial dysfunction and endoplasmic reticulum stress. J. Exp. Clin. Cancer Res., 2020, 39(1), 144.
[http://dx.doi.org/10.1186/s13046-020-01646-3] [PMID: 32727517]
[133]
Yin, X.M. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res., 2000, 10(3), 161-167.
[http://dx.doi.org/10.1038/sj.cr.7290045] [PMID: 11032168]
[134]
Wong, B.S.; Hsiao, Y.C.; Lin, T.W.; Chen, K.S.; Chen, P.N.; Kuo, W.H.; Chu, S.C.; Hsieh, Y.S. The in vitro and in vivo apoptotic effects of Mahonia oiwakensis on human lung cancer cells. Chem. Biol. Interact., 2009, 180(2), 165-174.
[http://dx.doi.org/10.1016/j.cbi.2009.02.011] [PMID: 19497414]
[135]
Sato, A.; Asano, T.; Okubo, K.; Isono, M.; Asano, T. Nelfinavir and ritonavir kill bladder cancer cells synergistically by inducing endoplasmic reticulum stress. Oncol. Res., 2018, 26(2), 323-332.
[http://dx.doi.org/10.3727/096504017X14957929842972] [PMID: 28560953]
[136]
Xu, Y.; Tong, Y.; Ying, J.; Lei, Z.; Wan, L.; Zhu, X.; Ye, F.; Mao, P.; Wu, X.; Pan, R.; Peng, B.; Liu, Y.; Zhu, J. Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol. Lett., 2018, 15(6), 9117-9125.
[http://dx.doi.org/10.3892/ol.2018.8522] [PMID: 29805643]
[137]
Zhang, M.; Du, H.; Huang, Z.; Zhang, P.; Yue, Y.; Wang, W.; Liu, W.; Zeng, J.; Ma, J.; Chen, G.; Wang, X.; Fan, J. Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem. Biol. Interact., 2018, 292, 65-75.
[http://dx.doi.org/10.1016/j.cbi.2018.06.013] [PMID: 29981725]
[138]
Wu, Y.J.; Su, T.R.; Dai, G.F.; Su, J.H.; Liu, C.I. Flaccidoxide-13-acetate-induced apoptosis in human bladder cancer cells is through activation of p38/JNK, mitochondrial dysfunction, and endoplasmic reticulum stress regulated pathway. Mar. Drugs, 2019, 17(5), 287.
[http://dx.doi.org/10.3390/md17050287] [PMID: 31086026]
[139]
Cui, J.; Sun, W.; Hao, X.; Wei, M.; Su, X.; Zhang, Y.; Su, L.; Liu, X. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int., 2015, 15(1), 4.
[http://dx.doi.org/10.1186/s12935-014-0149-x] [PMID: 25685062]
[140]
Zhang, J.; Sun, A.; Xu, R.; Tao, X.; Dong, Y.; Lv, X.; Wei, D. Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J. Cell. Physiol., 2016, 231(1), 84-93.
[http://dx.doi.org/10.1002/jcp.25054] [PMID: 26031207]
[141]
Xi, H.; Wang, S.; Wang, B.; Hong, X.; Liu, X.; Li, M.; Shen, R.; Dong, Q. The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol. Rep., 2022, 48(6), 208.
[http://dx.doi.org/10.3892/or.2022.8423] [PMID: 36222296]
[142]
Fernández, A.; Ordóñez, R.; Reiter, R.J.; González-Gallego, J.; Mauriz, J.L. Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis. J. Pineal Res., 2015, 59(3), 292-307.
[http://dx.doi.org/10.1111/jpi.12264] [PMID: 26201382]
[143]
Song, S.; Tan, J.; Miao, Y.; Li, M.; Zhang, Q. Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J. Cell. Physiol., 2017, 232(11), 2977-2984.
[http://dx.doi.org/10.1002/jcp.25785] [PMID: 28067409]
[144]
Cybulsky, A.V. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol., 2017, 13(11), 681-696.
[http://dx.doi.org/10.1038/nrneph.2017.129] [PMID: 28970584]
[145]
Qi, Z.; Chen, L. Endoplasmic reticulum stress and autophagy. Adv. Exp. Med. Biol., 2019, 1206, 167-177.
[http://dx.doi.org/10.1007/978-981-15-0602-4_8] [PMID: 31776985]
[146]
Wadgaonkar, P.; Chen, F. Connections between endoplasmic reticulum stress-associated unfolded protein response, mitochondria, and autophagy in arsenic-induced carcinogenesis. Semin. Cancer Biol., 2021, 76, 258-266.
[http://dx.doi.org/10.1016/j.semcancer.2021.04.004] [PMID: 33836253]
[147]
Buytaert, E.; Matroule, J.Y.; Durinck, S.; Close, P.; Kocanova, S.; Vandenheede, J.R.; de Witte, P.A.; Piette, J.; Agostinis, P. Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells. Oncogene, 2008, 27(13), 1916-1929.
[http://dx.doi.org/10.1038/sj.onc.1210825] [PMID: 17952126]
[148]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[149]
Sang, J.; Gan, L.; Zou, M.F.; Lin, Z.J.; Fan, R.Z.; Huang, J.L.; Li, W.; Tang, G.H.; Yin, S. Jolkinolide B sensitizes bladder cancer to mTOR inhibitors via dual inhibition of Akt signaling and autophagy. Cancer Lett., 2022, 526, 352-362.
[http://dx.doi.org/10.1016/j.canlet.2021.11.014] [PMID: 34798195]
[150]
Lyu, L.; Xiang, W.; Zheng, F.; Huang, T.; Feng, Y.; Yuan, J.; Zhang, C. Significant prognostic value of the autophagy-related gene P4HB in bladder urothelial carcinoma. Front. Oncol., 2020, 10, 1613.
[http://dx.doi.org/10.3389/fonc.2020.01613] [PMID: 32903592]
[151]
Bednova, O.; Leyton, J.V. Targeted molecular therapeutics for bladder cancer—a new option beyond the mixed fortunes of immune checkpoint inhibitors? Int. J. Mol. Sci., 2020, 21(19), 7268.
[http://dx.doi.org/10.3390/ijms21197268] [PMID: 33019653]
[152]
Kong, Y.; Jiang, J.; Huang, Y.; Li, L.; Liu, X.; Jin, Z.; Wei, F.; Liu, X.; Zhang, S.; Duan, X.; Zhang, Y.; Tong, Q.; Chen, H. Endoplasmic reticulum stress in melanoma pathogenesis and resistance. Biomed. Pharmacother., 2022, 155, 113741.
[http://dx.doi.org/10.1016/j.biopha.2022.113741] [PMID: 36271543]
[153]
Prevo, R.; Tiwana, G.S.; Maughan, T.S.; Buffa, F.M.; McKenna, W.G.; Higgins, G.S. Depletion of signal recognition particle 72kDa increases radiosensitivity. Cancer Biol. Ther., 2017, 18(6), 425-432.
[http://dx.doi.org/10.1080/15384047.2017.1323587] [PMID: 28494188]
[154]
Wang, X.; Bai, Y.; Zhang, F.; Yang, Y.; Feng, D.; Li, A.; Yang, Z.; Li, D.; Tang, Y.; Wei, X.; Wei, W.; Han, P. Targeted inhibition of P4HB promotes cell sensitivity to gemcitabine in urothelial carcinoma of the bladder. OncoTargets Ther., 2020, 13, 9543-9558.
[http://dx.doi.org/10.2147/OTT.S267734] [PMID: 33061438]
[155]
Su, S-F.; Chang, Y-W.; Andreu-Vieyra, C.; Fang, J.Y.; Yang, Z.; Han, B.; Lee, A.S.; Liang, G. miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene, 2013, 32(39), 4694-4701.
[http://dx.doi.org/10.1038/onc.2012.483] [PMID: 23085757]
[156]
Whang, Y.M.; Yoon, D.H.; Hwang, G.Y.; Yoon, H.; Park, S.I.; Choi, Y.W.; Chang, I.H. Liposome-encapsulated bacillus calmette–guérin cell wall skeleton enhances antitumor efficiency for bladder cancer in vitro and in vivo via induction of AMP-activated protein kinase. Cancers, 2020, 12(12), 3679.
[http://dx.doi.org/10.3390/cancers12123679] [PMID: 33302414]
[157]
Tcyganov, E.N.; Hanabuchi, S.; Hashimoto, A.; Campbell, D.; Kar, G.; Slidel, T.W.F.; Cayatte, C.; Landry, A.; Pilataxi, F.; Hayes, S.; Dougherty, B.; Hicks, K.C.; Mulgrew, K.; Tang, C.H.A.; Hu, C.C.A.; Guo, W.; Grivennikov, S.; Ali, M.A.A.; Beltra, J.C.; Wherry, E.J.; Nefedova, Y.; Gabrilovich, D.I. Distinct mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and cancer. J. Clin. Invest., 2021, 131(16), e145971.
[http://dx.doi.org/10.1172/JCI145971] [PMID: 34228641]
[158]
Iurlaro, R.; Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J., 2016, 283(14), 2640-2652.
[http://dx.doi.org/10.1111/febs.13598] [PMID: 26587781]
[159]
León-Annicchiarico, C.L.; Ramírez-Peinado, S.; Domínguez-Villanueva, D.; Gonsberg, A.; Lampidis, T.J.; Muñoz-Pinedo, C. ATF 4 mediates necrosis induced by glucose deprivation and apoptosis induced by 2-deoxyglucose in the same cells. FEBS J., 2015, 282(18), 3647-3658.
[http://dx.doi.org/10.1111/febs.13369] [PMID: 26172539]
[160]
Chevalier, M.F.; Trabanelli, S.; Racle, J.; Salomé, B.; Cesson, V.; Gharbi, D.; Bohner, P.; Domingos-Pereira, S.; Dartiguenave, F.; Fritschi, A.S.; Speiser, D.E.; Rentsch, C.A.; Gfeller, D.; Jichlinski, P.; Nardelli-Haefliger, D.; Jandus, C.; Derré, L. ILC2-modulated T cell–to-MDSC balance is associated with bladder cancer recurrence. J. Clin. Invest., 2017, 127(8), 2916-2929.
[http://dx.doi.org/10.1172/JCI89717] [PMID: 28650339]
[161]
Condamine, T.; Kumar, V.; Ramachandran, I.R.; Youn, J.I.; Celis, E.; Finnberg, N.; El-Deiry, W.S.; Winograd, R.; Vonderheide, R.H.; English, N.R.; Knight, S.C.; Yagita, H.; McCaffrey, J.C.; Antonia, S.; Hockstein, N.; Witt, R.; Masters, G.; Bauer, T.; Gabrilovich, D.I. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis. J. Clin. Invest., 2014, 124(6), 2626-2639.
[http://dx.doi.org/10.1172/JCI74056] [PMID: 24789911]
[162]
Huang, S.; Song, Z.; Zhang, T.; He, X.; Huang, K.; Zhang, Q.; Shen, J.; Pan, J. Identification of immune cell infiltration and immune-related genes in the tumor microenvironment of glioblastomas. Front. Immunol., 2020, 11, 585034.
[http://dx.doi.org/10.3389/fimmu.2020.585034] [PMID: 33193404]
[163]
Ledderose, S.; Rodler, S.; Eismann, L.; Ledderose, G.; Ledderose, C. Tumor-infiltrating lymphocytes predict survival in ≥ pT2 urothelial bladder cancer. Pathol. Res. Pract., 2022, 237, 154037.
[http://dx.doi.org/10.1016/j.prp.2022.154037] [PMID: 35908386]
[164]
Nie, Z.; Chen, M.; Wen, X.; Gao, Y.; Huang, D.; Cao, H.; Peng, Y.; Guo, N.; Ni, J.; Zhang, S. Endoplasmic reticulum stress and tumor microenvironment in bladder cancer: The missing link. Front. Cell Dev. Biol., 2021, 9, 683940.
[http://dx.doi.org/10.3389/fcell.2021.683940] [PMID: 34136492]
[165]
Deng, H.; Zhou, Z.; Yang, W.; Lin, L.; Wang, S.; Niu, G.; Song, J.; Chen, X. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett., 2020, 20(3), 1928-1933.
[http://dx.doi.org/10.1021/acs.nanolett.9b05210] [PMID: 32073871]
[166]
Jacob, J.S.; Dutra, B.E.; Garcia-Rodriguez, V.; Panneerselvam, K.; Abraham, F.O.; Zou, F.; Ma, W.; Grivas, P.; Thompson, J.A.; Altan, M.; Oliva, I.C.G.; Zhang, H.C.; Thomas, A.S.; Wang, Y. Clinical characteristics and outcomes of oral mucositis associated with immune checkpoint inhibitors in patients with cancer. J. Natl. Compr. Canc. Netw., 2021, 19(12), 1415-1424.
[http://dx.doi.org/10.6004/jnccn.2020.7697] [PMID: 34348238]
[167]
Disis, M.L.N.; Guthrie, K.A.; Liu, Y.; Coveler, A.L.; Higgins, D.M.; Childs, J.S.; Dang, Y.; Salazar, L.G. Safety and outcomes of a plasmid DNA vaccine encoding the ERBB2 intracellular domain in patients with advanced-stage ERBB2-positive breast cancer: A phase 1 nonrandomized clinical trial. JAMA Oncol., 2022.
[PMID: 36326756]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy