Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Single-cell Technology in Stem Cell Research

In Press, (this is not the final "Version of Record"). Available online 18 January, 2024
Author(s): Ali Golchin*, Forough Shams, Faezeh Moradi, Amin Ebrahimi Sadrabadi, Shima Parviz, Shahriar Alipour, Parviz Ranjbarvan, Yaser Hemmati, Maryam Rahnama, Yousef Rasmi and Shiva Gholizadeh-Ghaleh Aziz*
Published on: 18 January, 2024

DOI: 10.2174/011574888X265479231127065541

Price: $95

Abstract

Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing from the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.

[1]
Li GW, Xie XS. Central dogma at the single-molecule level in living cells. Nature 2011; 475(7356): 308-15.
[http://dx.doi.org/10.1038/nature10315] [PMID: 21776076]
[2]
Capp JP, Jolly MK, Sharma A. Editorial: Non-genetic heterogeneity in development and disease. Front Genet 2021; 12: 731814.
[http://dx.doi.org/10.3389/fgene.2021.731814] [PMID: 34434224]
[3]
Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature 2010; 467(7312): 167-73.
[http://dx.doi.org/10.1038/nature09326] [PMID: 20829787]
[4]
Junker JP, van Oudenaarden A. Every cell is special: Genome-wide studies add a new dimension to single-cell biology. Cell 2014; 157(1): 8-11.
[http://dx.doi.org/10.1016/j.cell.2014.02.010] [PMID: 24679522]
[5]
Etzrodt M, Endele M, Schroeder T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 2014; 15(5): 546-58.
[http://dx.doi.org/10.1016/j.stem.2014.10.015] [PMID: 25517464]
[6]
Rubakhin SS, Romanova EV, Nemes P, Sweedler JV. Profiling metabolites and peptides in single cells. Nat Methods 2011; 8(4 Suppl): S20-9.
[http://dx.doi.org/10.1038/nmeth.1549] [PMID: 21451513]
[7]
Tang F, Lao K, Surani MA. Development and applications of single-cell transcriptome analysis. Nat Methods 2011; 8(S4): S6-S11.
[http://dx.doi.org/10.1038/nmeth.1557] [PMID: 21451510]
[8]
Aliya S, Lee H, Alhammadi M, Umapathi R, Huh YS. An overview on single-cell technology for hepatocellular carcinoma diagnosis. Int J Mol Sci 2022; 23(3): 1402.
[http://dx.doi.org/10.3390/ijms23031402] [PMID: 35163329]
[9]
Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs 2009; 24(2): 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]
[10]
Mousaei Ghasroldasht M, Seok J, Park HS, Ali FBL, Al-Hendy A. Stem cell therapy: From idea to clinical practice. Int J Mol Sci 2022; 23(5): 2850.
[http://dx.doi.org/10.3390/ijms23052850] [PMID: 35269990]
[11]
Golchin A, Chatziparasidou A, Ranjbarvan P, Niknam Z, Ardeshirylajimi A. Embryonicic stem cells in clinical trials: Current overview of developments and challenges. Adv Exp Med Bio 2021; 1312: 19-37.
[http://dx.doi.org/10.1007/5584_2020_592]
[12]
Golchin A, Shams F, Basiri A, et al. Combination therapy of stem cell-derived exosomes and biomaterials in the wound healing. Stem Cell Rev Rep 2022; 18(6): 1892-911.
[http://dx.doi.org/10.1007/s12015-021-10309-5] [PMID: 35080745]
[13]
Golchin A, Shams F, Karami F. Advancing mesenchymal stem cell therapy with CRISPR/Cas9 for clinical trial studies. Adv Exp Med Biol 2020; 1247: 89-100.
[http://dx.doi.org/10.1007/5584_2019_459]
[14]
Shepherd MS, Li J, Wilson NK, et al. Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Blood 2018; 132(8): 791-803.
[http://dx.doi.org/10.1182/blood-2017-12-821066] [PMID: 29991556]
[15]
Kucinski I, Gottgens B. Advancing stem cell research through multimodal single-cell analysis. Cold Spring Harb Perspect Biol 2020; 12(7): a035725.
[http://dx.doi.org/10.1101/cshperspect.a035725] [PMID: 31932320]
[16]
Lee J, Hyeon DY, Hwang D. Single-cell multiomics: Technologies and data analysis methods. Exp Mol Med 2020; 52(9): 1428-42.
[http://dx.doi.org/10.1038/s12276-020-0420-2] [PMID: 32929225]
[17]
Tarashansky AJ, Xue Y, Li P, Quake SR, Wang B. Self-assembling manifolds in single-cell RNA sequencing data. eLife 2019; 8: e48994.
[http://dx.doi.org/10.7554/eLife.48994] [PMID: 31524596]
[18]
Wen L, Tang F. Single-cell sequencing in stem cell biology. Genome Biol 2016; 17(1): 71.
[http://dx.doi.org/10.1186/s13059-016-0941-0] [PMID: 27083874]
[19]
Maciej Serda FG, Becker M, Cleary RM, et al. Single cell technology: A step forward to new breeding technologies. 8th CONAVI: National Viticulture Conference, 2021. Udine, 5-7 July 2021.
[20]
Tian J, Zheping X, Chuanhao Y, et al. Development trend analysis of single cell technology in China. Sci Focus 2022; 17: 1-16.
[http://dx.doi.org/10.15978/J.CNKI.1673-5668.202201001]
[21]
Lin WN, Tay MZ, Lu R, Liu Y, Chen CH, Cheow LF. The role of single-cell technology in the study and control of infectious diseases. Cells 2020; 9(6): 1440.
[22]
Altschuler SJ, Wu LF. Cellular heterogeneity: Do differences make a difference? Cell 2010; 141(4): 559-63.
[http://dx.doi.org/10.1016/j.cell.2010.04.033] [PMID: 20478246]
[23]
Carter B, Zhao K. The epigenetic basis of cellular heterogeneity. Nat Rev Genet 2021; 22(4): 235-50.
[http://dx.doi.org/10.1038/s41576-020-00300-0] [PMID: 33244170]
[24]
Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049.
[http://dx.doi.org/10.1038/ncomms14049] [PMID: 28091601]
[25]
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161(5): 1202-14.
[http://dx.doi.org/10.1016/j.cell.2015.05.002] [PMID: 26000488]
[26]
Ochocka N, Segit P, Walentynowicz KA, et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat Commun 2021; 12(1): 1151.
[http://dx.doi.org/10.1038/s41467-021-21407-w] [PMID: 33608526]
[27]
Zhou Y, Bian S, Zhou X, et al. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell 2020; 38(6): 818-828.e5.
[http://dx.doi.org/10.1016/j.ccell.2020.09.015] [PMID: 33096021]
[28]
Arai F, Ng C, Maruyama H, Ichikawa A, El-Shimy H, Fukuda T. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab Chip 2005; 5(12): 1399-403.
[http://dx.doi.org/10.1039/b502546j] [PMID: 16286972]
[29]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[30]
Farahinia A, Zhang WJ, Badea I. Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review. J Sci Adv Mater Devices 2021; 6(3): 303-20.
[http://dx.doi.org/10.1016/j.jsamd.2021.03.005]
[31]
Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S. Single- cell sequencing for precise cancer research: Progress and prospects. Cancer Res 2016; 76(6): 1305-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1907] [PMID: 26941284]
[32]
Winterhoff BJ, Maile M, Mitra AK, et al. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells. Gynecol Oncol 2017; 144(3): 598-606.
[http://dx.doi.org/10.1016/j.ygyno.2017.01.015] [PMID: 28111004]
[33]
Navin N, Hicks J. Future medical applications of single-cell sequencing in cancer. Genome Med 2011; 3(5): 31.
[http://dx.doi.org/10.1186/gm247] [PMID: 21631906]
[34]
Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci 2008; 105(36): 13427-32.
[http://dx.doi.org/10.1073/pnas.0805706105] [PMID: 18765800]
[35]
Wu AR, Wang J, Streets AM, Huang Y. Single-cell transcriptional analysis. Annu Rev Anal Chem 2017; 10(1): 439-62.
[http://dx.doi.org/10.1146/annurev-anchem-061516-045228] [PMID: 28301747]
[36]
Sun T, Morgan H. Single-cell microfluidic impedance cytometry: A review. Microfluid Nanofluidics 2010; 8(4): 423-43.
[http://dx.doi.org/10.1007/s10404-010-0580-9]
[37]
Zare RN, Kim S. Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 2010; 12(1): 187-201.
[http://dx.doi.org/10.1146/annurev-bioeng-070909-105238] [PMID: 20433347]
[38]
Vieira Braga FA, Kar G, Berg M, et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 2019; 25(7): 1153-63.
[http://dx.doi.org/10.1038/s41591-019-0468-5] [PMID: 31209336]
[39]
Elmentaite R, Teichmann SA, Madissoon E. Studying immune to non-immune cell cross-talk using single-cell technologies. Curr Opin Syst Biol 2019; 18: 87-94.
[http://dx.doi.org/10.1016/j.coisb.2019.10.005] [PMID: 32984660]
[40]
Kaur RP, Ludhiadch A, Munshi A. Chapter 9 - Single-Cell Genomics: Technology and Applications. Single-Cell Omics. Academic Press 2019; 1: pp. 179-97.
[http://dx.doi.org/10.1016/B978-0-12-814919-5.00009-9]
[41]
Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques. Infect Genet Evol 2020; 80: 104198.
[http://dx.doi.org/10.1016/j.meegid.2020.104198] [PMID: 31958516]
[42]
Yu Y, Tsang JCH, Wang C, et al. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 2016; 539(7627): 102-6.
[http://dx.doi.org/10.1038/nature20105] [PMID: 27749818]
[43]
Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol 2021; 42(12): 1143-58.
[http://dx.doi.org/10.1016/j.it.2021.10.008] [PMID: 34743921]
[44]
Xue Z, Huang K, Cai C, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013; 500(7464): 593-7.
[http://dx.doi.org/10.1038/nature12364] [PMID: 23892778]
[45]
Tang F, Barbacioru C, Bao S, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 2010; 6(5): 468-78.
[http://dx.doi.org/10.1016/j.stem.2010.03.015] [PMID: 20452321]
[46]
Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: Mechanisms, facts, and hypotheses. Cell Mol Life Sci 2019; 76(5): 873-92.
[http://dx.doi.org/10.1007/s00018-018-2965-y] [PMID: 30420999]
[47]
Durruthy-Durruthy R, Gottlieb A, Hartman BH, et al. Reconstruction of the mouse otocyst and early neuroblast lineage at single- cell resolution. Cell 2014; 157(4): 964-78.
[http://dx.doi.org/10.1016/j.cell.2014.03.036] [PMID: 24768691]
[48]
Treutlein B, Brownfield DG, Wu AR, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 2014; 509(7500): 371-5.
[http://dx.doi.org/10.1038/nature13173] [PMID: 24739965]
[49]
Gasch AP, Yu FB, Hose J, et al. Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLoS Biol 2017; 15(12): e2004050.
[http://dx.doi.org/10.1371/journal.pbio.2004050] [PMID: 29240790]
[50]
McLean JS, Lombardo MJ, Badger JH, et al. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci 2013; 110(26): E2390-9.
[http://dx.doi.org/10.1073/pnas.1219809110] [PMID: 23754396]
[51]
Yang Z, Li C, Fan Z, et al. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells. Eur Urol 2017; 71(1): 8-12.
[http://dx.doi.org/10.1016/j.eururo.2016.06.025] [PMID: 27387124]
[52]
Zhang X, Liu L. Applications of single cell RNA sequencing to research of stem cells. World J Stem Cells 2019; 11(10): 722-8.
[http://dx.doi.org/10.4252/wjsc.v11.i10.722] [PMID: 31692946]
[53]
Demeulemeester J, Kumar P, Møller EK, et al. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing. Genome Biol 2016; 17(1): 250.
[http://dx.doi.org/10.1186/s13059-016-1109-7] [PMID: 27931250]
[54]
Yu L, Zhao H, Meng L, Zhang C. Application of single cell sequencing in cancer. Single Cell Biomed 2018; 135-48.
[http://dx.doi.org/10.1007/978-981-13-0502-3_11]
[55]
Heselmeyer-Haddad KM, Berroa Garcia LY, Bradley A, et al. Single-cell genetic analysis reveals insights into clonal development of prostate cancers and indicates loss of PTEN as a marker of poor prognosis. Am J Pathol 2014; 184(10): 2671-86.
[http://dx.doi.org/10.1016/j.ajpath.2014.06.030] [PMID: 25131421]
[56]
Hou Y, Guo H, Cao C, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 2016; 26(3): 304-19.
[http://dx.doi.org/10.1038/cr.2016.23] [PMID: 26902283]
[57]
Litzenburger UM, Buenrostro JD, Wu B, et al. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol 2017; 18(1): 15.
[http://dx.doi.org/10.1186/s13059-016-1133-7] [PMID: 28118844]
[58]
Kim KT, Lee HW, Lee HO, et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol 2016; 17(1): 80.
[http://dx.doi.org/10.1186/s13059-016-0945-9] [PMID: 27139883]
[59]
Mitra AK, Mukherjee UK, Harding T, et al. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors. Leukemia 2016; 30(5): 1094-102.
[http://dx.doi.org/10.1038/leu.2015.361] [PMID: 26710886]
[60]
Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single adult stem cell. Nature 2008; 456(7223): 804-8.
[http://dx.doi.org/10.1038/nature07427] [PMID: 18946470]
[61]
Hoppe PS, Coutu DL, Schroeder T. Single-cell technologies sharpen up mammalian stem cell research. Nat Cell Biol 2014; 16(10): 919-27.
[http://dx.doi.org/10.1038/ncb3042] [PMID: 25271480]
[62]
Grün D, Muraro MJ, Boisset JC, et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 2016; 19(2): 266-77.
[http://dx.doi.org/10.1016/j.stem.2016.05.010] [PMID: 27345837]
[63]
Shiraki N, Kume S. Detailed analysis at a single-cell level of cells undergoing pancreatic differentiation. J Diabetes Investig 2020; 11(1): 20-1.
[http://dx.doi.org/10.1111/jdi.13140] [PMID: 31479587]
[64]
Tang W. Challenges and advances in stem cell therapy. Biosci Trends 2019; 13(4): 286-6.
[http://dx.doi.org/10.5582/bst.2019.01241] [PMID: 31527325]
[65]
Rusu E, Necula LG, Neagu AI, et al. Current status of stem cell therapy: Opportunities and limitations. Turk J Biol 2016; 40: 955-67.
[http://dx.doi.org/10.3906/biy-1506-95]
[66]
Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Rev Rep 2020; 16(1): 3-32.
[http://dx.doi.org/10.1007/s12015-019-09935-x] [PMID: 31760627]
[67]
Charitos IA, Ballini A, Cantore S, et al. Stem cells: A historical review about biological, religious, and ethical issues. Stem Cells Int 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/9978837] [PMID: 34012469]
[68]
Rando TA, Ambrosio F. Regenerative rehabilitation: Applied biophysics meets stem cell therapeutics. Cell Stem Cell 2018; 22(3): 306-9.
[http://dx.doi.org/10.1016/j.stem.2018.02.003] [PMID: 29499150]
[69]
Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: Flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 2021; 12(1): 1-17.
[http://dx.doi.org/10.1186/s13287-020-02006-w] [PMID: 33397467]
[70]
Kimbrel EA, Lanza R. Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 2020; 19(7): 463-79.
[http://dx.doi.org/10.1038/s41573-020-0064-x] [PMID: 32612263]
[71]
Zaghary WA, Elansary MM, Shouman DN, Abdelrahim AA, Abu-Zied KM, Sakr TM. Can nanotechnology overcome challenges facing stem cell therapy? A review. J Drug Deliv Sci Technol 2021; 66: 102883.
[http://dx.doi.org/10.1016/j.jddst.2021.102883]
[72]
Golchin A, Rekabgardan M, Taheri RA, Nourani MR. Promotion of cell-based therapy: Special focus on the cooperation of mesenchymal stem cell therapy and gene therapy for clinical trial studies. In: Turksen K, Ed. Adv Exp Med Biol. New York, NY: Springer 2018; pp. 103-18.
[http://dx.doi.org/10.1007/5584_2018_256]
[73]
Niknam Z, Jafari A, Golchin A, et al. Potential therapeutic options for COVID-19: An update on current evidence. Eur J Med Res 2022; 27(1): 6.
[http://dx.doi.org/10.1186/s40001-021-00626-3] [PMID: 35027080]
[74]
Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. Artif Cells Nanomed Biotechnol 2018; 46(sup3): 943-9.
[http://dx.doi.org/10.1080/21691401.2018.1521816] [PMID: 30489168]
[75]
Jovic D, Yu Y, Wang D, et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep 2022; 18(5): 1525-45.
[http://dx.doi.org/10.1007/s12015-022-10369-1] [PMID: 35344199]
[76]
Lublin FD, Bowen JD, Huddlestone J, et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: A randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord 2014; 3(6): 696-704.
[http://dx.doi.org/10.1016/j.msard.2014.08.002] [PMID: 25891548]
[77]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/9628536] [PMID: 31093291]
[78]
Lin W, Huang L, Li Y, et al. Mesenchymal stem cells and cancer: Clinical challenges and opportunities. BioMed Res Int 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/2820853] [PMID: 31205939]
[79]
Kirwin T, Gomes A, Amin R, Sufi A, Goswami S, Wang B. Mechanisms underlying the therapeutic potential of mesenchymal stem cells in atherosclerosis. Regen Med 2021; 16(7): 669-82.2021;
[http://dx.doi.org/10.2217/rme-2021-0024]
[80]
Rezabakhsh A, Sokullu E, Rahbarghazi R. Applications, challenges and prospects of mesenchymal stem cell exosomes in regenerative medicine. Stem Cell Res Ther 2021; 12(1): 521.
[http://dx.doi.org/10.1186/s13287-021-02596-z] [PMID: 34583767]
[81]
Yuan GC, Cai L, Elowitz M, et al. Challenges and emerging directions in single-cell analysis. Genome Biol 2017; 18(1): 84.
[http://dx.doi.org/10.1186/s13059-017-1218-y] [PMID: 28482897]
[82]
Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T. Hematopoietic cytokines can instruct lineage choice. Science 2009; 325(5937): 217-8.
[http://dx.doi.org/10.1126/science.1171461] [PMID: 19590005]
[83]
Moignard V, Macaulay IC, Swiers G, et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 2013; 15(4): 363-72.
[http://dx.doi.org/10.1038/ncb2709] [PMID: 23524953]
[84]
Huang S. Non-genetic heterogeneity of cells in development: More than just noise. Development 2009; 136(23): 3853-62.
[http://dx.doi.org/10.1242/dev.035139] [PMID: 19906852]
[85]
Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 2018; 19(4): 562-78.
[http://dx.doi.org/10.1093/biostatistics/kxx053] [PMID: 29121214]
[86]
Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 2018; 36(5): 421-7.
[87]
Büttner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric for assessing single-cell RNA-seq batch correction. Nat Methods 2019; 16(1): 43-9.
[http://dx.doi.org/10.1038/s41592-018-0254-1] [PMID: 30573817]
[88]
Li X, Wang K, Lyu Y, et al. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat Commun 2020; 11(1): 2338.
[http://dx.doi.org/10.1038/s41467-020-15851-3] [PMID: 32393754]
[89]
Lee J, Koehler KR. Skin organoids: A new human model for developmental and translational research. Exp Dermatol 2021; 30(4): 613-20.
[http://dx.doi.org/10.1111/exd.14292] [PMID: 33507537]
[90]
Sun C, Wang L, Wang H, et al. Single-cell RNA-seq highlights heterogeneity in human primary Wharton’s jelly mesenchymal stem/stromal cells cultured in vitro. Stem Cell Res Ther 2020; 11(1): 149.
[http://dx.doi.org/10.1186/s13287-020-01660-4] [PMID: 32252818]
[91]
Jin H, Bae Y, Kim M, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 2013; 14(9): 17986-8001.
[http://dx.doi.org/10.3390/ijms140917986] [PMID: 24005862]
[92]
Samsonraj RM, Rai B, Sathiyanathan P, et al. Establishing criteria for human mesenchymal stem cell potency. Stem Cells 2015; 33(6): 1878-91.
[http://dx.doi.org/10.1002/stem.1982] [PMID: 25752682]
[93]
Bustos ML, Huleihel L, Kapetanaki MG, et al. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med 2014; 189(7): 787-98.
[http://dx.doi.org/10.1164/rccm.201306-1043OC] [PMID: 24559482]
[94]
Huang X, Liu S, Wu L, Jiang M, Hou Y. High throughput single cell RNA sequencing, bioinformatics analysis and applications. Adv Exp Med Biol 2018; 1068: 33-43.
[http://dx.doi.org/10.1007/978-981-13-0502-3_4] [PMID: 29943294]
[95]
van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008; 9: 2579-605.
[96]
Zeisel A, Muñoz-Manchado AB, Codeluppi S, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015; 347(6226): 1138-42.
[http://dx.doi.org/10.1126/science.aaa1934] [PMID: 25700174]
[97]
Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol 2015; 16(1): 241.
[http://dx.doi.org/10.1186/s13059-015-0805-z] [PMID: 26527291]
[98]
Box PO, Van Der Maaten L, Postma E, Van Den Herik J. Dimensionality reduction: A comparative review. J Mach Learn Res 2009; 10: 66-71.
[99]
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods 2014; 11(7): 740-2.
[http://dx.doi.org/10.1038/nmeth.2967] [PMID: 24836921]
[100]
Hu P, Zhang W, Xin H, Deng G. Single cell isolation and analysis. Front Cell Dev Biol 2016; 4: 116.
[http://dx.doi.org/10.3389/fcell.2016.00116] [PMID: 27826548]
[101]
Marouf M, Machart P, Bansal V, et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat Commun 2020; 11(1): 166.
[http://dx.doi.org/10.1038/s41467-019-14018-z] [PMID: 31919373]
[102]
Radisic M, Iyer RK, Murthy SK. Micro and nanotechnology in cell separation. Int J Nanomedicine 2006; 1(1): 3-14.
[http://dx.doi.org/10.2147/nano.2006.1.1.3] [PMID: 17722258]
[103]
Chapman MR, Balakrishnan KR, Li J, et al. Sorting single satellite cells from individual myofibers reveals heterogeneity in cell- surface markers and myogenic capacity. Integr Biol 2013; 5(4): 692-702.
[http://dx.doi.org/10.1039/c3ib20290a] [PMID: 23407661]
[104]
Reinhardt M, Bader A, Giri S. Devices for stem cell isolation and delivery: Current need for drug discovery and cell therapy. Expert Rev Med Devices 2015; 12(3): 353-64.
[http://dx.doi.org/10.1586/17434440.2015.995094] [PMID: 25540074]
[105]
Rodrigues GMC, Rodrigues CAV, Fernandes TG, Diogo MM, Cabral JMS. Clinical scale purification of pluripotent stem cell derivatives for cell based therapies. Biotechnol J 2015; 10(8): 1103-14.
[http://dx.doi.org/10.1002/biot.201400535] [PMID: 25851544]
[106]
Smith JP, Barbati AC, Santana SM, Gleghorn JP, Kirby BJ. Microfluidic transport in microdevices for rare cell capture. Electrophoresis 2012; 33(21): 3133-42.
[http://dx.doi.org/10.1002/elps.201200263] [PMID: 23065634]
[107]
Wu AY, Morrow DM. Clinical use of dieletrophoresis separation for live adipose derived stem cells. J Transl Med 2012; 10(1): 99.
[http://dx.doi.org/10.1186/1479-5876-10-99] [PMID: 22594610]
[108]
Hatch A, Pesko DM, Murthy SK. Tag free microfluidic separation of cells against multiple markers. Anal Chem 2012; 84(10): 4618-21.
[http://dx.doi.org/10.1021/ac300496q] [PMID: 22519841]
[109]
Gothard D, Tare RS, Mitchell PD, Dawson JI, Oreffo ROC. In search of the skeletal stem cell: Isolation and separation strategies at the macro/micro scale for skeletal regeneration. Lab Chip 2011; 11(7): 1206-20.
[http://dx.doi.org/10.1039/c0lc00575d] [PMID: 21350777]
[110]
Will B, Steidl U. Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies. Best Pract Res Clin Haematol 2010; 23(3): 391-401.
[http://dx.doi.org/10.1016/j.beha.2010.06.006] [PMID: 21112038]
[111]
Zhao H, Choi K. Single cell transcriptome dynamics from pluripotency to FLK1+ mesoderm. Development 2019; 146(23): dev.182097.
[http://dx.doi.org/10.1242/dev.182097] [PMID: 31740535]
[112]
Motazedian A, Bruveris FF, Kumar SV, et al. Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol 2020; 22(1): 60-73.
[http://dx.doi.org/10.1038/s41556-019-0445-8] [PMID: 31907413]
[113]
Chavkin NW, Hirschi KK. Single cell analysis in vascular biology. Front Cardiovasc Med 2020; 7: 42.
[http://dx.doi.org/10.3389/fcvm.2020.00042] [PMID: 32296715]
[114]
Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439(7072): 84-8.
[http://dx.doi.org/10.1038/nature04372] [PMID: 16397499]
[115]
Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self-renewal and expansion of single transplanted muscle stem cells. Nature 2008; 456(7221): 502-6.
[http://dx.doi.org/10.1038/nature07384] [PMID: 18806774]
[116]
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. Wiley Interdiscip Rev RNA 2022; 13(3): e1693.
[http://dx.doi.org/10.1002/wrna.1693] [PMID: 34532984]
[117]
Torisawa Y, Spina CS, Mammoto T, et al. Bone marrow on a chip replicates hematopoietic niche physiology in vitro. Nat Methods 2014; 11(6): 663-9.
[http://dx.doi.org/10.1038/nmeth.2938] [PMID: 24793454]
[118]
Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 2014; 5(1): 4250.
[http://dx.doi.org/10.1038/ncomms5250] [PMID: 24977495]
[119]
Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 2010; 466(7303): 267-71.
[http://dx.doi.org/10.1038/nature09145] [PMID: 20581820]
[120]
Toettcher JE, Gong D, Lim WA, Weiner OD. Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 2011; 8(10): 837-9.
[http://dx.doi.org/10.1038/nmeth.1700] [PMID: 21909100]
[121]
Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 2012; 9(7): 743-8.
[http://dx.doi.org/10.1038/nmeth.2069] [PMID: 22660740]
[122]
Warren L, Bryder D, Weissman IL, Quake SR. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci 2006; 103(47): 17807-12.
[http://dx.doi.org/10.1073/pnas.0608512103] [PMID: 17098862]
[123]
Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature 2011; 472(7341): 90-4.
[http://dx.doi.org/10.1038/nature09807] [PMID: 21399628]
[124]
Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014; 343(6172): 776-9.
[http://dx.doi.org/10.1126/science.1247651] [PMID: 24531970]
[125]
Bendall SC, Davis KL, Amir ED, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014; 157(3): 714-25.
[http://dx.doi.org/10.1016/j.cell.2014.04.005] [PMID: 24766814]
[126]
Ritsma L, Ellenbroek SIJ, Zomer A, et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 2014; 507(7492): 362-5.
[http://dx.doi.org/10.1038/nature12972] [PMID: 24531760]
[127]
Farbehi N, Patrick R, Dorison A, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 2019; 8: e43882.
[http://dx.doi.org/10.7554/eLife.43882] [PMID: 30912746]
[128]
Ola R, Künzel SH, Zhang F, et al. SMAD4 Prevents flow induced arteriovenous malformations by inhibiting casein kinase 2. Circulation 2018; 138(21): 2379-94.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033842] [PMID: 29976569]
[129]
Lengfeld JE, Lutz SE, Smith JR, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci 2017; 114(7): E1168-77.
[http://dx.doi.org/10.1073/pnas.1609905114] [PMID: 28137846]
[130]
Zywitza V, Misios A, Bunatyan L, Willnow TE, Rajewsky N. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep 2018; 25(9): 2457-2469.e8.
[http://dx.doi.org/10.1016/j.celrep.2018.11.003] [PMID: 30485812]
[131]
Golchin A, Farzaneh S, Porjabbar B, et al. Regenerative medicine under the control of 3D scaffolds: Current state and progress of tissue scaffolds. Curr Stem Cell Res Ther 2021; 16(2): 209-29.
[http://dx.doi.org/10.2174/22123946MTA43MzEt4] [PMID: 32691716]
[132]
Golchin A, Shams F, Kangari P, Azari A, Hosseinzadeh S. Regenerative medicine: Injectable cell-based therapeutics and approved products. Adv Exp Med Biol 2019; 1237: 75-95.
[http://dx.doi.org/10.1007/5584_2019_412] [PMID: 31302869]
[133]
Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997; 276: 1425-8.
[http://dx.doi.org/10.1126/science.276.5317.1425]
[134]
Beltrão M, Duarte FM, Viana JC, Paulo V. A review on in-mold electronics technology. Polym Eng Sci 2022; 62(4): 967-90.
[http://dx.doi.org/10.1002/pen.25918]
[135]
Albrecht D, Sah R. A microfabricated platform for investigating multicellular organization in 3-D microenvironments. 2006. Available from: https://www.researchgate.net/profile/Hohyun-Lee/publication/242429036_Nanocomposites_as_Thermoelectric_Materials/links/544272a60cf2e6f0c0f93052/Nanocomposites-as-Thermoelectric-Materials.pdf#page=34
[136]
Rowat AC, Bird JC, Agresti JJ, Rando OJ, Weitz DA. Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci 2009; 106(43): 18149-54.
[http://dx.doi.org/10.1073/pnas.0903163106] [PMID: 19826080]
[137]
van den Hurk M, Bardy C. Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. J Neurosci Methods 2019; 325: 108350.
[http://dx.doi.org/10.1016/j.jneumeth.2019.108350] [PMID: 31310823]
[138]
Vermesh U, Vermesh O, Wang J, et al. High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications. Angew Chem Int Ed 2011; 50(32): 7378-80.
[http://dx.doi.org/10.1002/anie.201102249] [PMID: 21717543]
[139]
Kortmann H, Kurth F, Blank LM, Dittrich PS, Schmid A. Towards real time analysis of protein secretion from single cells. Lab Chip 2009; 9(21): 3047-9.
[http://dx.doi.org/10.1039/b908679j] [PMID: 19823717]
[140]
Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res 2018; 5(1): 7.
[http://dx.doi.org/10.1186/s40779-018-0154-9] [PMID: 29502528]
[141]
Matsuda N, Shimizu T, Yamato M, Okano T. Tissue engineering based on cell sheet technology. Adv Mater 2007; 19(20): 3089-99.
[http://dx.doi.org/10.1002/adma.200701978]
[142]
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal repair and regeneration: Current concepts and future directions. Front Bioeng Biotechnol 2019; 7: 135.
[http://dx.doi.org/10.3389/fbioe.2019.00135] [PMID: 31245365]
[143]
Zhang Y, Atala A. Urothelial cell culture: Stratified urothelial sheet and three-dimensional growth of urothelial structure. Methods Mol Biol 2012; 945: 383-99.
[http://dx.doi.org/10.1007/978-1-62703-125-7_23] [PMID: 23097119]
[144]
Takagi R, Yamato M, Kanai N, et al. Cell sheet technology for regeneration of esophageal mucosa. World J Gastroenterol 2012; 18(37): 5145-50.
[http://dx.doi.org/10.3748/WJG.V18.I37.5145] [PMID: 23066307]
[145]
Hermanns C, da Silva Filho OP, Vaithilingam V, van Apeldoorn A. The potential of cell sheet technology for beta cell replacement therapy. Curr Transplant Rep 2022; 9(9911): 1-10.
[146]
Itaba N, Noda I, Oka H, et al. Hepatic cell sheets engineered from human mesenchymal stem cells with a single small molecule compound IC-2 ameliorate acute liver injury in mice. Regen Ther 2018; 9: 45-57.
[http://dx.doi.org/10.1016/j.reth.2018.07.001] [PMID: 30525075]
[147]
Rogan H, Ilagan F, Yang F. Comparing single cell versus pellet encapsulation of mesenchymal stem cells in three-dimensional hydrogels for cartilage regeneration. Tissue Eng Part A 2019; 25(19-20): 1404-2.
[http://dx.doi.org/10.1089/ten.tea.2018.0289]
[148]
Turaga D, Matthys OB, Hookway TA, Joy DA, Calvert M, McDevitt TC. Single-cell determination of cardiac microtissue structure and function using light sheet microscopy. Tissue Engineering Part C: Methods 2020; 26(4): 207-15.
[http://dx.doi.org/10.1089/ten.tec.2020.0020]
[149]
Hamledari H, Asghari P, Jayousi F, et al. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med 2022; 9: 967659.
[http://dx.doi.org/10.3389/fcvm.2022.967659] [PMID: 36061558]
[150]
Chen R, He J, Wang Y, et al. Qualitative transcriptional signatures for evaluating the maturity degree of pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2019; 10(1): 113.
[http://dx.doi.org/10.1186/s13287-019-1205-1] [PMID: 30925936]
[151]
Kannan S, Farid M, Lin BL, Miyamoto M, Kwon C. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLOS Comput Biol 2021; 17(9): e1009305.
[http://dx.doi.org/10.1371/journal.pcbi.1009305] [PMID: 34534204]
[152]
Chen W, Teschendorff AE. Estimating differentiation potency of single cells using single-cell entropy (SCENT). Methods Mol Biol 2019; 1935: 125-39.
[http://dx.doi.org/10.1007/978-1-4939-9057-3_9] [PMID: 30758824]
[153]
Lam YY, Keung W, Chan CH, et al. Single-cell transcriptomics of engineered cardiac tissues from patient-specific induced pluripotent stem cell–derived cardiomyocytes reveals abnormal developmental trajectory and intrinsic contractile defects in hypoplastic right heart syndrome. J Am Heart Assoc 2020; 9(20): e016528.
[http://dx.doi.org/10.1161/JAHA.120.016528] [PMID: 33059525]
[154]
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Advances 2020; 10(32): 19089-105.
[http://dx.doi.org/10.1039/D0RA02801K] [PMID: 35518295]
[155]
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez- Cabrero D, Ruiz-Villalba A. Understanding the adult mammalian heart at single-cell RNA-Seq resolution. Front Cell Dev Biol 2021; 9: 645276.
[http://dx.doi.org/10.3389/fcell.2021.645276] [PMID: 34055776]
[156]
Keith MCL, Tang XL, Tokita Y, et al. Safety of intracoronary infusion of 20 million C-kit positive human cardiac stem cells in pigs. PLoS One 2015; 10(4): e0124227.
[http://dx.doi.org/10.1371/journal.pone.0124227] [PMID: 25905721]
[157]
Greaney AM, Adams TS, Brickman Raredon MS, et al. Platform effects on regeneration by pulmonary basal cells as evaluated by single-cell RNA sequencing. Cell Rep 2020; 30(12): 4250-4265.e6.
[http://dx.doi.org/10.1016/j.celrep.2020.03.004] [PMID: 32209482]
[158]
Chen R, Wu X, Jiang L, Zhang Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep 2017; 18(13): 3227-41.
[http://dx.doi.org/10.1016/j.celrep.2017.03.004] [PMID: 28355573]
[159]
Li Q, Cheng Z, Zhou L, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 2019; 101(2): 207-223.e10.
[http://dx.doi.org/10.1016/j.neuron.2018.12.006] [PMID: 30606613]
[160]
Bai R, Li L, Liu M, et al. Paper-based 3D scaffold for multiplexed single cell secretomic analysis. Anal Chem 2018; 90(9): 5825-32.
[http://dx.doi.org/10.1021/acs.analchem.8b00362] [PMID: 29630353]
[161]
Sato S, Rancourt A, Sato Y, Satoh MS. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny. Sci Rep 2016; 6(1): 23328.
[http://dx.doi.org/10.1038/srep23328] [PMID: 27003384]
[162]
Schroeder T. Imaging stem-cell-driven regeneration in mammals. Nature 2008; 453(7193): 345-51.
[http://dx.doi.org/10.1038/nature07043] [PMID: 18480816]
[163]
Spiller DG, Wood CD, Rand DA, White MRH. Measurement of single-cell dynamics. Nature 2010; 465(7299): 736-45.
[http://dx.doi.org/10.1038/nature09232] [PMID: 20535203]
[164]
Xu J, Du Y, Deng H. Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell 2015; 16(2): 119-34.
[http://dx.doi.org/10.1016/j.stem.2015.01.013] [PMID: 25658369]
[165]
Faley SL, Copland M, Wlodkowic D, et al. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 2009; 9(18): 2659-64.
[http://dx.doi.org/10.1039/b902083g] [PMID: 19704981]
[166]
Yeh CF, Hsu CH. Chapter 7 - Microfluidic Techniques for Single- Cell Culture. Single-Cell Omics. Academic Press 2019; 1: pp. 137-51.
[http://dx.doi.org/10.1016/B978-0-12-814919-5.00007-5]
[167]
Ong SG, Huber BC, Hee Lee W, et al. Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell–derived cardiomyocytes after acute myocardial infarction. Circulation 2015; 132(8): 762-71.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.015231] [PMID: 26304668]
[168]
Wang P, Robert L, Pelletier J, et al. Robust growth of escherichia coli. Curr Biol 2010; 20(12): 1099-103.
[http://dx.doi.org/10.1016/j.cub.2010.04.045] [PMID: 20537537]
[169]
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: Disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41(6): 751-80.
[http://dx.doi.org/10.1093/femsre/fux044] [PMID: 29029257]
[170]
Brennan MA, Rosenthal AZ. Single-cell RNA sequencing elucidates the structure and organization of microbial communities. Front Microbiol 2021; 12: 713128.
[http://dx.doi.org/10.3389/fmicb.2021.713128] [PMID: 34367118]
[171]
Lin B, Tao Y. Whole-cell biocatalysts by design. Microb Cell Fact 2017; 16(1): 106.
[http://dx.doi.org/10.1186/s12934-017-0724-7] [PMID: 28610636]
[172]
Fritzsch FSO, Dusny C, Frick O, Schmid A. Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu Rev Chem Biomol Eng 2012; 3(1): 129-55.
[http://dx.doi.org/10.1146/annurev-chembioeng-062011-081056] [PMID: 22468600]
[173]
Binder D, Drepper T, Jaeger KE, et al. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity. Metab Eng 2017; 42: 145-56.
[http://dx.doi.org/10.1016/j.ymben.2017.06.009] [PMID: 28645641]
[174]
Jammes FC, Maerkl SJ. How single-cell immunology is benefiting from microfluidic technologies. Microsyst Nanoeng 2020; 6(1): 45.
[http://dx.doi.org/10.1038/s41378-020-0140-8] [PMID: 34567657]
[175]
Ndao A, Hsu L, Cai W, et al. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum. Nanophotonics 2020; 9(5): 1081-6.
[http://dx.doi.org/10.1515/nanoph-2020-0008]
[176]
Labarta E, de los Santos MJ, Escribá MJ, Pellicer A, Herraiz S. Mitochondria as a tool for oocyte rejuvenation. Fertil Steril 2019; 111(2): 219-26.
[http://dx.doi.org/10.1016/j.fertnstert.2018.10.036] [PMID: 30611551]
[177]
Park JY, Morgan M, Sachs AN, et al. Single cell trapping in larger microwells capable of supporting cell spreading and proliferation. Microfluid Nanofluidics 2010; 8(2): 263-8.
[http://dx.doi.org/10.1007/s10404-009-0503-9] [PMID: 20352022]
[178]
A microfluidics-based, single cell printing and microplate imaging workflow optimized for monoclonality.
[179]
Weng L, Ellett F, Edd J, et al. A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability. Lab Chip 2017; 17(23): 4077-88.
[http://dx.doi.org/10.1039/C7LC00883J] [PMID: 29068447]
[180]
Zhang W. Optimizing micro-vortex chamber for living single cell rotation. Degree master of science arizona state university 2011.
[181]
Lin CH, Hsiao YH, Chang HC, et al. A microfluidic dual-well device for high-throughput single-cell capture and culture. Lab Chip 2015; 15(14): 2928-38.
[http://dx.doi.org/10.1039/C5LC00541H] [PMID: 26060987]
[182]
Cortés-Llanos B, Wang Y, Sims CE, Allbritton NL. A technology of a different sort: Microraft arrays. Lab Chip 2021; 21(17): 3204-18.
[http://dx.doi.org/10.1039/D1LC00506E] [PMID: 34346456]
[183]
Lee SH, Park M, Park CG, et al. Implantable micro-chip for controlled delivery of diclofenac sodium. J Control Release 2014; 196: 52-9.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.019] [PMID: 25270113]
[184]
Fayyad J, Sampson NA, Hwang I, et al. The descriptive epidemiology of DSM-IV Adult ADHD in the world health organization world mental health surveys. Atten Defic Hyperact Disord 2017; 9(1): 47-65.
[http://dx.doi.org/10.1007/s12402-016-0208-3] [PMID: 27866355]
[185]
Brouzes E, Medkova M, Savenelli N, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 2009; 106(34): 14195-200.
[http://dx.doi.org/10.1073/pnas.0903542106]
[186]
Ma J, Tran G, Wan AMD, et al. Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Sci Rep 2021; 11(1): 6777.
[http://dx.doi.org/10.1038/s41598-021-86087-4] [PMID: 33762663]
[187]
Chung J, Ingram PN, Bersano-Begey T, Yoon E. Traceable clonal culture and chemodrug assay of heterogeneous prostate carcinoma PC3 cells in microfluidic single cell array chips. Biomicrofluidics 2014; 8(6): 064103.
[http://dx.doi.org/10.1063/1.4900823] [PMID: 25553180]
[188]
Cheng YH, Chen YC, Brien R, Yoon E. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip. Lab Chip 2016; 16(19): 3708-17.
[http://dx.doi.org/10.1039/C6LC00778C] [PMID: 27510097]
[189]
Cheng YH, Chen YCT, Lin E, et al. Hydro-Seq enables contamination-free high-throughput single-cell RNA-sequencing for circulating tumor cells. Nat Commun 2019; 10(1): 2163.
[http://dx.doi.org/10.1038/s41467-019-10122-2] [PMID: 31092822]
[190]
Chen C, Li P, Guo T, Chen S, Xu D, Chen H. Generation of dynamic concentration profile using a microfluidic device integrating pneumatic microvalves. Biosensors 2022; 12(10): 868.
[http://dx.doi.org/10.3390/bios12100868] [PMID: 36291005]
[191]
Luo Z, Güven S, Gozen I, et al. Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluid Nanofluidics 2015; 19(4): 883-90.
[http://dx.doi.org/10.1007/s10404-015-1614-0] [PMID: 26696793]
[192]
Alias AB, Huang HY, Yao DJ. A review on microfluidics: An aid to assisted reproductive technology. Molecules 2021; 26(14): 4354.
[http://dx.doi.org/10.3390/molecules26144354] [PMID: 34299629]
[193]
Dong Y, Wang Z, Shi Q. Liquid biopsy based single-cell transcriptome profiling characterizes heterogeneity of disseminated tumor cells from lung adenocarcinoma. Proteomics 2020; 20(13): 1900224.
[http://dx.doi.org/10.1002/pmic.201900224] [PMID: 31960581]
[194]
Melin J, Quake SR. Microfluidic large-scale integration: The evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 2007; 36(1): 213-31.
[http://dx.doi.org/10.1146/annurev.biophys.36.040306.132646] [PMID: 17269901]
[195]
Dettinger P, Wang W, Ahmed N, et al. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation. Lab Chip 2020; 20(22): 4246-54.
[http://dx.doi.org/10.1039/D0LC00687D] [PMID: 33063816]
[196]
Camp JG, Wollny D, Treutlein B. Single-cell genomics to guide human stem cell and tissue engineering. Nat Methods 2018; 15(9): 661-7.
[http://dx.doi.org/10.1038/s41592-018-0113-0]
[197]
Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods 2018; 15(4): 255-61.
[http://dx.doi.org/10.1038/nmeth.4612] [PMID: 29481549]
[198]
Johansen N, Quon G. scAlign: A tool for alignment, integration, and rare cell identification from scRNA-seq data. Genome Biol 2019; 20(1): 166.
[http://dx.doi.org/10.1186/s13059-019-1766-4] [PMID: 31412909]
[199]
Weng L, Lee GY, Liu J, Kapur R, Toth TL, Toner M. On-chip oocyte denudation from cumulus–oocyte complexes for assisted reproductive therapy. Lab Chip 2018; 18(24): 3892-902.
[http://dx.doi.org/10.1039/C8LC01075G] [PMID: 30465050]
[200]
Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018; 360(6385): 176-82.
[http://dx.doi.org/10.1126/science.aam8999] [PMID: 29545511]
[201]
Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381-6.
[http://dx.doi.org/10.1038/nbt.2859] [PMID: 24658644]
[202]
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411-20.
[http://dx.doi.org/10.1038/nbt.4096] [PMID: 29608179]
[203]
Alpert A, Moore LS, Dubovik T, Shen-Orr SS. Alignment of single-cell trajectories to compare cellular expression dynamics. Nat Methods 2018; 15(4): 267-70.
[http://dx.doi.org/10.1038/nmeth.4628] [PMID: 29529018]
[204]
Smith AA, Vollrath A, Bradfield CA, Craven M. Clustered alignments of gene-expression time series data. Bioinformatics 2009; 25(12): i119-i1127.
[http://dx.doi.org/10.1093/bioinformatics/btp206] [PMID: 19477977]
[205]
Mali P, Cheng L. Concise review: Human cell engineering: Cellular reprogramming and genome editing. Stem Cells 2012; 30(1): 75-81.
[http://dx.doi.org/10.1002/stem.735] [PMID: 21905170]
[206]
Grath A, Dai G. Direct cell reprogramming for tissue engineering and regenerative medicine. J Biol Eng 2019; 13(1): 14.
[http://dx.doi.org/10.1186/s13036-019-0144-9] [PMID: 30805026]
[207]
Shi Z, Zhang J, Chen S, et al. Conversion of fibroblasts to parvalbumin neurons by one transcription factor, ascl1, and the chemical compound forskolin. J Biol Chem 2016; 291(26): 13560-70.
[http://dx.doi.org/10.1074/jbc.M115.709808] [PMID: 27137935]
[208]
Chanda S, Ang CE, Davila J, et al. Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports 2014; 3(2): 282-96.
[http://dx.doi.org/10.1016/j.stemcr.2014.05.020] [PMID: 25254342]
[209]
Tsunemoto R, Lee S, Szűcs A, et al. Diverse reprogramming codes for neuronal identity. Nature 2018; 557(7705): 375-80.
[http://dx.doi.org/10.1038/s41586-018-0103-5] [PMID: 29743677]
[210]
Chen W, Wang X, Wei G, et al. Single-cell transcriptome analysis reveals six subpopulations reflecting distinct cellular fates in senescent mouse embryonic fibroblasts. Front Genet 2020; 11: 867.
[http://dx.doi.org/10.3389/fgene.2020.00867] [PMID: 32849838]
[211]
La Manno G, Gyllborg D, Codeluppi S. Molecular diversity of midbrain development in mouse, human, and stem cells. cell 2016; 167(2): 566-80.
[212]
Vergara HM, Pape C, Meechan KI, et al. Whole-body integration of gene expression and single-cell morphology. Cell 2021; 184(18): 4819-4837.e22.
[http://dx.doi.org/10.1016/j.cell.2021.07.017] [PMID: 34380046]
[213]
Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biol 2020; 21(1): 31.
[http://dx.doi.org/10.1186/s13059-020-1926-6] [PMID: 32033589]
[214]
Burkhardt DB, Stanley JS III, Tong A, et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat Biotechnol 2021; 39(5): 619-29.
[http://dx.doi.org/10.1038/s41587-020-00803-5] [PMID: 33558698]
[215]
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84-7.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[216]
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014; 343(6166): 80-4.
[http://dx.doi.org/10.1126/science.1246981] [PMID: 24336569]
[217]
Lecault V, Vaninsberghe M, Sekulovic S, et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 2011; 8(7): 581-6.
[http://dx.doi.org/10.1038/nmeth.1614]
[218]
Adamson B, Norman TM, Jost M, et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 2016; 167(7): 1867-1882.e21.
[http://dx.doi.org/10.1016/j.cell.2016.11.048] [PMID: 27984733]
[219]
Xie S, Duan J, Li B, Zhou P, Hon GC. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell 2017; 66(2): 285-299.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.03.007] [PMID: 28416141]
[220]
Jaitin DA, Weiner A, Yofe I, et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-Cell RNA-Seq. Cell 2016; 167(7): 1883-1896.e15.
[http://dx.doi.org/10.1016/j.cell.2016.11.039] [PMID: 27984734]
[221]
Alda-Catalinas C, Eckersley-Maslin MA, Reik W. Pooled CRISPR-activation screening coupled with single-cell RNA-seq in mouse embryonic stem cells. STAR Protocols 2021; 2(2): 100426.
[http://dx.doi.org/10.1016/j.xpro.2021.100426] [PMID: 33899013]
[222]
Shams F, Golchin A, Azari A, et al. Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2022; 49(2): 1389-412.
[http://dx.doi.org/10.1007/s11033-021-06876-y] [PMID: 34716502]
[223]
Brunello L. Genome-scale single-cell CRISPR screens. Nat Rev Genet 2022; 23(8): 459-9.
[http://dx.doi.org/10.1038/s41576-022-00517-1] [PMID: 35760907]
[224]
Replogle JM, Norman TM, Xu A, et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat Biotechnol 2020; 38: 954-61.
[http://dx.doi.org/10.1038/s41587-020-0470-y]
[225]
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods 2018; 15(12): 1053-8.
[http://dx.doi.org/10.1038/s41592-018-0229-2] [PMID: 30504886]
[226]
Kiselev VY, Yiu A, Hemberg M. Scmap: Projection of single-cell RNA-seq data across data sets. Nat Methods 2018; 15(5): 359-62.
[http://dx.doi.org/10.1038/nmeth.4644] [PMID: 29608555]
[227]
Rohart F, Eslami A, Matigian N, Bougeard S, Lê Cao KA. MINT: A multivariate integrative method to identify reproducible molecular signatures across independent experiments and platforms. BMC Bioinformatics 2017; 18(1): 128.
[http://dx.doi.org/10.1186/s12859-017-1553-8] [PMID: 28241739]
[228]
Muraro MJ, Dharmadhikari G, Grün D, et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst 2016; 3(4): 385-394.e3.
[http://dx.doi.org/10.1016/j.cels.2016.09.002] [PMID: 27693023]
[229]
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 2014; 32(9): 896-902.
[http://dx.doi.org/10.1038/nbt.2931] [PMID: 25150836]
[230]
Dixit A, Parnas O, Li B, et al. Perturb-Seq: Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 2016; 167(7): 1853-1866.e17.
[http://dx.doi.org/10.1016/j.cell.2016.11.038] [PMID: 27984732]
[231]
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017; 171(6): 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[232]
Yu F, Cato LD, Weng C, et al. Variant to function mapping at single-cell resolution through network propagation. Nat Biotechnol 2022; 40(11): 1644-53.
[http://dx.doi.org/10.1038/s41587-022-01341-y] [PMID: 35668323]
[233]
Hodge RD, Bakken TE, Miller JA, et al. Conserved cell types with divergent features between human and mouse cortex BioRxiv 2018; 384826.
[http://dx.doi.org/10.1101/384826]
[234]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy