Research Article

Tumor Targeting via siRNA-COG3 to Suppress Tumor Progression in Mice and Inhibit Cancer Metastasis and Angiogenesis in Ovarian Cancer Cell Lines

Author(s): Janat Ijabi, Roghayeh Ijabi*, Parisa Roozehdar, Zachary A. Kaminsky, Hemen Moradi-Sardareh, Najmeh Tehranian and Naveed Ahmed

Volume 13, Issue 2, 2024

Published on: 17 January, 2024

Page: [140 - 154] Pages: 15

DOI: 10.2174/0122115366275856240101083442

Price: $65

Abstract

Background: The COG complex is implicated in the tethering of retrograde intra-Golgi vesicles, which involves vesicular tethering and SNAREs. SNARE complexes mediate the invasion and metastasis of cancer cells through MMPs which activate growth factors for ECM fragments by binding to integrin receptors. Increasing MMPs is in line with YKL40 since YKL40 is linked to promoting angiogenesis through VEGF and can increase ovarian cancer (OC) resistance to chemotropic and cell migration.

Objective: The aim of this study is an assessment of siRNA-COG3 on proliferation, invasion, and apoptosis of OC cells. In addition, siRNA-COG3 may prevent the growth of OC cancer in mice with tumors.

Methods: Primary OC cell lines will be treated with siRNA-COG3 to assay YKL40 and identified angiogenesis by Tube-like structure formation in HOMECs. The Golgi morphology was analyzed using Immunofluorescence microscopy. Furthermore, the effects of siRNA-COG3 on the proliferation and apoptosis of cells were evaluated using MTT and TUNEL assays. Clones of the HOSEpiC OC cell line were subcutaneously implanted in FVB/N mice. Mice were treated after two weeks of injection of cells using siRNA-COG3. Tumor development suppression was detected by D-luciferin. RT-PCR and western blotting analyses were applied to determine COG3, MT1- MMP, SNAP23, and YKL40 expression to investigate the effects of COG3 gene knockdown.

Results: siRNA-COG3 exhibited a substantial effect in suppressing tumor growth in mice. It dramatically reduced OC cell proliferation and triggered apoptosis (all p < 0.01). Inhibition of COG3, YKL-40, and MT1-MPP led to suppression of angiogenesis and reduction of microvessel density through SNAP23 in OC cells.

Conclusion: Overall, by knockdown of the COG3 gene, MT1-MMP and YKL40 were dropped, leading to suppressed angiogenesis along with decreasing migration and proliferation. SiRNACOG3 may be an ideal agent to consider for clinical trial assessment therapy for OC, especially when an antiangiogenic SNAR-pathway targeting drug.

Graphical Abstract

[1]
Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong STC, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015; 309(7): C444-56.
[http://dx.doi.org/10.1152/ajpcell.00188.2015] [PMID: 26224579]
[2]
Qian J, LeSavage BL, Hubka KM, et al. Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling. J Clin Invest 2021; 131(16): e146186.
[http://dx.doi.org/10.1172/JCI146186] [PMID: 34396988]
[3]
Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants. World J Biol Chem 2014; 5(3): 355-76.
[http://dx.doi.org/10.4331/wjbc.v5.i3.355] [PMID: 25225603]
[4]
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019; 9: 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[5]
Adley BP, Gleason KJ, Yang XJ, Stack MS. Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: High level expression in clear cell carcinoma. Gynecol Oncol 2009; 112(2): 319-24.
[http://dx.doi.org/10.1016/j.ygyno.2008.09.025] [PMID: 18976802]
[6]
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci 2020; 21(24): 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[7]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[8]
Wang Y, Tai G, Lu L, Johannes L, Hong W, Luen Tang B. Trans-Golgi network syntaxin 10 functions distinctly from syntaxins 6 and 16. Mol Membr Biol 2005; 22(4): 313-25.
[http://dx.doi.org/10.1080/09687860500143829] [PMID: 16154903]
[9]
Gorshtein G, Grafinger O, Coppolino MG. Targeting SNARE-mediated vesicle transport to block invadopodium-based cancer cell invasion. Front Oncol 2021; 11: 679955.
[http://dx.doi.org/10.3389/fonc.2021.679955] [PMID: 34094984]
[10]
Williams KC, McNeilly RE, Coppolino MG. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1–matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell 2014; 25(13): 2061-70.
[http://dx.doi.org/10.1091/mbc.e13-10-0582] [PMID: 24807903]
[11]
Burri L, Lithgow T. A complete set of SNAREs in yeast. Traffic 2004; 5(1): 45-52.
[http://dx.doi.org/10.1046/j.1600-0854.2003.00151.x] [PMID: 14675424]
[12]
Ohashi Y, Munro S. Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol Biol Cell 2010; 21(22): 3998-4008.
[http://dx.doi.org/10.1091/mbc.e10-05-0457] [PMID: 20861302]
[13]
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9(7): 543-56.
[http://dx.doi.org/10.1038/nrm2417] [PMID: 18496517]
[14]
Ravichandran V, Chawla A, Roche PA. Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 1996; 271(23): 13300-3.
[http://dx.doi.org/10.1074/jbc.271.23.13300] [PMID: 8663154]
[15]
Volck B, Price PA, Johansen JS, et al. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc Assoc Am Physicians 1998; 110(4): 351-60.
[PMID: 9686683]
[16]
Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol 2013; 4: 122.
[http://dx.doi.org/10.3389/fphys.2013.00122] [PMID: 23755018]
[17]
Fuksiewicz M, Kotowicz B, Rutkowski A, Achinger-Kawecka J, Wagrodzki M, Kowalska MM. The assessment of clinical usage and prognostic value of YKL-40 serum levels in patients with rectal cancer without distant metastasis. Technol Cancer Res Treat 2018; 17.
[http://dx.doi.org/10.1177/1533033818765209] [PMID: 29642772]
[18]
Zou L, He X, Zhang JW. The efficacy of YKL-40 and CA125 as biomarkers for epithelial ovarian cancer. Braz J Med Biol Res 2010; 43(12): 1232-8.
[http://dx.doi.org/10.1590/S0100-879X2010007500133] [PMID: 21103788]
[19]
Gupta RK, Gupta G. Chi-lectins: forms, functions and clinical applications 2012.
[http://dx.doi.org/10.1007/978-3-7091-1065-2_19]
[20]
Patil DN, Datta M, Dev A, et al. Structural investigation of a novel N-acetyl glucosamine binding chi-lectin which reveals evolutionary relationship with class III chitinases. PLoS One 2013; 8(5): e63779.
[http://dx.doi.org/10.1371/journal.pone.0063779] [PMID: 23717482]
[21]
Smith RD, Lupashin VV. Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr Res 2008; 343(12): 2024-31.
[http://dx.doi.org/10.1016/j.carres.2008.01.034] [PMID: 18353293]
[22]
Climer LK, Dobretsov M, Lupashin V. Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front Neurosci 2015; 9: 405.
[http://dx.doi.org/10.3389/fnins.2015.00405] [PMID: 26578865]
[23]
Ungar D, Oka T, Brittle EE, et al. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 2002; 157(3): 405-15.
[http://dx.doi.org/10.1083/jcb.200202016] [PMID: 11980916]
[24]
Valderrama F, Babià T, Ayala I, Kok JW, Renau-Piqueras J, Egea G. Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 1998; 76(1): 9-17.
[http://dx.doi.org/10.1016/S0171-9335(98)80012-5] [PMID: 9650778]
[25]
Tan X, Cao K, Liu F, et al. Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth. PLoS Genet 2016; 12(7): e1006140.
[http://dx.doi.org/10.1371/journal.pgen.1006140] [PMID: 27448097]
[26]
Willett R, Kudlyk T, Pokrovskaya I, et al. COG complexes form spatial landmarks for distinct SNARE complexes. Nat Commun 2013; 4(1): 1553.
[http://dx.doi.org/10.1038/ncomms2535] [PMID: 23462996]
[27]
Blackburn JB, D’Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett 2019; 593(17): 2466-87.
[http://dx.doi.org/10.1002/1873-3468.13570] [PMID: 31381138]
[28]
Zolov SN, Lupashin VV. Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 2005; 168(5): 747-59.
[http://dx.doi.org/10.1083/jcb.200412003] [PMID: 15728195]
[29]
Qian L, Yang X, Li S, et al. Reduced O-GlcNAcylation of SNAP-23 promotes cisplatin resistance by inducing exosome secretion in ovarian cancer. Cell Death Discov 2021; 7(1): 112.
[http://dx.doi.org/10.1038/s41420-021-00489-x]
[30]
Manickam V, Tiwari A, Jung JJ, et al. Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6. Blood 2011; 117(4): 1425-35.
[http://dx.doi.org/10.1182/blood-2010-06-291690]
[31]
Sun Q, Huang X, Zhang Q, et al. SNAP23 promotes the malignant process of ovarian cancer. J Ovarian Res 2016; 9(1): 80.
[http://dx.doi.org/10.1186/s13048-016-0289-9] [PMID: 27855700]
[32]
Willett R, Blackburn JB, Climer L, et al. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci Rep 2016; 6(1): 29139.
[http://dx.doi.org/10.1038/srep29139] [PMID: 27385402]
[33]
Jacob A, Prekeris R. The regulation of MMP targeting to invadopodia during cancer metastasis. Front Cell Dev Biol 2015; 3: 4.
[http://dx.doi.org/10.3389/fcell.2015.00004] [PMID: 25699257]
[34]
Boevink P, Oparka K, Cruz SS, Martin B, Betteridge A, Hawes C. Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network. Plant J 1998; 15(3): 441-7.
[http://dx.doi.org/10.1046/j.1365-313X.1998.00208.x]
[35]
Gu F . Nielsen EJJoIPB. Targeting and regulation of cell wall synthesis during tip growth in plants. J Integr Plant Biol 2013; 55(9): 835-46.
[http://dx.doi.org/10.1111/jipb.12077]
[36]
Shestakova A, Zolov S, Lupashin VJT. COG complex‐mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 2006; 7(2): 191-204.
[http://dx.doi.org/10.1111/j.1600-0854.2005.00376.x]
[37]
Willett R, Pokrovskaya I, Kudlyk T, Lupashin V. Multipronged interaction of the COG complex with intracellular membranes. Cell Logist 2014; 4(1): e27888.
[http://dx.doi.org/10.4161/cl.27888]
[38]
Laufman O, Freeze HH, Hong W, Lev S. Deficiency of the Cog8 subunit in normal and CDG-derived cells impairs the assembly of the COG and Golgi SNARE complexes. Traffic 2013; 14(10): 1065-77.
[http://dx.doi.org/10.1111/tra.12093]
[39]
Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J Clin Invest 1999; 103(9): 1237-41.
[http://dx.doi.org/10.1172/JCI6870] [PMID: 10225966]
[40]
Rundhaug JE. Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, A broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 9: 00-00, 2003. Clin Cancer Res 2003; 9(2): 551-4.
[PMID: 12576417]
[41]
Pouyafar A, Heydarabad MZ, Mahboob S, Mokhtarzadeh A, Rahbarghazi R. Angiogenic potential of YKL-40 in the dynamics of tumor niche. Biomed Pharmacother 2018; 100: 478-85.
[http://dx.doi.org/10.1016/j.biopha.2018.02.050] [PMID: 29477911]
[42]
Shao R, Taylor SL, Oh DS, Schwartz LM. Vascular heterogeneity and targeting: The role of YKL-40 in glioblastoma vascularization. Oncotarget 2015; 6(38): 40507-18.
[http://dx.doi.org/10.18632/oncotarget.5943] [PMID: 26439689]
[43]
Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol 2018; 81: 241-330.
[http://dx.doi.org/10.1016/bs.apha.2017.08.002] [PMID: 29310800]
[44]
Faibish M, Francescone R, Bentley B, Yan W, Shao RA. YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: A potential therapeutic agent in cancers. Cancer Res 2012; 72(8): 4620-0.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0868] [PMID: 21357475]
[45]
Morera E, Steinhäuser SS, Budkova Z, et al. YKL-40/CHI3L1 facilitates migration and invasion in HER2 overexpressing breast epithelial progenitor cells and generates a niche for capillary-like network formation. In vitro Cell Dev Biol Anim 2019; 55(10): 838-53.
[http://dx.doi.org/10.1007/s11626-019-00403-x] [PMID: 31482369]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy