Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Deciphering Neuroprotective Effect of Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.) through Preclinical and Clinical Studies

Author(s): Ibukun O. Oresanya and Ilkay E. Orhan*

Volume 25, Issue 5, 2024

Published on: 22 January, 2024

Page: [330 - 352] Pages: 23

DOI: 10.2174/0113894501255093240117092328

Price: $65

Abstract

Rosmarinus officinalis L. (RO, rosemary) is a well-known medicinal, aromatic, and culinary herb with traditional use in European folk medicine against memory deficits and neurodegenerative disorders.

This review highlights the different neuroprotective activities of RO investigated in both preclinical and clinical studies, as well as in silico molecular docking of bioactive compounds found in RO.

The neuroprotective effect of RO was searched through databases including PubMed, Web of Science (WoS), Scopus, and Clinical Trials using the keywords “Rosmarinus officinalis, rosemary, neuroprotective effect, memory, cognitive dysfunction, Alzheimer’s disease.”

RO, which is rich in secondary metabolites that have memory-enhancing potential, has displayed neuroprotection through different molecular mechanisms such as inhibition of cholinesterase, modulation of dopaminergic and oxytocinergic systems, mediation of oxidative and inflammatory proteins, involved in neuropathic pain, among others. RO extracts exhibited antidepressant and anxiolytic activities. Also, the plant has shown efficacy in scopolamine-, lipopolysaccharide-, AlCl3-, and H2O2-induced amnesia as well as amyloid-beta- and ibotenic acid-induced neurotoxicity and chronic constriction injury-related oxidative stress memory and cognitive impairments in animal models. A few clinical studies available supported the neuroprotective effects of RO and its constituents. However, more clinical studies are needed to confirm results from preclinical studies further and should include not only placebo-controlled studies but also studies including positive controls using approved drugs.

Many studies underlined that constituents of RO may have the potential for developing drug candidates against Alzheimer’s disease that possess high bioavailability, low toxicity, and enhanced penetration to CNS, as revealed from the experimental and molecular docking analysis.

Graphical Abstract

[1]
Solanki I, Parihar P, Parihar MS. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem Int 2016; 95: 100-8.
[http://dx.doi.org/10.1016/j.neuint.2015.11.001] [PMID: 26550708]
[2]
Ratheesh G, Tian L, Venugopal JR, et al. Role of medicinal plants in neurodegenerative diseases. Biomanufacturing Reviews 2017; 2(1): 2.
[http://dx.doi.org/10.1007/s40898-017-0004-7]
[3]
Sharma K, Verma R, Kumar D, et al. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. J Ethnopharmacol 2022; 293: 115318.
[http://dx.doi.org/10.1016/j.jep.2022.115318] [PMID: 35469830]
[4]
Hassan T, Saeed S, Hassan M, Naseem S, Siddique S. Ethnomedicinal plants in the treatment of neurodegenerative diseases: A narrative. Gomal J Med Sci 2021; 19(1): 35-44.
[http://dx.doi.org/10.46903/gjms/19.01.958]
[5]
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol 2016; 15(12): 1257-72.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[6]
Srivastav S, Anand BG, Fatima M, et al. Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in Drosophila melanogaster. ACS Chem Neurosci 2020; 11(22): 3772-85.
[http://dx.doi.org/10.1021/acschemneuro.0c00366] [PMID: 33125229]
[7]
Hsieh HL, Yang CM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioMed Res Int 2013; 2013: 1-18.
[http://dx.doi.org/10.1155/2013/484613] [PMID: 24455696]
[8]
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep 2016; 13(4): 3391-6.
[http://dx.doi.org/10.3892/mmr.2016.4948] [PMID: 26935478]
[9]
Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA. Global cerebral ischemia: Synaptic and cognitive dysfunction. Curr Drug Targets 2013; 14(1): 20-35.
[http://dx.doi.org/10.2174/138945013804806514] [PMID: 23170794]
[10]
Pak ME, Kim YR, Kim HN, et al. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeuibogam and preliminary evaluation of its effects. J Ethnopharmacol 2016; 179: 383-90.
[http://dx.doi.org/10.1016/j.jep.2016.01.006] [PMID: 26773844]
[11]
Desai AK, Grossberg GT. Diagnosis and treatment of Alzheimer’s disease. Neurology 2005; 64(12_suppl_3) (Suppl. 3): S34-9.
[http://dx.doi.org/10.1212/WNL.64.12_suppl_3.S34] [PMID: 15994222]
[12]
Mizuno Y. Recent research progress in and future perspective on treatment of Parkinson’s disease. Integr Med Int 2015; 1(2): 67-79.
[http://dx.doi.org/10.1159/000365571]
[13]
Fancellu G, Chand K, Tomás D, et al. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 2020; 35(1): 211-26.
[http://dx.doi.org/10.1080/14756366.2019.1689237] [PMID: 31760822]
[14]
Malik N, Amber S, Zahid S. Rosmarinus officinalis and methylphenidate exposure improves cognition and depression and regulates anxiety-like behavior in AlCl3-induced mouse model of Alzheimer’s disease. Front Pharmacol 2022; 13: 943163.
[http://dx.doi.org/10.3389/fphar.2022.943163] [PMID: 36034857]
[15]
Drew BT, González-Gallegos JG, Xiang CL, et al. Salvia united: The greatest good for the greatest number. Taxon 2017; 66(1): 133-45.
[http://dx.doi.org/10.12705/661.7]
[16]
Shi̇mi̇ra F, Zahid G, Nyirahabimana F. An overview and renewed emphasis on ethnopharmacology of rosemary (Salvia rosmarinus). Current Perspectives on Medicinal and Aromatic Plants (CUPMAP) 2022; 5(1): 30-41. [CUPMAP].
[http://dx.doi.org/10.38093/cupmap.1098392]
[17]
Jessica Elizabeth DLT, Gassara F, Kouassi AP, Brar SK, Belkacemi K. Spice use in food: Properties and benefits. Crit Rev Food Sci Nutr 2017; 57(6): 1078-88.
[http://dx.doi.org/10.1080/10408398.2013.858235] [PMID: 26560460]
[18]
Perry NSL, Menzies R, Hodgson F, et al. A randomised double-blind placebo-controlled pilot trial of a combined extract of sage, rosemary and melissa, traditional herbal medicines, on the enhancement of memory in normal healthy subjects, including influence of age. Phytomedicine 2018; 39: 42-8.
[http://dx.doi.org/10.1016/j.phymed.2017.08.015] [PMID: 29433682]
[19]
Park JA, Kim S, Lee SY, et al. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death. Neuroreport 2008; 19(13): 1301-4.
[http://dx.doi.org/10.1097/WNR.0b013e32830abc1f] [PMID: 18695511]
[20]
de Oliveira JR, de Jesus D, Figueira LW, et al. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp Biol Med 2017; 242(6): 625-34.
[http://dx.doi.org/10.1177/1535370216688571] [PMID: 28093936]
[21]
Giacomelli C, Natali L, Trincavelli ML, et al. New insights into the anticancer activity of carnosol: P53 reactivation in the U87MG human glioblastoma cell line. Int J Biochem Cell Biol 2016; 74: 95-108.
[http://dx.doi.org/10.1016/j.biocel.2016.02.019] [PMID: 26939786]
[22]
El Alaoui C, Chemin J, Fechtali T, Lory P. Modulation of T-type Ca2+ channels by lavender and rosemary extracts. PLoS One 2017; 12(10): e0186864.
[http://dx.doi.org/10.1371/journal.pone.0186864] [PMID: 29073181]
[23]
Aydın Yıldırım T, Kitiş Y. The effect of aromatherapy application on cognitive functions and daytime sleepiness in older adults living in a nursing home. Holist Nurs Pract 2020; 34(2): 83-90.
[http://dx.doi.org/10.1097/HNP.0000000000000371] [PMID: 32049695]
[24]
Jiang Y, Wu N, Fu YJ, et al. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol Pharmacol 2011; 32(1): 63-8.
[http://dx.doi.org/10.1016/j.etap.2011.03.011] [PMID: 21787731]
[25]
Sharma Y, Velamuri R, Fagan J, Schaefer J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 2020; 25(20): 4599.
[http://dx.doi.org/10.3390/molecules25204599] [PMID: 33050282]
[26]
Lešnik S, Furlan V, Bren U. Rosemary (Rosmarinus officinalis L.): Extraction techniques, analytical methods and health-promoting biological effects. Phytochem Rev 2021; 20(6): 1273-328.
[http://dx.doi.org/10.1007/s11101-021-09745-5]
[27]
Orhan I, Aslan S, Kartal M, Şener B, Hüsnü Can Başer K. Inhibitory effect of Turkish Rosmarinus officinalis L. On acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem 2008; 108(2): 663-8.
[http://dx.doi.org/10.1016/j.foodchem.2007.11.023] [PMID: 26059146]
[28]
Lee HJ, Cho HS, Park E, et al. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology 2008; 250(2-3): 109-15.
[http://dx.doi.org/10.1016/j.tox.2008.06.010] [PMID: 18644421]
[29]
Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway viaS- alkylation of targeted cysteines on Keap1. J Neurochem 2008; 104(4): 1116-31.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05039.x] [PMID: 17995931]
[30]
Shimojo Y, Kosaka K, Noda Y, Shimizu T, Shirasawa T. Effect of rosmarinic acid in motor dysfunction and life span in a mouse model of familial amyotrophic lateral sclerosis. J Neurosci Res 2010; 88(4): 896-904.
[http://dx.doi.org/10.1002/jnr.22242] [PMID: 19798750]
[31]
Kompelly A, Kompelly S, Vasudha B, Narender B. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. J Drug Deliv Ther 2019; 9(1): 323-30.
[http://dx.doi.org/10.22270/jddt.v9i1.2218]
[32]
Aziz E, Batool R, Akhtar W, et al. Rosemary species: A review of phytochemicals, bioactivities and industrial applications. S Afr J Bot 2022; 151: 3-18.
[http://dx.doi.org/10.1016/j.sajb.2021.09.026]
[33]
Habtemariam S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement Alternat Med 2016; 2016: 1-14.
[http://dx.doi.org/10.1155/2016/2680409] [PMID: 26941822]
[34]
Hussain SM, Syeda AF, Alshammari M, et al. Cognition enhancing effect of rosemary (Rosmarinus officinalis L.) in lab animal studies: A systematic review and meta-analysis. Braz J Med Biol Res 2022; 55: e11593.
[http://dx.doi.org/10.1590/1414-431x2021e11593] [PMID: 35170682]
[35]
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 2020; 23(9): 1100-12.
[http://dx.doi.org/10.22038/ijbms.2020.45269.10541] [PMID: 32963731]
[36]
Malayoğlu H. The antioxidant effect of rosemary (Rosmarinus officinalis L.). Anim Prod 2010; 51(2): 59-67.
[37]
Sasikumar B. Rosemary Handbook of Herbs and Spices. Sawston, UK: Elsevier 2012; pp. 452-68.
[http://dx.doi.org/10.1533/9780857095671.452]
[38]
Begum A, Sandhya S, Shaffath Ali S, Vinod KR, Reddy S, Banji D. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci Pol Technol Aliment 2013; 12(1): 61-73.
[PMID: 24584866]
[39]
Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, et al. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci Technol 2015; 45(2): 355-68.
[http://dx.doi.org/10.1016/j.tifs.2015.07.015]
[40]
Elamrani A, Zrira S, Benjilali B, Berrada M. A study of Moroccan rosemary oils. J Essent Oil Res 2000; 12(4): 487-95.
[http://dx.doi.org/10.1080/10412905.2000.9699572]
[41]
al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999; 37(2): 124-30.
[PMID: 10641130]
[42]
Calvo MI, Akerreta S, Cavero RY. Pharmaceutical ethnobotany in the Riverside of Navarra (Iberian Peninsula). J Ethnopharmacol 2011; 135(1): 22-33.
[http://dx.doi.org/10.1016/j.jep.2011.02.016] [PMID: 21345364]
[43]
Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind Crops Prod 2015; 71: 197-204.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.058]
[44]
Bakırel T, Bakırel U, Keleş OÜ, Ülgen SG, Yardibi H. in vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol 2008; 116(1): 64-73.
[http://dx.doi.org/10.1016/j.jep.2007.10.039] [PMID: 18063331]
[45]
Cheung S, Tai J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol Rep 2007; 17(6): 1525-31.
[http://dx.doi.org/10.3892/or.17.6.1525] [PMID: 17487414]
[46]
Machado DG, Bettio LEB, Cunha MP, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: Involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(4): 642-50.
[http://dx.doi.org/10.1016/j.pnpbp.2009.03.004] [PMID: 19286446]
[47]
Perini G, Cotta Ramusino M, Sinforiani E, Bernini S, Petrachi R, Costa A. Cognitive impairment in depression: Recent advances and novel treatments. Neuropsychiatr Dis Treat 2019; 15: 1249-58.
[http://dx.doi.org/10.2147/NDT.S199746] [PMID: 31190831]
[48]
Gu X, Gao X, Cheng J, et al. Emerging application of metabolomics on Chinese herbal medicine for depressive disorder. Biomed Pharmacother 2021; 141: 111866.
[http://dx.doi.org/10.1016/j.biopha.2021.111866] [PMID: 34225013]
[49]
Sarko J. Antidepressants, old and new. A review of their adverse effects and toxicity in overdose. Emerg Med Clin North Am 2000; 18(4): 637-54.
[http://dx.doi.org/10.1016/S0733-8627(05)70151-6] [PMID: 11130931]
[50]
Bilia AR, Gallori S, Vincieri FF. St. John’s wort and depression. Life Sci 2002; 70(26): 3077-96.
[http://dx.doi.org/10.1016/S0024-3205(02)01566-7] [PMID: 12008092]
[51]
Sánchez-Mateo CC, Bonkanka CX, Prado B, Rabanal RM. Antidepressant properties of some Hypericum canariense L. and Hypericum glandulosum Ait. extracts in the forced swimming test in mice. J Ethnopharmacol 2005; 97(3): 541-7.
[http://dx.doi.org/10.1016/j.jep.2004.12.019] [PMID: 15740893]
[52]
Sakakibara H, Ishida K, Grundmann O, et al. Antidepressant effect of extracts from Ginkgo biloba leaves in behavioral models. Biol Pharm Bull 2006; 29(8): 1767-70.
[http://dx.doi.org/10.1248/bpb.29.1767] [PMID: 16880641]
[53]
Hao Y, Ge H, Sun M, Gao Y. Selecting an appropriate animal model of depression. Int J Mol Sci 2019; 20(19): 4827.
[http://dx.doi.org/10.3390/ijms20194827] [PMID: 31569393]
[54]
Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology 2005; 177(3): 245-55.
[http://dx.doi.org/10.1007/s00213-004-2048-7] [PMID: 15609067]
[55]
Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neurosci Biobehav Rev 1981; 5(2): 247-51.
[http://dx.doi.org/10.1016/0149-7634(81)90005-1] [PMID: 7196554]
[56]
Machado DG, Neis VB, Balen GO, et al. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: Evidence for the involvement of the dopaminergic system. Pharmacol Biochem Behav 2012; 103(2): 204-11.
[http://dx.doi.org/10.1016/j.pbb.2012.08.016] [PMID: 22940588]
[57]
Machado DG, Cunha MP, Neis VB, et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem 2013; 136(2): 999-1005.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.028] [PMID: 23122155]
[58]
D’Aquila PS, Collu M, Gessa GL, Serra G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 2000; 405(1-3): 365-73.
[http://dx.doi.org/10.1016/S0014-2999(00)00566-5] [PMID: 11033341]
[59]
Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007; 64(3): 327-37.
[http://dx.doi.org/10.1001/archpsyc.64.3.327] [PMID: 17339521]
[60]
Papakostas GI, Nutt DJ, Hallett LA, Tucker VL, Krishen A, Fava M. Resolution of sleepiness and fatigue in major depressive disorder: A comparison of bupropion and the selective serotonin reuptake inhibitors. Biol Psychiatry 2006; 60(12): 1350-5.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.015] [PMID: 16934768]
[61]
Abdelhalim A, Karim N, Chebib M, et al. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus officinalis. J Pharm Pharm Sci 2015; 18(4): 448-59.
[http://dx.doi.org/10.18433/J3PW38] [PMID: 26626245]
[62]
Guo Y, Xie J, Li X, et al. Antidepressant effects of rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Front Pharmacol 2018; 9: 1126.
[http://dx.doi.org/10.3389/fphar.2018.01126] [PMID: 30364169]
[63]
Bocchio-Chiavetto L, Bagnardi V, Zanardini R, et al. Serum and plasma BDNF levels in major depression: A replication study and meta-analyses. World J Biol Psychiatry 2010; 11(6): 763-73.
[http://dx.doi.org/10.3109/15622971003611319] [PMID: 20334574]
[64]
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J Affect Disord 2015; 174: 432-40.
[http://dx.doi.org/10.1016/j.jad.2014.11.044] [PMID: 25553404]
[65]
Achour M, Ben Salem I, Ferdousi F, et al. Rosemary tea consumption alters peripheral anxiety and depression biomarkers: A pilot study in limited healthy volunteers. J Am NutR Ass 2022; 41(3): 240-9.
[http://dx.doi.org/10.1080/07315724.2021.1873871] [PMID: 33565922]
[66]
Kim JM, Stewart R, Kim JW, et al. Changes in pro-inflammatory cytokine levels and late-life depression: A two year population based longitudinal study. Psychoneuroendocrinology 2018; 90: 85-91.
[http://dx.doi.org/10.1016/j.psyneuen.2018.02.006] [PMID: 29471232]
[67]
Wang Y, Jiang H, Meng H, et al. Antidepressant mechanism research of acupuncture: Insights from a genome-wide transcriptome analysis of frontal cortex in rats with chronic restraint stress. Evid Based Complement Alternat Med 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/1676808] [PMID: 29098013]
[68]
Yamawaki Y, Yoshioka N, Nozaki K, et al. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res 2018; 1680: 13-38.
[http://dx.doi.org/10.1016/j.brainres.2017.12.004] [PMID: 29229502]
[69]
Sasaki K, Ferdousi F, Fukumitsu S, Kuwata H, Isoda H. Antidepressant- and anxiolytic-like activities of Rosmarinus officinalis extract in rodent models: Involvement of oxytocinergic system. Biomed Pharmacother 2021; 144: 112291.
[http://dx.doi.org/10.1016/j.biopha.2021.112291] [PMID: 34653760]
[70]
Scantamburlo G, Hansenne M, Fuchs S, et al. Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology 2007; 32(4): 407-10.
[http://dx.doi.org/10.1016/j.psyneuen.2007.01.009] [PMID: 17383107]
[71]
Organization WH. Depression and other common mental disorders: Global health estimates. World Health Organization 2017.
[72]
Combs H, Markman J. Anxiety disorders in primary care. Med Clin North Am 2014; 98(5): 1007-23.
[http://dx.doi.org/10.1016/j.mcna.2014.06.003] [PMID: 25134870]
[73]
McIntyre E, Saliba AJ, Moran CC. Herbal medicine use in adults who experience anxiety: A qualitative exploration. Int J Qual Stud Health Well-being 2015; 10(1): 29275.
[http://dx.doi.org/10.3402/qhw.v10.29275] [PMID: 26680418]
[74]
Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur J Pharmacol 2003; 463(1-3): 3-33.
[http://dx.doi.org/10.1016/S0014-2999(03)01272-X] [PMID: 12600700]
[75]
Kliethermes CL. Anxiety-like behaviors following chronic ethanol exposure. Neurosci Biobehav Rev 2005; 28(8): 837-50.
[http://dx.doi.org/10.1016/j.neubiorev.2004.11.001] [PMID: 15642625]
[76]
Ennaceur A. Tests of unconditioned anxiety — Pitfalls and disappointments. Physiol Behav 2014; 135: 55-71.
[http://dx.doi.org/10.1016/j.physbeh.2014.05.032] [PMID: 24910138]
[77]
Kedia S, Chattarji S. Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice. J Neurosci Methods 2014; 233: 150-4.
[http://dx.doi.org/10.1016/j.jneumeth.2014.06.012] [PMID: 24932962]
[78]
Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2007; 2(2): 322-8.
[http://dx.doi.org/10.1038/nprot.2007.44] [PMID: 17406592]
[79]
Bourin M. Animal models for screening anxiolytic-like drugs: A perspective. Dialogues Clin Neurosci 2015; 17(3): 295-303.
[http://dx.doi.org/10.31887/DCNS.2015.17.3/mbourin] [PMID: 26487810]
[80]
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2018; 341: 79-90.
[http://dx.doi.org/10.1016/j.bbr.2017.12.025] [PMID: 29284108]
[81]
Noori Ahmad Abadi M, Mortazavi M, Kalani N, Marzouni HZ, Kooti W, Ali-Akbari S. Effect of hydroalcoholic extract of Rosmarinus officinalis L. leaf on anxiety in mice. J Evid Based Complementary Altern Med 2016; 21(4): NP85-90.
[http://dx.doi.org/10.1177/2156587216642101] [PMID: 27055822]
[82]
Colla ARS, Rosa JM, Cunha MP, Rodrigues ALS. Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol 2015; 758: 171-6.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.077] [PMID: 25861934]
[83]
Bourin M, Hascoët M. The mouse light/dark box test. Eur J Pharmacol 2003; 463(1-3): 55-65.
[http://dx.doi.org/10.1016/S0014-2999(03)01274-3] [PMID: 12600702]
[84]
Colla ARS, Oliveira Á, Pazini FL, et al. Serotonergic and noradrenergic systems are implicated in the antidepressant-like effect of ursolic acid in mice. Pharmacol Biochem Behav 2014; 124: 108-16.
[http://dx.doi.org/10.1016/j.pbb.2014.05.015] [PMID: 24887451]
[85]
DeFina PA, Moser RS, Glenn M, Lichtenstein JD, Fellus J. Alzheimer’s disease clinical and research update for health care practitioners. J Aging Res 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/207178] [PMID: 24083026]
[86]
Stern SA, Alberini CM. Mechanisms of memory enhancement. Wiley Interdiscip Rev Syst Biol Med 2013; 5(1): 37-53.
[http://dx.doi.org/10.1002/wsbm.1196] [PMID: 23151999]
[87]
Zanella CA, Treichel H, Cansian RL, Roman SS. The effects of acute administration of the hydroalcoholic extract of rosemary (Rosmarinus officinalis L.) (Lamiaceae) in animal models of memory. Braz J Pharm Sci 2012; 48(3): 389-97.
[http://dx.doi.org/10.1590/S1984-82502012000300005]
[88]
Mirza FJ, Amber S, Sumera , Hassan D, Ahmed T, Zahid S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1-42-induced mouse model of Alzheimer’s disease. Phytomedicine 2021; 83: 153490.
[http://dx.doi.org/10.1016/j.phymed.2021.153490] [PMID: 33601255]
[89]
Khalid A, Abbasi UA, Amber S, et al. Methylphenidate and Rosmarinus officinalis improves cognition and regulates inflammation and synaptic gene expression in AlCl3-induced neurotoxicity mouse model. Mol Biol Rep 2020; 47(10): 7861-70.
[http://dx.doi.org/10.1007/s11033-020-05864-y] [PMID: 33011892]
[90]
Pereira P, Ardenghi P, Mello e Souza T, Medina JH, Izquierdo I. Training in the step-down inhibitory avoidance task time-dependently increases cAMP-dependent protein kinase activity in the entorhinal cortex. Behav Pharmacol 2001; 12(3): 217-20.
[http://dx.doi.org/10.1097/00008877-200105000-00007] [PMID: 11485058]
[91]
Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 2011; 53(53): e2920.
[http://dx.doi.org/10.3791/2920] [PMID: 21808223]
[92]
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-58.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[93]
Atucha E, Roozendaal B. The inhibitory avoidance discrimination task to investigate accuracy of memory. Front Behav Neurosci 2015; 9: 60.
[http://dx.doi.org/10.3389/fnbeh.2015.00060] [PMID: 25814942]
[94]
Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martínez G, León OS. Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 2001; 41(3): 233-41.
[http://dx.doi.org/10.1016/S0168-0102(01)00282-6] [PMID: 11672836]
[95]
Balu DT, Lucki I. Adult hippocampal neurogenesis: Regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 2009; 33(3): 232-52.
[http://dx.doi.org/10.1016/j.neubiorev.2008.08.007] [PMID: 18786562]
[96]
Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ25–35. Behav Brain Res 2007; 180(2): 139-45.
[http://dx.doi.org/10.1016/j.bbr.2007.03.001] [PMID: 17420060]
[97]
Park DH, Park SJ, Kim JM, Jung WY, Ryu JH. Subchronic administration of rosmarinic acid, a natural prolyl oligopeptidase inhibitor, enhances cognitive performances. Fitoterapia 2010; 81(6): 644-8.
[http://dx.doi.org/10.1016/j.fitote.2010.03.010] [PMID: 20230877]
[98]
Park SE, Kim S, Sapkota K, Kim SJ. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y. Cell Mol Neurobiol 2010; 30(5): 759-67.
[http://dx.doi.org/10.1007/s10571-010-9502-3] [PMID: 20563702]
[99]
Rasoolijazi H, Azad N, Joghataei MT, Kerdari M, Nikbakht F, Soleimani M. The protective role of carnosic acid against beta-amyloid toxicity in rats. Sci World J 2013; 2013: 1-5.
[http://dx.doi.org/10.1155/2013/917082] [PMID: 24363627]
[100]
Ozarowski M, Mikolajczak PL, Bogacz A, et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 2013; 91: 261-71.
[http://dx.doi.org/10.1016/j.fitote.2013.09.012] [PMID: 24080468]
[101]
Rasoolijazi H, Mehdizadeh M, Soleimani M, Nikbakhte F, Eslami Farsani M, Ababzadeh S. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats. Med J Islam Repub Iran 2015; 29: 187.
[PMID: 26034740]
[102]
Song H, Xu L, Zhang R, et al. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus. Neurosci Lett 2016; 622: 95-101.
[http://dx.doi.org/10.1016/j.neulet.2016.04.048] [PMID: 27113205]
[103]
Di Cesare Mannelli L, Micheli L, Maresca M, et al. Anti-neuropathic effects of Rosmarinus officinalis L. Terpenoid fraction: Relevance of nicotinic receptors. Sci Rep 2016; 6(1): 34832.
[http://dx.doi.org/10.1038/srep34832] [PMID: 27713514]
[104]
Farr SA, Niehoff ML, Ceddia MA, et al. Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice. Physiol Behav 2016; 165: 328-38.
[http://dx.doi.org/10.1016/j.physbeh.2016.08.013] [PMID: 27527000]
[105]
Seyedemadi P, Rahnema M, Bigdeli MR, Oryan S, Rafati H. The neuroprotective effect of rosemary (Rosmarinus officinalis L.) hydro-alcoholic extract on cerebral ischemic tolerance in experimental stroke. Iran J Pharm Res 2016; 15(4): 875-83.
[PMID: 28243285]
[106]
Karim N, Khan I, Abdelhalim A, Abdel-Halim H, Hanrahan JR. Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice. Biomed Pharmacother 2017; 96: 700-9.
[http://dx.doi.org/10.1016/j.biopha.2017.09.121] [PMID: 29040957]
[107]
Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017; 86: 441-9.
[http://dx.doi.org/10.1016/j.biopha.2016.12.049] [PMID: 28012923]
[108]
Capatina L, Boiangiu RS, Dumitru G, et al. Rosmarinus officinalis essential oil improves scopolamine-induced neurobehavioral changes via restoration of cholinergic function and brain antioxidant status in zebrafish (Danio rerio). Antioxidants 2020; 9(1): 62.
[http://dx.doi.org/10.3390/antiox9010062] [PMID: 31936730]
[109]
Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, Rashidipour M, Fatemi I, Kaeidi A. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci 2019; 69(1): 57-64.
[http://dx.doi.org/10.1007/s12576-018-0620-x] [PMID: 29754274]
[110]
Choukairi Z, Hazzaz T, Lkhider M, Ferrandez JM, Fechtali T. Effect of Salvia officinalis L. and Rosmarinus officinalis L. leaves extracts on anxiety and neural activity. Bioinformation 2019; 15(3): 172-8.
[http://dx.doi.org/10.6026/97320630015172] [PMID: 31354192]
[111]
Zappalà A, Vicario N, Calabrese G, et al. Neuroprotective effects of Rosmarinus officinalis L. Extract in oxygen glucose deprivation (OGD)-injured human neural-like cells. Nat Prod Res 2021; 35(4): 669-75.
[http://dx.doi.org/10.1080/14786419.2019.1587428] [PMID: 30938188]
[112]
Kamli MR, Sharaf AAM, Sabir JSM, Rather IA. Phytochemical screening of Rosmarinus officinalis L. As a potential anticholinesterase and antioxidant-medicinal plant for cognitive decline disorders. Plants 2022; 11(4): 514.
[http://dx.doi.org/10.3390/plants11040514] [PMID: 35214846]
[113]
Rezk S, Lashen S, EL-Adl M, et al. RETRACTED ARTICLE: Effects of Rosemary Oil (Rosmarinus officinalis) supplementation on the fate of the transplanted human olfactory bulb neural stem cells against ibotenic acid-induced neurotoxicity (Alzheimer model) in rat. Metab Brain Dis 2022; 37(4): 973-88.
[http://dx.doi.org/10.1007/s11011-021-00890-6] [PMID: 35075502]
[114]
Pusceddu MM, Hernandez-Baixauli J, Puiggrós F, et al. Mediterranean natural extracts improved cognitive behavior in zebrafish and healthy rats and ameliorated lps-induced cognitive impairment in a sex dependent manner. Behav Brain Funct 2022; 18(1): 5.
[http://dx.doi.org/10.1186/s12993-022-00190-8] [PMID: 35216588]
[115]
Botto R, Callai N, Cermelli A, Causarano L, Rainero I. Anxiety and depression in Alzheimer’s disease: A systematic review of pathogenetic mechanisms and relation to cognitive decline. Neurol Sci 2022; 43(7): 4107-24.
[http://dx.doi.org/10.1007/s10072-022-06068-x] [PMID: 35461471]
[116]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[117]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[118]
Madav Y, Wairkar S, Prabhakar B. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease. Brain Res Bull 2019; 146: 171-84.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.004] [PMID: 30634016]
[119]
Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2020; 19(2): 147-57.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[120]
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27(1): 18.
[http://dx.doi.org/10.1186/s12929-019-0609-7] [PMID: 31906949]
[121]
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer’s disease. Eur J Med Chem 2022; 240: 114606.
[http://dx.doi.org/10.1016/j.ejmech.2022.114606] [PMID: 35858523]
[122]
Adsersen A, Gauguin B, Gudiksen L, Jäger AK. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J Ethnopharmacol 2006; 104(3): 418-22.
[http://dx.doi.org/10.1016/j.jep.2005.09.032] [PMID: 16280217]
[123]
Mata AT, Proença C, Ferreira AR, Serralheiro MLM, Nogueira JMF, Araújo MEM. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem 2007; 103(3): 778-86.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.017]
[124]
Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza A, Brantner A. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 2014; 19(1): 767-82.
[http://dx.doi.org/10.3390/molecules19010767] [PMID: 24413832]
[125]
Amina B, Soumeya B, Salim B, et al. Chemical profiling, antioxidant, enzyme inhibitory and in silico modeling of Rosmarinus officinalis L. and Artemisia herba alba Asso. essential oils from Algeria. S Afr J Bot 2022; 147: 501-10.
[http://dx.doi.org/10.1016/j.sajb.2022.02.012]
[126]
Villareal MO, Ikeya A, Sasaki K, Arfa AB, Neffati M, Isoda H. Anti-stress and neuronal cell differentiation induction effects of Rosmarinus officinalis L. Essential oil. BMC Complement Altern Med 2017; 17(1): 549.
[http://dx.doi.org/10.1186/s12906-017-2060-1] [PMID: 29273038]
[127]
Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 2014; 13(9): 924-35.
[http://dx.doi.org/10.1016/S1474-4422(14)70102-4] [PMID: 25142459]
[128]
Sacerdote P, Franchi S, Moretti S, et al. Cytokine modulation is necessary for efficacious treatment of experimental neuropathic pain. J Neuroimmune Pharmacol 2013; 8(1): 202-11.
[http://dx.doi.org/10.1007/s11481-012-9428-2] [PMID: 23242694]
[129]
Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. In: Schaible HG, Ed. Pain Control. Handbook of Experimental PharmacologyBerlin, Heidelberg: Springer 2015; 227: pp. 145-70.
[http://dx.doi.org/10.1007/978-3-662-46450-2_8]
[130]
Pengelly A, Snow J, Mills SY, Scholey A, Wesnes K, Butler LR. Short-term study on the effects of rosemary on cognitive function in an elderly population. J Med Food 2012; 15(1): 10-7.
[http://dx.doi.org/10.1089/jmf.2011.0005] [PMID: 21877951]
[131]
Wesnes KA. Assessing change in cognitive function in dementia: The relative utilities of the Alzheimer’s disease assessment scale-cognitive subscale and the cognitive drug research system. Neurodegener Dis 2008; 5(3-4): 261-3.
[http://dx.doi.org/10.1159/000113719] [PMID: 18322407]
[132]
McCaffrey R, Thomas DJ, Kinzelman AO. The effects of lavender and rosemary essential oils on test-taking anxiety among graduate nursing students. Holist Nurs Pract 2009; 23(2): 88-93.
[http://dx.doi.org/10.1097/HNP.0b013e3181a110aa] [PMID: 19258850]
[133]
Rho KH, Han SH, Kim KS, Lee MS. Effects of aromatherapy massage on anxiety and self-esteem in Korean elderly women: A pilot study. Int J Neurosci 2006; 116(12): 1447-55.
[http://dx.doi.org/10.1080/00207450500514268] [PMID: 17145679]
[134]
Moss M, Cook J, Wesnes K, Duckett P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci 2003; 113(1): 15-38.
[http://dx.doi.org/10.1080/00207450390161903] [PMID: 12690999]
[135]
Moss M, Oliver L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther Adv Psychopharmacol 2012; 2(3): 103-13.
[http://dx.doi.org/10.1177/2045125312436573] [PMID: 23983963]
[136]
Sayorwan W, Ruangrungsi N, Piriyapunyporn T, Hongratanaworakit T, Kotchabhakdi N, Siripornpanich V. Effects of inhaled rosemary oil on subjective feelings and activities of the nervous system. Sci Pharm 2013; 81(2): 531-42.
[http://dx.doi.org/10.3797/scipharm.1209-05] [PMID: 23833718]
[137]
Hongratanaworakit T. Simultaneous aromatherapy massage with rosemary oil on humans. Sci Pharm 2009; 77(2): 375-87.
[http://dx.doi.org/10.3797/scipharm.090312]
[138]
Moss M, Smith E, Milner M, McCready J. Acute ingestion of rosemary water: Evidence of cognitive and cerebrovascular effects in healthy adults. J Psychopharmacol 2018; 32(12): 1319-29.
[http://dx.doi.org/10.1177/0269881118798339] [PMID: 30318972]
[139]
Atsumi T, Tonosaki K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res 2007; 150(1): 89-96.
[http://dx.doi.org/10.1016/j.psychres.2005.12.012] [PMID: 17291597]
[140]
Nematolahi P, Mehrabani M, Karami-Mohajeri S, Dabaghzadeh F. Effects of Rosmarinus officinalis L. on memory performance, anxiety, depression, and sleep quality in university students: A randomized clinical trial. Complement Ther Clin Pract 2018; 30: 24-8.
[http://dx.doi.org/10.1016/j.ctcp.2017.11.004] [PMID: 29389474]
[141]
Araki R, Sasaki K, Onda H, et al. Effects of continuous intake of rosemary extracts on mental health in working generation healthy Japanese men: Post-hoc testing of a randomized controlled trial. Nutrients 2020; 12(11): 3551.
[http://dx.doi.org/10.3390/nu12113551] [PMID: 33233510]
[142]
Dabaghzadeh F, Mehrabani M, Abdollahi H, Karami-Mohajeri S. Antioxidant and anticholinesterase effects of rosemary (Salvia rosmarinus) extract: A double-blind randomized controlled trial. Adv Integr Med 2022; 9(1): 69-74.
[http://dx.doi.org/10.1016/j.aimed.2021.03.002]
[143]
Nasiri A, Boroomand MM. The effect of rosemary essential oil inhalation on sleepiness and alertness of shift-working nurses: A randomized, controlled field trial. Complement Ther Clin Pract 2021; 43: 101326.
[http://dx.doi.org/10.1016/j.ctcp.2021.101326] [PMID: 33550193]
[144]
Filiptsova OV, Gazzavi-Rogozina LV, Timoshyna IA, Naboka OI, Dyomina YV, Ochkur AV. The effect of the essential oils of lavender and rosemary on the human short-term memory. Alex J Med 2018; 54(1): 41-4.
[http://dx.doi.org/10.1016/j.ajme.2017.05.004]
[145]
Hassan SS, Abbas SQ, Ali F, et al. A Comprehensive in silico exploration of pharmacological properties, bioactivities, molecular docking, and anticancer potential of vieloplain F from Xylopia vielana targeting B-Raf Kinase. Molecules 2022; 27(3): 917.
[http://dx.doi.org/10.3390/molecules27030917] [PMID: 35164181]
[146]
Ouassaf M, Belaidi S, Chtita S, Lanez T, Abul Qais F, Md Amiruddin H. Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. J Biomol Struct Dyn 2022; 40(21): 11264-73.
[http://dx.doi.org/10.1080/07391102.2021.1957712] [PMID: 34315340]
[147]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[148]
Chaniad P, Mungthin M, Payaka A, Viriyavejakul P, Punsawad C. Antimalarial properties and molecular docking analysis of compounds from Dioscorea bulbifera L. as new antimalarial agent candidates. BMC Complement Med Ther 2021; 21(1): 144.
[http://dx.doi.org/10.1186/s12906-021-03317-y] [PMID: 34006257]
[149]
Kores K, Lešnik S, Bren U, Janežič D, Konc J. Discovery of novel potential human targets of resveratrol by inverse molecular docking. J Chem Inf Model 2019; 59(5): 2467-78.
[http://dx.doi.org/10.1021/acs.jcim.8b00981] [PMID: 30883115]
[150]
Zhang T, Su J, Wang K, Zhu T, Li X. Ursolic acid reduces oxidative stress to alleviate early brain injury following experimental subarachnoid hemorrhage. Neurosci Lett 2014; 579: 12-7.
[http://dx.doi.org/10.1016/j.neulet.2014.07.005] [PMID: 25026072]
[151]
Ding H, Wang H, Zhu L, Wei W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem Res 2017; 42(2): 337-46.
[http://dx.doi.org/10.1007/s11064-016-2077-8] [PMID: 27734181]
[152]
Mourya A, Akhtar A, Ahuja S, Sah SP, Kumar A. Synergistic action of ursolic acid and metformin in experimental model of insulin resistance and related behavioral alterations. Eur J Pharmacol 2018; 835: 31-40.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.056] [PMID: 30075220]
[153]
Rai SN, Zahra W, Singh SS, et al. Anti-inflammatory activity of ursolic acid in MPTP-induced Parkinsonian mouse model. Neurotox Res 2019; 36(3): 452-62.
[http://dx.doi.org/10.1007/s12640-019-00038-6] [PMID: 31016688]
[154]
Zhang Y, Li X, Ciric B, et al. A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proc Natl Acad Sci USA 2020; 117(16): 9082-93.
[http://dx.doi.org/10.1073/pnas.2000208117] [PMID: 32253301]
[155]
Peshattiwar V, Muke S, Kaikini A, Bagle S, Dighe V, Sathaye S. Mechanistic evaluation of Ursolic acid against rotenone induced Parkinson’s disease– emphasizing the role of mitochondrial biogenesis. Brain Res Bull 2020; 160: 150-61.
[http://dx.doi.org/10.1016/j.brainresbull.2020.03.003] [PMID: 32147532]
[156]
Sasaki K, El Omri A, Kondo S, Han J, Isoda H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 2013; 238: 86-94.
[http://dx.doi.org/10.1016/j.bbr.2012.10.010] [PMID: 23085339]
[157]
Cornejo A, Aguilar Sandoval F, Caballero L, et al. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J Enzyme Inhib Med Chem 2017; 32(1): 945-53.
[http://dx.doi.org/10.1080/14756366.2017.1347783] [PMID: 28701064]
[158]
Zhang X-J, Cui H-Y, Yang Y, et al. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen Res 2018; 13(12): 2119-28.
[http://dx.doi.org/10.4103/1673-5374.241463] [PMID: 30323140]
[159]
Hase T, Shishido S, Yamamoto S, et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep 2019; 9(1): 8711.
[http://dx.doi.org/10.1038/s41598-019-45168-1] [PMID: 31213631]
[160]
Lataliza AAB, de Assis PM, da Rocha Laurindo L, Gonçalves ECD, Raposo NRB, Dutra RC. Antidepressant-like effect of rosmarinic acid during LPS -induced neuroinflammatory model: The potential role of cannabinoid receptors/ PPAR-γ signaling pathway. Phytother Res 2021; 35(12): 6974-89.
[http://dx.doi.org/10.1002/ptr.7318] [PMID: 34709695]
[161]
Wang J, Wang S, Guo H, et al. Rosmarinic acid protects rats against post-stroke depression after transient focal cerebral ischemic injury through enhancing antioxidant response. Brain Res 2021; 1757: 147336.
[http://dx.doi.org/10.1016/j.brainres.2021.147336] [PMID: 33548269]
[162]
Haraguchi H, Saito T, Okamura N, Yagi A. Inhibition of lipid peroxidation and superoxide generation by diterpenoids from Rosmarinus officinalis. Planta Med 1995; 61(4): 333-6.
[http://dx.doi.org/10.1055/s-2006-958094] [PMID: 7480180]
[163]
Wu CR, Tsai CW, Chang SW, Lin CY, Huang LC, Tsai CW. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes induction. Chem Biol Interact 2015; 225: 40-6.
[http://dx.doi.org/10.1016/j.cbi.2014.11.011] [PMID: 25446857]
[164]
Liu J, Su H, Qu QM. Carnosic acid prevents beta-amyloid-induced injury in human neuroblastoma SH-SY5Y cells via the induction of autophagy. Neurochem Res 2016; 41(9): 2311-23.
[http://dx.doi.org/10.1007/s11064-016-1945-6] [PMID: 27168327]
[165]
Wang X, Tang Y, Zeng G, et al. Carnosic acid alleviates depression-like behaviors on chronic mild stressed mice via PPAR-γ-dependent regulation of ADPN/FGF9 pathway. Psychopharmacology 2021; 238(2): 501-16.
[http://dx.doi.org/10.1007/s00213-020-05699-2] [PMID: 33161473]
[166]
Yi-Bin W, Xiang L, Bing Y, et al. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer’s disease model. Cell Death Dis 2022; 13(4): 318.
[http://dx.doi.org/10.1038/s41419-022-04765-1] [PMID: 35393391]
[167]
Kim SJ, Kim JS, Cho HS, et al. Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. Neuroreport 2006; 17(16): 1729-33.
[http://dx.doi.org/10.1097/01.wnr.0000239951.14954.10] [PMID: 17047462]
[168]
Anusha C, Sumathi T, Joseph LD. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 2017; 269: 67-79.
[http://dx.doi.org/10.1016/j.cbi.2017.03.016] [PMID: 28389404]
[169]
Satou T, Hanashima Y, Mizutani I, Koike K. The effect of inhalation of essential oil from Rosmarinus officinalis on scopolamine-induced Alzheimer’s type dementia model mice. Flavour Fragrance J 2018; 33(3): 230-4.
[http://dx.doi.org/10.1002/ffj.3435]
[170]
Wang L, Liang Q, Lin A, et al. Borneol alleviates brain injury in sepsis mice by blocking neuronal effect of endotoxin. Life Sci 2019; 232: 116647.
[http://dx.doi.org/10.1016/j.lfs.2019.116647] [PMID: 31301416]
[171]
Mirza FJ, Zahid S, Amber S, et al. Multitargeted molecular docking and dynamic simulation studies of bioactive compounds from Rosmarinus officinalis against Alzheimer’s disease. Molecules 2022; 27(21): 7241.
[http://dx.doi.org/10.3390/molecules27217241] [PMID: 36364071]
[172]
Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry 2021; 89(8): 745-56.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[173]
Mirza FJ, Zahid S. The role of synapsins in neurological disorders. Neurosci Bull 2018; 34(2): 349-58.
[http://dx.doi.org/10.1007/s12264-017-0201-7] [PMID: 29282612]
[174]
Ganaie AA, Siddique HR, Sheikh IA, et al. A novel terpenoid class for prevention and treatment of KRAS -driven cancers: Comprehensive analysis using in situ, in vitro, and in vivo model systems. Mol Carcinog 2020; 59(8): 886-96.
[http://dx.doi.org/10.1002/mc.23200] [PMID: 32291806]
[175]
Ferlemi AV, Katsikoudi A, Kontogianni VG, et al. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity: Phytochemical investigation and in silico studies. Chem Biol Interact 2015; 237: 47-57.
[http://dx.doi.org/10.1016/j.cbi.2015.04.013] [PMID: 25910439]
[176]
Landau M, Sawaya MR, Faull KF, et al. Towards a pharmacophore for amyloid. PLoS Biol 2011; 9(6): e1001080.
[http://dx.doi.org/10.1371/journal.pbio.1001080] [PMID: 21695112]
[177]
Meng SR, Zhu YZ, Guo T, Liu XL, Chen J, Liang Y. Fibril-forming motifs are essential and sufficient for the fibrillization of human Tau. PLoS One 2012; 7(6): e38903.
[http://dx.doi.org/10.1371/journal.pone.0038903] [PMID: 22701727]
[178]
Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. Eur J Pharmacol 2013; 701(1-3): 131-43.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.033] [PMID: 23201068]
[179]
Cai W, Yang T, Liu H, et al. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2018; 163-164: 27-58.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.002] [PMID: 29032144]
[180]
Senol Deniz FS, Eren G, Orhan ie , et al. Outlining in vitro and in silico cholinesterase inhibitory activity of twenty-four natural products of various chemical classes: smilagenin, kokusaginine, and methyl rosmarinate as emboldening inhibitors. Molecules 2021; 26(7): 2024.
[http://dx.doi.org/10.3390/molecules26072024] [PMID: 33916300]
[181]
Boiangiu RS, Brinza I, Hancianu M, et al. Cognitive facilitation and antioxidant effects of an essential oil mix on scopolamine-induced amnesia in rats: Molecular modeling of in vitro and in vivo approaches. Molecules 2020; 25(7): 1519.
[http://dx.doi.org/10.3390/molecules25071519] [PMID: 32230815]
[182]
Muthusankar A, Shanmughavel P. in silico validation of human N-myc downstream-regulated gene 2 protein against Alzheimer’s disease using molecular modeling, docking and dynamics studies. Drug Invention Today 2013; 5(1): 22-7.
[http://dx.doi.org/10.1016/j.dit.2013.02.002]
[183]
Guan M, Guo L, Ma H, Wu H, Fan X. Network pharmacology and molecular docking suggest the mechanism for biological activity of rosmarinic acid. Evid Based Complement Alternat Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/5190808] [PMID: 33936238]
[184]
Baba S, Osakabe N, Natsume M, Terao J. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci 2004; 75(2): 165-78.
[http://dx.doi.org/10.1016/j.lfs.2003.11.028] [PMID: 15120569]
[185]
Wang J, Li G, Rui T, et al. Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: Absolute bioavailability and dose proportionality. RSC Advances 2017; 7(15): 9057-63.
[http://dx.doi.org/10.1039/C6RA28237G]
[186]
Doolaege EHA, Raes K, De Vos F, Verhé R, De Smet S. Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Foods Hum Nutr 2011; 66(2): 196-202.
[http://dx.doi.org/10.1007/s11130-011-0233-5] [PMID: 21751091]
[187]
Sousa EO, Viana AC, Rodrigues FF, Campos AR, Lima SG, Costa JGM. Effect of collection time on essential oil composition of Lantana camara Linn (Verbenaceae) growing in Brazil Northeastern. Rec Nat Prod 2010; 4(1): 31-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy