Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Neurokinin B Administration Induces Dose Dependent Proliferation of Seminal Vesicles in Adult Rats

Author(s): Muhammad Haris Ramzan, Mohsin Shah* and Faiqah Ramzan

Volume 25, Issue 4, 2024

Published on: 18 January, 2024

Page: [339 - 352] Pages: 14

DOI: 10.2174/0113892037264538231128072614

Price: $65

Abstract

Background: Neurokinin B; an endogenous decapeptide, mediates its reproductive physiological actions through gonadotropin releasing hormone. Despite the potential role of Neurokinin B on seminal vesicles, its effects on seminal vesicles in adult male mammals remain elusive. We aimed to investigate the potentials of variable doses of Neurokinin B, its agonist and antagonist on histomorphology and expression of NK3R on seminal vesicles, and secretory activity of seminal vesicles in adult male rats.

Methods: Adult male Sprague Dawley rats (n=10 in each group) were administered intraperitoneally with Neurokinin B in three variable doses: 1 μg, 1 ηg and 10 ρg while, Senktide (Neurokinin B agonist) and SB222200 (Neurokinin B antagonist) in 1 μg doses consecutively for 12 days. After 12 days of peptide treatment, half of the animals (n=05) in each group were sacrificed while remaining half (n=05) were kept for another 12 days without any treatment to investigate treatment reversal. Seminal vesicles were dissected and excised tissue was processed for light microscopy, immunohistochemistry and estimation of seminal fructose levels.

Results: Treatment with Neurokinin B and Senktide significantly increased while SB222200 slightly decrease the seminal vesicles weight, epithelial height and seminal fructose levels as compared to control. Light microscopy revealed increased epithelial height and epithelial folding as compared to control in all Neurokinin B and Senktide treated groups while decreased in SB222200. Effects of various doses of Neurokinin B, Senktide and SB222200 on seminal vesicles weight, epithelial height, seminal fructose levels and histomorphology were reversed when rats were maintained without treatments. Immuno-expression of Neurokinin B shows no change in treatment and reversal groups.

Conclusion: Continuous administration of Neurokinin B and Senktide effect positively while SB222200 have detrimental effects on cellular morphology, epithelial height and seminal fructose levels in seminal vesicles. Effects of peptide treatments depicted a reversal towards control group when rats were kept without any treatment.

« Previous
Graphical Abstract

[1]
Bloom, W.; Fawcett, D.W. Male reproductive system. A textbook of histology. W. B. Saunders Company: Philadelphia, London, Toronto, 1976; pp. 805-855.
[2]
Higgins, S.J.; Burchell, J.M. Effects of testosterone on messenger ribonucleic acid and protein synthesis in rat seminal vesicle. Biochem. J., 1978, 174(2), 543-551.
[http://dx.doi.org/10.1042/bj1740543] [PMID: 708407]
[3]
Lieber, M.M.; Barham, S.S.; Veneziale, C.M. In vitro propagation of seminal vesicle epithelial cells. Invest. Urol., 1980, 17(4), 348-355.
[PMID: 7351367]
[4]
Gonzales, G.F. Functional structure and ultrastructure of seminal vesicles. Arch. Androl., 1989, 22(1), 1-13.
[http://dx.doi.org/10.3109/01485018908986745] [PMID: 2653253]
[5]
Tao, Y.X.; Lei, Z.M.; Rao, C.V. Seminal vesicles are novel sites of luteinizing hormone/human chorionic gonadotropin-receptor gene expression. J. Androl., 1998, 19(3), 343-347.
[http://dx.doi.org/10.1002/j.1939-4640.1998.tb02014.x] [PMID: 9639051]
[6]
Gonzales, G.F. Test for androgen activity at the male reproductive tract in infertile men. Arch. Androl., 1994, 32(3), 235-242.
[http://dx.doi.org/10.3109/01485019408987791] [PMID: 8074579]
[7]
Zanato, V.F.; Martins, M.P.; Anselmo-Franci, J.A.; Petenusci, S.O.; Lamano-Carvalho, T.L. Sexual development of male Wistar rats. Braz. J. Med. Biol. Res., 1994, 27(5), 1273-1280.
[PMID: 8000350]
[8]
Almenara, A.; Escalante, G.; Gazzo, E.; Gonzales, G.F. Transillumination to evaluate spermatogenesis: Effect of testosterone enanthate in adult male rats. Arch. Androl., 2001, 46(1), 21-27.
[http://dx.doi.org/10.1080/01485010150211119] [PMID: 11204613]
[9]
Risbridger, G.P.; Taylor, R.A. Physiology of the male accessory sex structures: The prostate gland, seminal vesicles, and bulbourethral glands. In: Knobil and Neill’s Physiology of Reproduction, 3rd ed; Neill, J.D., Ed.; Academic Press: St Louis, 2006; pp. 1149-1172.
[http://dx.doi.org/10.1016/B978-012515400-0/50028-2]
[10]
Prins, G.S.; Lindgren, M. Accessory sex glands in the male. In: Knobil and Neill’s Physiology of Reproduction, 4th ed; Plant, T.M.; Zeleznik, A.J., Eds.; Academic Press: San Diego, 2015; pp. 773-804.
[http://dx.doi.org/10.1016/B978-0-12-397175-3.00018-1]
[11]
WHO laboratory manual for the examination and processing of human semen. World Health Organization: Geneva, 2021.
[12]
Lewis-Jones, D.I.; Aird, I.A.; Biljan, M.M.; Kingsland, C.R. Andrology: Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum. Reprod., 1996, 11(11), 2465-2467.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a019138] [PMID: 8981134]
[13]
Almeida, T.A.; Rojo, J.; Nieto, P.M.; Pinto, F.M.; Hernandez, M.; Martín, J.D.; Candenas, M.L. Tachykinins and tachykinin receptors: Structure and activity relationships. Curr. Med. Chem., 2004, 11(15), 2045-2081.
[http://dx.doi.org/10.2174/0929867043364748] [PMID: 15279567]
[14]
Page, N.M.; Woods, R.J.; Gardiner, S.M.; Lomthaisong, K.; Gladwell, R.T.; Butlin, D.J.; Manyonda, I.T.; Lowry, P.J. Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature, 2000, 405(6788), 797-800.
[http://dx.doi.org/10.1038/35015579] [PMID: 10866201]
[15]
Topaloglu, A.K.; Reimann, F.; Guclu, M.; Yalin, A.S.; Kotan, L.D.; Porter, K.M.; Serin, A.; Mungan, N.O.; Cook, J.R.; Ozbek, M.N.; Imamoglu, S.; Akalin, N.S.; Yuksel, B.; O’Rahilly, S.; Semple, R.K. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet., 2009, 41(3), 354-358.
[http://dx.doi.org/10.1038/ng.306] [PMID: 19079066]
[16]
Young, J.; Bouligand, J.; Francou, B.; Raffin-Sanson, M.L.; Gaillez, S.; Jeanpierre, M.; Grynberg, M.; Kamenicky, P.; Chanson, P.; Brailly-Tabard, S.; Guiochon-Mantel, A. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J. Clin. Endocrinol. Metab., 2010, 95(5), 2287-2295.
[http://dx.doi.org/10.1210/jc.2009-2600] [PMID: 20194706]
[17]
Guran, T.; Tolhurst, G.; Bereket, A.; Rocha, N.; Porter, K.; Turan, S.; Gribble, F.M.; Kotan, L.D.; Akcay, T.; Atay, Z.; Canan, H.; Serin, A.; O’Rahilly, S.; Reimann, F.; Semple, R.K.; Topaloglu, A.K. Hypogonadotropic hypogonadism due to a novel missense mutation in the first extracellular loop of the neurokinin B receptor. J. Clin. Endocrinol. Metab., 2009, 94(10), 3633-3639.
[http://dx.doi.org/10.1210/jc.2009-0551] [PMID: 19755480]
[18]
Corander, M.P.; Challis, B.G.; Thompson, E.L.; Jovanovic, Z.; Loraine Tung, Y.C.; Rimmington, D.; Huhtaniemi, I.T.; Murphy, K.G.; Topaloglu, A.K.; Yeo, G.S.H.; O’Rahilly, S.; Dhillo, W.S.; Semple, R.K.; Coll, A.P. The effects of neurokinin B upon gonadotrophin release in male rodents. J. Neuroendocrinol., 2010, 22(3), 181-187.
[http://dx.doi.org/10.1111/j.1365-2826.2009.01951.x] [PMID: 20041982]
[19]
Ruiz-Pino, F.; Garcia-Galiano, D.; Manfredi-Lozano, M.; Leon, S.; Sánchez-Garrido, M.A.; Roa, J.; Pinilla, L.; Navarro, V.M.; Tena-Sempere, M. Effects and interactions of tachykinins and dynorphin on FSH and LH secretion in developing and adult rats. Endocrinology, 2015, 156(2), 576-588.
[http://dx.doi.org/10.1210/en.2014-1026] [PMID: 25490143]
[20]
Navarro, V.M.; Bosch, M.A.; León, S.; Simavli, S.; True, C.; Pinilla, L.; Carroll, R.S.; Seminara, S.B.; Tena-Sempere, M.; Rønnekleiv, O.K.; Kaiser, U.B. The integrated hypothalamic tachykinin-kisspeptin system as a central coordinator for reproduction. Endocrinology, 2015, 156(2), 627-637.
[http://dx.doi.org/10.1210/en.2014-1651] [PMID: 25422875]
[21]
Skorupskaite, K.; George, J.; Anderson, R.A. Role of a neurokinin B receptor antagonist in the regulation of ovarian function in healthy women. Lancet, 2015, 385(Suppl. 1), S92.
[http://dx.doi.org/10.1016/S0140-6736(15)60407-X] [PMID: 26312915]
[22]
EU regulations on animal research London, England: European Animal Research Association. Available from: https://www.eara.eu/animal-research-law
[23]
Niknami, Z.; Muhammadnejad, A.; Ebrahimi, A.; Harsani, Z.; Shirkoohi, R. Significance of E-cadherin and vimentin as epithelial-mesenchymal transition markers in colorectal carcinoma prognosis. EXCLI J., 2020, 19, 917-926.
[http://dx.doi.org/10.17179/excli2020-1946] [PMID: 32665775]
[24]
Uenoyama, Y.; Nagae, M.; Tsuchida, H.; Inoue, N.; Tsukamura, H. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front. Endocrinol., 2021, 12, 724632.
[http://dx.doi.org/10.3389/fendo.2021.724632] [PMID: 34566891]
[25]
Yoshida, M.; Kawano, N.; Iwamoto, T.; Yoshida, K. Seminal vesicle—structure. In: Encyclopedia of Reproduction, 2nd ed; Skinner, M.K., Ed.; Academic Press: Oxford, 2018; pp. 344-348.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.64599-3]
[26]
Gonzales, G.F. Function of seminal vesicles and their role on male fertility. Asian J. Androl., 2001, 3(4), 251-258.
[PMID: 11753468]
[27]
Ehrén, I.; Sjöstrand, N.O.; Hammarström, M.; Wiklund, N.P. Is glandular formation of nitric oxide a prerequisite for muscarinic secretion of fructose in the guinea-pig seminal vesicle? Urol. Res., 1997, 25(6), 433-438.
[http://dx.doi.org/10.1007/BF01268862] [PMID: 9443654]
[28]
Ramaswamy, S.; Seminara, S.B.; Ali, B.; Ciofi, P.; Amin, N.A.; Plant, T.M. Neurokinin B stimulates GnRH release in the male monkey (Macaca mulatta) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology, 2010, 151(9), 4494-4503.
[http://dx.doi.org/10.1210/en.2010-0223] [PMID: 20573725]
[29]
Szeliga, A.; Podfigurna, A.; Bala, G.; Meczekalski, B. Kisspeptin and neurokinin B analogs use in gynecological endocrinology: Where do we stand? J. Endocrinol. Invest., 2020, 43(5), 555-561.
[http://dx.doi.org/10.1007/s40618-019-01160-0] [PMID: 31838714]
[30]
Cunha, G.R.; Donjacour, A.A.; Cooke, P.S.; Mee, H.; Bigsby, R.M.; Higgins, S.J.; Sugimura, Y. The endocrinology and developmental biology of the prostate. Endocr. Rev., 1987, 8(3), 338-362.
[http://dx.doi.org/10.1210/edrv-8-3-338] [PMID: 3308446]
[31]
Gonzales, G.F.; Villena, A. True corrected seminal fructose level: A better marker of the function of seminal vesicles in infertile men. Int. J. Androl., 2001, 24(5), 255-260.
[http://dx.doi.org/10.1046/j.1365-2605.2001.00306.x] [PMID: 11554981]
[32]
La Vignera, S.; Condorelli, R.A.; Russo, G.I.; Morgia, G.; Calogero, A.E. The seminal vesicles: Endocrinological aspects. In: Encyclopedia of Reproduction, 2nd ed; Skinner, M.K., Ed.; Academic Press: Oxford, 2018; pp. 355-356.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.64601-9]
[33]
Bloom, W.; Fawcett, D.W. A Text Book of Histology; W. B. Saunders: Philadelphia, 1986.
[34]
Sasagawa, I.; Nakada, T.; Kazama, T.; Terada, T.; Katayama, T. Testosterone replacement therapy and prostate/seminal vesicle volume in Klinefelter’s syndrome. Arch. Androl., 1989, 22(3), 245-249.
[http://dx.doi.org/10.3109/01485018908986780] [PMID: 2502953]
[35]
Gonzales, G.F.; Miranda, S.; Nieto, J.; Fernández, G.; Yucra, S.; Rubio, J.; Yi, P.; Gasco, M. Red maca (Lepidium meyenii) reduced prostate size in rats. Reprod. Biol. Endocrinol., 2005, 3(1), 5.
[http://dx.doi.org/10.1186/1477-7827-3-5] [PMID: 15661081]
[36]
Djøseland, O.; Tveter, K.J.; Attramadal, A.; Hansson, V.; Haugen, H.N.; Mathisen, W. Metabolism of testosterone in the human prostate and seminal vesicles. Scand. J. Urol. Nephrol., 1977, 11(1), 1-6.
[http://dx.doi.org/10.3109/00365597709179684] [PMID: 557833]
[37]
Group, T.F.S. Finasteride (MK-906) in the treatment of benign prostatic hyperplasia. Prostate, 1993, 22(4), 291-299.
[http://dx.doi.org/10.1002/pros.2990220403] [PMID: 7684524]
[38]
Ma, Z.; Hung, N.T.; Hoa, H.T.; Tien Do, P.; Huynh, H. Reduction of rat prostate weight by combined quercetin-finasteride treatment is associated with cell cycle deregulation. J. Endocrinol., 2004, 181(3), 493-507.
[http://dx.doi.org/10.1677/joe.0.1810493] [PMID: 15171697]
[39]
Humphrey, G.F.; Mann, T. Studies on the metabolism of semen. 5. Citric acid in semen. Biochem. J., 1949, 44(1), 97-105.
[http://dx.doi.org/10.1042/bj0440097] [PMID: 16748486]
[40]
Ullah, Z.; Ramzan, M.H.; Ramzan, F. Histomorphology of seminal vesicles subsequent to exogenous neurokinin b administration in new zealand white rabbits. Int. J. Pept. Res. Ther., 2020, 26(4), 2021-2027.
[http://dx.doi.org/10.1007/s10989-019-10001-w]
[41]
Ramaswamy, S.; Seminara, S.B.; Pohl, C.R.; DiPietro, M.J.; Crowley, W.F., Jr; Plant, T.M. Effect of continuous intravenous administration of human metastin 45-54 on the neuroendocrine activity of the hypothalamic-pituitary-testicular axis in the adult male rhesus monkey (Macaca mulatta). Endocrinology, 2007, 148(7), 3364-3370.
[http://dx.doi.org/10.1210/en.2007-0207] [PMID: 17412800]
[42]
Thompson, E.L.; Murphy, K.G.; Patterson, M.; Bewick, G.A.; Stamp, G.W.H.; Curtis, A.E.; Cooke, J.H.; Jethwa, P.H.; Todd, J.F.; Ghatei, M.A.; Bloom, S.R. Chronic subcutaneous administration of kisspeptin-54 causes testicular degeneration in adult male rats. Am. J. Physiol. Endocrinol. Metab., 2006, 291(5), E1074-E1082.
[http://dx.doi.org/10.1152/ajpendo.00040.2006] [PMID: 16787965]
[43]
Ramzan, F.; Qureshi, I.Z. Intraperitoneal kisspeptin-10 administration induces dose-dependent degenerative changes in maturing rat testes. Life Sci., 2011, 88(5-6), 246-256.
[http://dx.doi.org/10.1016/j.lfs.2010.11.019] [PMID: 21112339]
[44]
Ramzan, F.; Qureshi, I.Z.; Ramzan, M.; Ramzan, M.H.; Ramzan, F. Immature rat seminal vesicles show histomorphological and ultrastructural alterations following treatment with kisspeptin-10. Reprod. Biol. Endocrinol., 2012, 10(1), 18.
[http://dx.doi.org/10.1186/1477-7827-10-18] [PMID: 22404961]
[45]
Ramzan, F.; Khan, M.A.; Ramzan, M.H. The effect of chronic kisspeptin administration on seminal fructose levels in male mice. Endocrine, 2014, 45(1), 144-147.
[http://dx.doi.org/10.1007/s12020-013-0016-x] [PMID: 23864558]
[46]
True, C.; Nasrin, A.S.; Cox, K.; Chan, Y.M.; Seminara, S.B.; Neurokinin, B. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice. Endocrinology, 2015, 156(4), 1386-1397.
[http://dx.doi.org/10.1210/en.2014-1862] [PMID: 25574869]
[47]
Lapatto, R.; Pallais, J.C.; Zhang, D.; Chan, Y.M.; Mahan, A.; Cerrato, F.; Le, W.W.; Hoffman, G.E.; Seminara, S.B. Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology, 2007, 148(10), 4927-4936.
[http://dx.doi.org/10.1210/en.2007-0078] [PMID: 17595229]
[48]
Seminara, S.B.; Messager, S.; Chatzidaki, E.E.; Thresher, R.R.; Acierno, J.S., Jr; Shagoury, J.K.; Bo-Abbas, Y.; Kuohung, W.; Schwinof, K.M.; Hendrick, A.G.; Zahn, D.; Dixon, J.; Kaiser, U.B.; Slaugenhaupt, S.A.; Gusella, J.F.; O’Rahilly, S.; Carlton, M.B.L.; Crowley, W.F., Jr; Aparicio, S.A.J.R.; Colledge, W.H. The GPR54 gene as a regulator of puberty. N. Engl. J. Med., 2003, 349(17), 1614-1627.
[http://dx.doi.org/10.1056/NEJMoa035322] [PMID: 14573733]
[49]
Ramaswamy, S.; Seminara, S.B.; Plant, T.M. Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-releasing hormone release is upstream from the kisspeptin receptor. Neuroendocrinology, 2011, 94(3), 237-245.
[http://dx.doi.org/10.1159/000329045] [PMID: 21832818]
[50]
Grachev, P.; Li, X.F.; Lin, Y.S.; Hu, M.H.; Elsamani, L.; Paterson, S.J.; Millar, R.P.; Lightman, S.L.; O’Byrne, K.T. GPR54-dependent stimulation of luteinizing hormone secretion by neurokinin B in prepubertal rats. PLoS One, 2012, 7(9), e44344.
[http://dx.doi.org/10.1371/journal.pone.0044344] [PMID: 23028524]
[51]
Gaskins, G.T.; Glanowska, K.M.; Moenter, S.M. Activation of neurokinin 3 receptors stimulates GnRH release in a location-dependent but kisspeptin-independent manner in adult mice. Endocrinology, 2013, 154(11), 3984-3989.
[http://dx.doi.org/10.1210/en.2013-1479] [PMID: 23928373]
[52]
Garcia, J.P.; Keen, K.L.; Kenealy, B.P.; Seminara, S.B.; Terasawa, E. Role of kisspeptin and neurokinin B signaling in male rhesus monkey puberty. Endocrinology, 2018, 159(8), 3048-3060.
[http://dx.doi.org/10.1210/en.2018-00443] [PMID: 29982393]
[53]
Losco, P.E.; Leach, M.W.; Sinha, D.; Davis, P.; Schmahai, T.J.; Nomier, A.; Kakkar, T.; Reyderman, L.; Lynch, M.E. Administration of an antagonist of neurokinin receptors 1, 2, and 3 results in reproductive tract changes in beagle dogs, but not rats. Toxicol. Pathol., 2007, 35(2), 310-322.
[http://dx.doi.org/10.1080/01926230701198766] [PMID: 17366326]
[54]
Goodman, R.L.; Hileman, S.M.; Nestor, C.C.; Porter, K.L.; Connors, J.M.; Hardy, S.L.; Millar, R.P.; Cernea, M.; Coolen, L.M.; Lehman, M.N. Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology, 2013, 154(11), 4259-4269.
[http://dx.doi.org/10.1210/en.2013-1331] [PMID: 23959940]
[55]
Aytürk, N.; Firat, T.; Kükner, A.; Özoğul, C.; Töre, F.; Kandirali, İ.E.; Yilmaz, B. The effect of kisspeptin on spermatogenesis and apoptosis in rats. Turk. J. Med. Sci., 2017, 47(1), 334-342.
[http://dx.doi.org/10.3906/sag-1505-69] [PMID: 28263511]
[56]
Pinto, F.M.; Almeida, T.A.; Hernandez, M.; Devillier, P.; Advenier, C.; Candenas, M.L. mRNA expression of tachykinins and tachykinin receptors in different human tissues. Eur. J. Pharmacol., 2004, 494(2-3), 233-239.
[http://dx.doi.org/10.1016/j.ejphar.2004.05.016] [PMID: 15212980]
[57]
Candenas, L.; Lecci, A.; Pinto, F.M.; Patak, E.; Maggi, C.A.; Pennefather, J.N. Tachykinins and tachykinin receptors: Effects in the genitourinary tract. Life Sci., 2005, 76(8), 835-862.
[http://dx.doi.org/10.1016/j.lfs.2004.10.004] [PMID: 15589963]
[58]
Plant, T.M.; Ramaswamy, S.; DiPietro, M.J. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology, 2006, 147(2), 1007-1013.
[http://dx.doi.org/10.1210/en.2005-1261] [PMID: 16282350]
[59]
Seminara, S.B.; DiPietro, M.J.; Ramaswamy, S.; Crowley, W.F., Jr; Plant, T.M. Continuous human metastin 45-54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): A finding with therapeutic implications. Endocrinology, 2006, 147(5), 2122-2126.
[http://dx.doi.org/10.1210/en.2005-1550] [PMID: 16469799]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy