Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Computational and In vitro Elucidation of Indolenine-barbituric Acid Zwitterions as Potential Chemotherapeutical Agents

Author(s): Kang Kit Ong, Abdul Qaiyum Ramle, Min Phin Ng, Siew Huah Lim, Kae Shin Sim* and Chun Hoe Tan*

Volume 21, Issue 15, 2024

Published on: 19 January, 2024

Page: [3076 - 3084] Pages: 9

DOI: 10.2174/0115701808279494231206060106

Price: $65

Abstract

Introduction: The continuous pursuit of novel chemotherapeutical agents with improved efficacy and reduced adverse effects remains a critical area of research despite advancements in chemotherapy. We have previously synthesized indolenine and barbituric acid zwitterion scaffolds 1–10 sustainably; however, their precise chemotherapeutical properties are still lacking.

Methods: In this present work, we conducted in silico ADMET analyses, molecular docking calculations, DNA binding studies, and cytotoxicity assays on these zwitterions.

Results and Discussion: Among the 10 zwitterions, zwitterion 3 bearing a methoxy group demonstrated the highest drug-likeness score, low toxicity, as well as no violation of Lipinski’s rule of five and Veber’s rule. Both molecular docking calculations and DNA binding studies suggested that the minor groove of DNA is the most probable molecular target of 3 among the others (i.e., topoisomerase and tubulin). In addition, zwitterion 3 exhibited selective cytotoxicity against a wide array of human cancer cell lines without noticeable effect against the normal human colon fibroblast CCD- 18Co.

Conclusion: Overall, these preliminary findings from our combined computational and experimental strategy suggested that 3 remains promising for further elaboration as a chemotherapeutic agent.

[1]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[2]
Irigaray, P.; Belpomme, D. Cancer and the environment: Mechanisms of environmental carcinogenesis. In: Encyclopedia of Environmental Health, 2 ed; Nriagu, J., Ed.; Elsevier: Oxford, 2019; pp. 492-502.
[3]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[4]
Tamas, K.; Walenkamp, A.M.E.; de Vries, E.G.E.; van Vugt, M.A.T.M.; Beets-Tan, R.G.; van Etten, B.; de Groot, D.J.A.; Hospers, G.A.P. Rectal and colon cancer: Not just a different anatomic site. Cancer Treat. Rev., 2015, 41(8), 671-679.
[http://dx.doi.org/10.1016/j.ctrv.2015.06.007] [PMID: 26145760]
[5]
Benson, A.B., III; Ajani, J.A.; Catalano, R.B.; Engelking, C.; Kornblau, S.M.; Martenson, J.A., Jr; McCallum, R.; Mitchell, E.P.; O’Dorisio, T.M.; Vokes, E.E.; Wadler, S. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J. Clin. Oncol., 2004, 22(14), 2918-2926.
[http://dx.doi.org/10.1200/JCO.2004.04.132] [PMID: 15254061]
[6]
Leonard, G.D.; Wright, M.A.; Quinn, M.G.; Fioravanti, S.; Harold, N.; Schuler, B.; Thomas, R.R.; Grem, J.L. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer. BMC Cancer, 2005, 5(1), 116.
[http://dx.doi.org/10.1186/1471-2407-5-116] [PMID: 16168057]
[7]
Ocvirk, J.; Cencelj, S. Management of cutaneous side‐effects of cetuximab therapy in patients with metastatic colorectal cancer. J. Eur. Acad. Dermatol. Venereol., 2010, 24(4), 453-459.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03446.x] [PMID: 19793151]
[8]
Abushullaih, S.; Saad, E.D.; Munsell, M.; Hoff, P.M. Incidence and severity of hand-foot syndrome in colorectal cancer patients treated with capecitabine: A single-institution experience. Cancer Invest., 2002, 20(1), 3-10.
[http://dx.doi.org/10.1081/CNV-120000360] [PMID: 11853000]
[9]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[10]
Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res., 2019, 148, 104398.
[http://dx.doi.org/10.1016/j.phrs.2019.104398] [PMID: 31415916]
[11]
Serpe, L.; Ellena, S.; Barbero, N.; Foglietta, F.; Prandini, F.; Gallo, M.P.; Levi, R.; Barolo, C.; Canaparo, R.; Visentin, S. Squaraines bearing halogenated moieties as anticancer photosensitizers: Synthesis, characterization and biological evaluation. Eur. J. Med. Chem., 2016, 113, 187-197.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.035] [PMID: 26942626]
[12]
Henary, M.; Pannu, V.; Owens, E.A.; Aneja, R. Near infrared active heptacyanine dyes with unique cancer-imaging and cytotoxic properties. Bioorg. Med. Chem. Lett., 2012, 22(2), 1242-1246.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.070] [PMID: 22177785]
[13]
Erkisa, M.; Aydinlik, S.; Cevatemre, B.; Aztopal, N.; Akar, R.O.; Celikler, S.; Yilmaz, V.T.; Ari, F.; Ulukaya, E. A promising therapeutic combination for metastatic prostate cancer: Chloroquine as autophagy inhibitor and palladium(II) barbiturate complex. Biochimie, 2020, 175, 159-172.
[http://dx.doi.org/10.1016/j.biochi.2020.05.010] [PMID: 32497551]
[14]
Shilovskikh, V.V.; Timralieva, A.A.; Nesterov, P.V.; Novikov, A.S.; Sitnikov, P.A.; Konstantinova, E.A.; Kokorin, A.I.; Skorb, E.V. Melamine–barbiturate supramolecular assembly as a ph‐dependent organic radical trap material. Chemistry, 2020, 26(70), 16603-16610.
[http://dx.doi.org/10.1002/chem.202002947] [PMID: 32770588]
[15]
Ramle, A.Q.; Tiekink, E.R.T.; Fei, C.C.; Julkapli, N.M.; Basirun, W.J. Supramolecular assembly and spectroscopic characterization of indolenine–barbituric acid zwitterions. New J. Chem., 2021, 45(3), 1221-1230.
[http://dx.doi.org/10.1039/D0NJ04357E]
[16]
Tan, C.H.; Sim, D.S.Y.; Heng, M.P.; Lim, S.H.; Low, Y.Y.; Kam, T.S.; Sim, K.S. Evaluation of DNA Binding and Topoisomerase I Inhibitory Activities of 16′‐Decarbomethoxydihydrovoacamine from Tabernaemontana corymbosa. ChemistrySelect, 2020, 5(47), 14839-14843.
[http://dx.doi.org/10.1002/slct.202004153]
[17]
Walters, W.P.; Murcko, M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev., 2002, 54(3), 255-271.
[http://dx.doi.org/10.1016/S0169-409X(02)00003-0] [PMID: 11922947]
[18]
Tan, C.H.; Sim, D.S.Y.; Lim, S.H.; Mohd Mohidin, T.B.; Mohan, G.; Low, Y.Y.; Kam, T.S.; Sim, K.S. Antiproliferative and microtubule-stabilizing activities of two iboga-vobasine bisindoles alkaloids from tabernaemontana corymbosa in colorectal adenocarcinoma HT-29 cells. Planta Med., 2022, 88(14), 1325-1340.
[http://dx.doi.org/10.1055/a-1755-5605] [PMID: 35100653]
[19]
Ramle, A.Q.; Chan, N.N.M.Y.; Ng, M.P.; Tan, C.H.; Sim, K.S.; Tiekink, E.R.T.; Fei, C.C. Structural insights and cytotoxicity evaluation of benz[e]indole pyrazolyl-substituted amides. Mol. Divers., 2023.
[http://dx.doi.org/10.1007/s11030-023-10662-2] [PMID: 37278911]
[20]
Drew, H.R.; Wing, R.M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA, 1981, 78(4), 2179-2183.
[http://dx.doi.org/10.1073/pnas.78.4.2179] [PMID: 6941276]
[21]
Baruah, H.; Wright, M.W.; Bierbach, U. Solution structural study of a DNA duplex containing the guanine-N7 adduct formed by a cytotoxic platinum-acridine hybrid agent. Biochemistry, 2005, 44(16), 6059-6070.
[http://dx.doi.org/10.1021/bi050021b] [PMID: 15835895]
[22]
Löwe, J.; Li, H.; Downing, K.H.; Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution 1 1Edited by I. A. Wilson. J. Mol. Biol., 2001, 313(5), 1045-1057.
[http://dx.doi.org/10.1006/jmbi.2001.5077] [PMID: 11700061]
[23]
Wang, Y.R.; Chen, S.F.; Wu, C.C.; Liao, Y.W.; Lin, T.S.; Liu, K.T.; Chen, Y.S.; Li, T.K.; Chien, T.C.; Chan, N.L. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Res., 2017, 45(18), 10861-10871.
[http://dx.doi.org/10.1093/nar/gkx742] [PMID: 28977631]
[24]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16 Rev. B.01; Wallingford, CT, 2016.
[25]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[26]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[27]
Shaheen, S.; Liaqat, F.; Qamar, S.; Murtaza, I.; Rasheed, A.; yousuf, S.; Ishtiaq, A.; Akhter, Z. Single crystal structure of nitro terminated Azo Schiff base: DNA binding, antioxidant, enzyme inhibitory and photo-isomerization investigation. J. Mol. Struct., 2023, 1284, 135376.
[http://dx.doi.org/10.1016/j.molstruc.2023.135376]
[28]
Sommer, L. Analytical absorption spectrophotometry in the visible and ultraviolet: the principles; Elsevier, 2012.
[29]
Wolfe, A.; Shimer, G.H., Jr; Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26(20), 6392-6396.
[http://dx.doi.org/10.1021/bi00394a013] [PMID: 3427013]
[30]
Tan, C.H.; Yeap, J.S.Y.; Lim, S.H.; Low, Y.Y.; Sim, K.S.; Kam, T.S. The bisindole alkaloids angustilongines m and a from alstonia penangiana induce mitochondrial apoptosis and g0/g1 cell cycle arrest in HT-29 cells through promotion of tubulin polymerization. J. Nat. Prod., 2021, 84(5), 1524-1533.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00013] [PMID: 33872002]
[31]
Lee, S.X.; Tan, C.H.; Mah, W.L.; Wong, R.C.S.; Cheow, Y.L.; Sim, K.S.; Tan, K.W. Synthesis of group 6 (chromium, molybdenum, and tungsten) photoCORMs as potential antimicrobial and anticancer agents. Inorg. Chim. Acta, 2021, 525, 120491.
[http://dx.doi.org/10.1016/j.ica.2021.120491]
[32]
Abdul Halim, N.A.; Ramasamy, S.; Tan, B.C.; Khalid, N.; Yaacob, J.S. In vitro shoot regeneration and analysis of biochemical, antioxidant and anticancer properties of Ananas comosus var. MD2. Malays. J. Fundam. Appl. Sci., 2018, 14(2), 263-268.
[http://dx.doi.org/10.11113/mjfas.v14n2.900]
[33]
Nurestri, A.M.S.; Sim, K.S.; Norhanom, A.W. Phytochemical and cytotoxic investigations of Pereskia grandifolia Haw. (Cactaceae) leaves. J. Biol. Sci., 2009, 9(5), 488-493.
[http://dx.doi.org/10.3923/jbs.2009.488.493]
[34]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[35]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[36]
Jacob, I.T.; da Cruz Filho, I.J.; Alves, J.E.F.; de Melo Souza, F.; de Azevedo, R.D.S.; Marques, D.S.C.; de Lima Souza, T.R.C.; dos Santos, K.L.; da Rocha Pitta, M.G.; de Melo Rêgo, M.J.B.; Oliveira, J.F.; Almeida, S.M.V.; do Carmo Alves de Lima, M. Interaction study with DNA/HSA, anti-topoisomerase IIα, cytotoxicity and in vitro antiproliferative evaluations and molecular docking of indole-thiosemicarbazone compounds. Int. J. Biol. Macromol., 2023, 234, 123606.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123606] [PMID: 36773880]
[37]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[38]
Di, L.; Obach, R.S. Addressing the challenges of low clearance in drug research. AAPS J., 2015, 17(2), 352-357.
[http://dx.doi.org/10.1208/s12248-014-9691-7] [PMID: 25567366]
[39]
Gadaleta, D.; Vuković, K.; Toma, C.; Lavado, G.J.; Karmaus, A.L.; Mansouri, K.; Kleinstreuer, N.C.; Benfenati, E.; Roncaglioni, A. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J. Cheminform., 2019, 11(1), 58.
[http://dx.doi.org/10.1186/s13321-019-0383-2] [PMID: 33430989]
[40]
Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem., 2019, 171, 310-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.025] [PMID: 30953881]
[41]
Steinmetz, M.O.; Prota, A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol., 2018, 28(10), 776-792.
[http://dx.doi.org/10.1016/j.tcb.2018.05.001] [PMID: 29871823]
[42]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
[43]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[44]
Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol., 2007, 18(6), 497-503.
[http://dx.doi.org/10.1016/j.copbio.2007.09.006] [PMID: 17988854]
[45]
Ali, A.; Bhattacharya, S. DNA binders in clinical trials and chemotherapy. Bioorg. Med. Chem., 2014, 22(16), 4506-4521.
[http://dx.doi.org/10.1016/j.bmc.2014.05.030] [PMID: 24947479]
[46]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[47]
Singh, D.; Dheer, D.; Samykutty, A.; Shankar, R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J. Control. Release, 2021, 340, 1-34.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.006] [PMID: 34673122]
[48]
Heng, M.P.; Tan, C.H.; Saad, H.M.; Sim, K.S.; Tan, K.W. Mitochondria-dependent apoptosis inducer: Testosterone-N4-ethylthiosemicarbazonate and its metal complexes with selective cytotoxicity towards human colorectal carcinoma cell line (HCT 116). Inorg. Chim. Acta, 2020, 507, 119581.
[http://dx.doi.org/10.1016/j.ica.2020.119581]
[49]
Haq, I. Thermodynamics of drug–DNA interactions. Arch. Biochem. Biophys., 2002, 403(1), 1-15.
[http://dx.doi.org/10.1016/S0003-9861(02)00202-3] [PMID: 12061796]
[50]
Zhang, Y.; Zhou, Y.; Zhang, H.; Tian, L.; Hao, J.; Yuan, Y.; Li, W.; Liu, Y. DNA binding and evaluation of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes. J. Inorg. Biochem., 2021, 224, 111580.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111580] [PMID: 34438219]
[51]
Taheri, R.; Hamzkanlu, N.; Rezvani, Y.; Niroumand, S.; Samandar, F.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq., 2022, 368, 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[52]
Bruggisser, R.; Daeniken, K.; Jundt, G.; Schaffner, W.; Tullberg-Reinert, H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med., 2002, 68(5), 445-448.
[http://dx.doi.org/10.1055/s-2002-32073] [PMID: 12058323]

© 2025 Bentham Science Publishers | Privacy Policy