Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Kidney Injury: Focus on Molecular Signaling Pathways

Author(s): Wei Liu, MengDi Hu, Le Wang* and Hamed Mirzaei*

Volume 31, Issue 28, 2024

Published on: 17 January, 2024

Page: [4510 - 4533] Pages: 24

DOI: 10.2174/0109298673271547231108060805

Price: $65

Abstract

Acute kidney injury (AKI) is a syndrome in which kidney function reduces suddenly. This syndrome which includes both structural changes and loss of function may lead to chronic kidney disease (CKD). Kidney regeneration capacity depends on the cell type and severity of the injury. However, novel studies indicated that regeneration mostly relies on endogenous tubular cells that survive after AKI. Regenerative pharmacology requires a great knowledge of fundamental processes involved in the development and endogenous regeneration, leading to a necessity for investigating related signaling molecules in this process. Regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are currently known as critical regulators of gene expression in various cellular processes, and this regulatory function is also observed in nephrotic tissue, following damaging insults, which may promote or inhibit the progression of damage. Thus, studying signaling molecules and pathways involved in renal injury and repair results in a comprehensive prospect of these processes. Moreover, these studies can lead to new opportunities for discovering and enhancing therapeutic approaches to renal diseases. Herein, we review studies dealing with the role of different signaling pathways involved in renal injury. Besides, we discuss how some signaling pathways are useful for the repair process following AKI.

[1]
Preuss, H.G. Basics of renal anatomy and physiology. Clin. Lab. Med., 1993, 13(1), 1-11.
[http://dx.doi.org/10.1016/S0272-2712(18)30456-6] [PMID: 8462252]
[2]
Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerdá, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol., 2018, 14(10), 607-625.
[http://dx.doi.org/10.1038/s41581-018-0052-0] [PMID: 30135570]
[3]
Lv, J.C.; Zhang, L.X. Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol., 2019, 1165, 3-15.
[http://dx.doi.org/10.1007/978-981-13-8871-2_1] [PMID: 31399958]
[4]
Chung, B.H. Use of mesenchymal stem cells for chronic kidney disease. Kidney Res. Clin. Pract., 2019, 38(2), 131-134.
[http://dx.doi.org/10.23876/j.krcp.19.051] [PMID: 31189218]
[5]
Murugan, R.; Kellum, J.A. Acute kidney injury: What’s the prognosis? Nat. Rev. Nephrol., 2011, 7(4), 209-217.
[http://dx.doi.org/10.1038/nrneph.2011.13] [PMID: 21343898]
[6]
Janssen, M.J.; Masereeuw, R. An introduction to the pharmacology of kidney regeneration. Eur. J. Pharmacol., 2016, 790, 1-2.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.055] [PMID: 27375079]
[7]
Yang, H.C.; Liu, S.J.; Fogo, A.B. Kidney regeneration in mammals. Nephron, Exp. Nephrol., 2014, 126(2), 50-53.
[http://dx.doi.org/10.1159/000360661] [PMID: 24854640]
[8]
Yokoo, T.; Fukui, A.; Kobayashi, E. Application of regenerative medicine for kidney diseases. Organogenesis, 2007, 3(1), 34-43.
[http://dx.doi.org/10.4161/org.3.1.3961] [PMID: 19279698]
[9]
Maeshima, A.; Nakasatomi, M.; Nojima, Y. Regenerative medicine for the kidney: Renotropic factors, renal stem/progenitor cells, and stem cell therapy. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/595493] [PMID: 24895592]
[10]
Christ, G.J.; Saul, J.M.; Furth, M.E.; Andersson, K.E. The pharmacology of regenerative medicine. Pharmacol. Rev., 2013, 65(3), 1091-1133.
[http://dx.doi.org/10.1124/pr.112.007393] [PMID: 23818131]
[11]
Bali, K.K.; Kuner, R. Noncoding RNAs: Key molecules in understanding and treating pain. Trends Mol. Med., 2014, 20(8), 437-448.
[http://dx.doi.org/10.1016/j.molmed.2014.05.006] [PMID: 24986063]
[12]
Kato, M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res. Clin. Pract., 2018, 37(3), 197-209.
[http://dx.doi.org/10.23876/j.krcp.2018.37.3.197] [PMID: 30254844]
[13]
Kota, S.K.; Kota, S.B. Noncoding RNA and epigenetic gene regulation in renal diseases. Drug Discov. Today, 2017, 22(7), 1112-1122.
[http://dx.doi.org/10.1016/j.drudis.2017.04.020] [PMID: 28487070]
[14]
Vallone, C.; Rigon, G.; Gulia, C.; Baffa, A.; Votino, R.; Morosetti, G.; Zaami, S.; Briganti, V.; Catania, F.; Gaffi, M.; Nucciotti, R.; Costantini, F.; Piergentili, R.; Putignani, L.; Signore, F. Non-Coding RNAs and endometrial cancer. Genes, 2018, 9(4), 187.
[http://dx.doi.org/10.3390/genes9040187] [PMID: 29596364]
[15]
Brandenburger, T.; Salgado Somoza, A.; Devaux, Y.; Lorenzen, J.M. Noncoding RNAs in acute kidney injury. Kidney Int., 2018, 94(5), 870-881.
[http://dx.doi.org/10.1016/j.kint.2018.06.033] [PMID: 30348304]
[16]
Guo, C.; Dong, G.; Liang, X.; Dong, Z. Epigenetic regulation in AKI and kidney repair: Mechanisms and therapeutic implications. Nat. Rev. Nephrol., 2019, 15(4), 220-239.
[http://dx.doi.org/10.1038/s41581-018-0103-6] [PMID: 30651611]
[17]
Ortiz, A. RICORS2040: The need for collaborative research in chronic kidney disease; Oxford University Press, 2022, pp. 372-387.
[18]
Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med., 2014, 371(1), 58-66.
[http://dx.doi.org/10.1056/NEJMra1214243] [PMID: 24988558]
[19]
Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortiz, A.; Rodrigues-Diez, R.R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol., 2020, 16(5), 269-288.
[http://dx.doi.org/10.1038/s41581-019-0248-y] [PMID: 32060481]
[20]
Linkermann, A.; Stockwell, B.R.; Krautwald, S.; Anders, H.J. Regulated cell death and inflammation: An auto-amplification loop causes organ failure. Nat. Rev. Immunol., 2014, 14(11), 759-767.
[http://dx.doi.org/10.1038/nri3743] [PMID: 25324125]
[21]
Rayego-Mateos, S; Campillo, S; Rodrigues-Diez, RR; Tejera-Muñoz, A; Marquez-Exposito, L; Goldschmeding, R Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin. Sci., 2021, 135(16), 1999-2029.
[http://dx.doi.org/10.1042/CS20201016]
[22]
Melk, A.; Schmidt, B.M.W.; Takeuchi, O.; Sawitzki, B.; Rayner, D.C.; Halloran, P.F. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int., 2004, 65(2), 510-520.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00438.x] [PMID: 14717921]
[23]
Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol., 2014, 15(7), 482-496.
[http://dx.doi.org/10.1038/nrm3823] [PMID: 24954210]
[24]
Knoppert, S.N.; Valentijn, F.A.; Nguyen, T.Q.; Goldschmeding, R.; Falke, L.L. Cellular senescence and the kidney: Potential therapeutic targets and tools. Front. Pharmacol., 2019, 10, 770.
[http://dx.doi.org/10.3389/fphar.2019.00770] [PMID: 31354486]
[25]
Valentijn, F.A.; Falke, L.L.; Nguyen, T.Q.; Goldschmeding, R. Cellular senescence in the aging and diseased kidney. J. Cell Commun. Signal., 2018, 12(1), 69-82.
[http://dx.doi.org/10.1007/s12079-017-0434-2] [PMID: 29260442]
[26]
Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis, 2008, 4(2), 68-75.
[http://dx.doi.org/10.4161/org.4.2.5851] [PMID: 19279717]
[27]
Tai, D.; Wells, K.; Arcaroli, J.; Vanderbilt, C.; Aisner, D.L.; Messersmith, W.A.; Lieu, C.H. Targeting the WNT signaling pathway in cancer therapeutics. Oncologist, 2015, 20(10), 1189-1198.
[http://dx.doi.org/10.1634/theoncologist.2015-0057] [PMID: 26306903]
[28]
Steinhart, Z.; Angers, S. Wnt signaling in development and tissue homeostasis. Development, 2018, 145(11), dev146589.
[http://dx.doi.org/10.1242/dev.146589] [PMID: 29884654]
[29]
Tan, R.J.; Zhou, D.; Zhou, L.; Liu, Y. Wnt/beta-catenin signaling and kidney fibrosis. Kidney Int. Suppl., 2014, 4(1), 84-90.
[30]
Shkreli, M.; Sarin, K.Y.; Pech, M.F.; Papeta, N.; Chang, W.; Brockman, S.A.; Cheung, P.; Lee, E.; Kuhnert, F.; Olson, J.L.; Kuo, C.J.; Gharavi, A.G.; D’Agati, V.D.; Artandi, S.E. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat. Med., 2012, 18(1), 111-119.
[http://dx.doi.org/10.1038/nm.2550] [PMID: 22138751]
[31]
Brossa, A.; Papadimitriou, E.; Collino, F.; Incarnato, D.; Oliviero, S.; Camussi, G.; Bussolati, B. Role of CD133 molecule in wnt response and renal repair. Stem Cells Transl. Med., 2018, 7(3), 283-294.
[http://dx.doi.org/10.1002/sctm.17-0158] [PMID: 29431914]
[32]
Dai, C.; Stolz, D.B.; Kiss, L.P.; Monga, S.P.; Holzman, L.B.; Liu, Y. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol., 2009, 20(9), 1997-2008.
[http://dx.doi.org/10.1681/ASN.2009010019] [PMID: 19628668]
[33]
Terada, Y.; Tanaka, H.; Okado, T.; Shimamura, H.; Inoshita, S.; Kuwahara, M.; Sasaki, S. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol., 2003, 14(5), 1223-1233.
[http://dx.doi.org/10.1097/01.ASN.0000060577.94532.06] [PMID: 12707392]
[34]
Lin, S.L.; Li, B.; Rao, S.; Yeo, E.J.; Hudson, T.E.; Nowlin, B.T.; Pei, H.; Chen, L.; Zheng, J.J.; Carroll, T.J.; Pollard, J.W.; McMahon, A.P.; Lang, R.A.; Duffield, J.S. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl. Acad. Sci., 2010, 107(9), 4194-4199.
[http://dx.doi.org/10.1073/pnas.0912228107] [PMID: 20160075]
[35]
Zhou, D.; Li, Y.; Lin, L.; Zhou, L.; Igarashi, P.; Liu, Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int., 2012, 82(5), 537-547.
[http://dx.doi.org/10.1038/ki.2012.173] [PMID: 22622501]
[36]
Yamamoto, S.; Schulze, K.L.; Bellen, H.J. Introduction to Notch signaling. Methods Mol. Biol., 2014, 1187, 1-14.
[http://dx.doi.org/10.1007/978-1-4939-1139-4_1] [PMID: 25053477]
[37]
Penton, A.L.; Leonard, L.D.; Spinner, N.B. Notch signaling in human development and disease. Semin. Cell Dev. Biol., 2012, 23(4), 450-457.
[http://dx.doi.org/10.1016/j.semcdb.2012.01.010] [PMID: 22306179]
[38]
Sirin, Y.; Susztak, K. Notch in the kidney: Development and disease. J. Pathol., 2012, 226(2), 394-403.
[http://dx.doi.org/10.1002/path.2967] [PMID: 21952830]
[39]
Chung, E.; Deacon, P.; Marable, S.; Shin, J.; Park, J.S. Notch signaling promotes nephrogenesis by downregulating Six2. Development, 2016, 143(21), dev.143503.
[http://dx.doi.org/10.1242/dev.143503] [PMID: 27633993]
[40]
Bonegio, R.; Susztak, K. Notch signaling in diabetic nephropathy. Exp. Cell Res., 2012, 318(9), 986-992.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.036] [PMID: 22414874]
[41]
Murea, M.; Park, J.K.; Sharma, S.; Kato, H.; Gruenwald, A.; Niranjan, T.; Si, H.; Thomas, D.B.; Pullman, J.M.; Melamed, M.L.; Susztak, K. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int., 2010, 78(5), 514-522.
[http://dx.doi.org/10.1038/ki.2010.172] [PMID: 20531454]
[42]
Bhagat, T.D.; Zou, Y.; Huang, S.; Park, J.; Palmer, M.B.; Hu, C.; Li, W.; Shenoy, N.; Giricz, O.; Choudhary, G.; Yu, Y.; Ko, Y.A.; Izquierdo, M.C.; Park, A.S.D.; Vallumsetla, N.; Laurence, R.; Lopez, R.; Suzuki, M.; Pullman, J.; Kaner, J.; Gartrell, B.; Hakimi, A.A.; Greally, J.M.; Patel, B.; Benhadji, K.; Pradhan, K.; Verma, A.; Susztak, K. Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J. Biol. Chem., 2017, 292(3), 837-846.
[http://dx.doi.org/10.1074/jbc.M116.745208] [PMID: 27909050]
[43]
Xiao, W.; Gao, Z.; Duan, Y.; Yuan, W.; Ke, Y. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 41.
[http://dx.doi.org/10.1186/s13046-017-0507-3] [PMID: 28279221]
[44]
Ma, Q.; Wang, Y.; Zhang, T.; Zuo, W. Notch-mediated Sox9 + cell activation contributes to kidney repair after partial nephrectomy. Life Sci., 2018, 193, 104-109.
[http://dx.doi.org/10.1016/j.lfs.2017.11.041] [PMID: 29198839]
[45]
Gupta, S.; Li, S.; Abedin, M.J.; Wang, L.; Schneider, E.; Najafian, B.; Rosenberg, M. Effect of Notch activation on the regenerative response to acute renal failure. Am. J. Physiol. Renal Physiol., 2010, 298(1), F209-F215.
[http://dx.doi.org/10.1152/ajprenal.00451.2009] [PMID: 19828677]
[46]
Kramer, J.; Schwanbeck, R.; Pagel, H.; Cakiroglu, F.; Rohwedel, J.; Just, U. Inhibition of notch signaling ameliorates acute kidney failure and downregulates platelet-derived growth factor receptor β in the mouse model. Cells Tissues Organs, 2016, 201(2), 109-117.
[http://dx.doi.org/10.1159/000442463] [PMID: 26939110]
[47]
Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[48]
Katoh, M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci., 2016, 37(12), 1081-1096.
[http://dx.doi.org/10.1016/j.tips.2016.10.003] [PMID: 27992319]
[49]
Bates, C.M. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr. Nephrol., 2011, 26(9), 1373-1379.
[http://dx.doi.org/10.1007/s00467-010-1747-z] [PMID: 21222001]
[50]
Gallegos, T.F.; Kamei, C.N.; Rohly, M.; Drummond, I.A. Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Dev. Biol., 2019, 454(1), 44-51.
[http://dx.doi.org/10.1016/j.ydbio.2019.06.011] [PMID: 31220433]
[51]
Qiao, J.; Bush, K.T.; Steer, D.L.; Stuart, R.O.; Sakurai, H.; Wachsman, W.; Nigam, S.K. Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech. Dev., 2001, 109(2), 123-135.
[http://dx.doi.org/10.1016/S0925-4773(01)00592-5] [PMID: 11731227]
[52]
Ichimura, T.; Maier, J.A.; Maciag, T.; Zhang, G.; Stevens, J.L. FGF-1 in normal and regenerating kidney: Expression in mononuclear, interstitial, and regenerating epithelial cells. Am. J. Physiol., 1995, 269(5 Pt 2), F653-F662.
[PMID: 7503231]
[53]
Kirov, A.; Duarte, M.; Guay, J.; Karolak, M.; Yan, C.; Oxburgh, L.; Prudovsky, I. Transgenic expression of nonclassically secreted FGF suppresses kidney repair. PLoS One, 2012, 7(5), e36485.
[http://dx.doi.org/10.1371/journal.pone.0036485] [PMID: 22606265]
[54]
Villanueva, S.; Cespedes, C.; Gonzalez, A.; Vio, C.P. bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291(6), R1677-R1687.
[http://dx.doi.org/10.1152/ajpregu.00023.2006] [PMID: 16873559]
[55]
Vasko, R.; Koziolek, M.; Ikehata, M.; Rastaldi, M.P.; Jung, K.; Schmid, H.; Kretzler, M.; Müller, G.A.; Strutz, F. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts. Am. J. Physiol. Renal Physiol., 2009, 296(6), F1452-F1463.
[http://dx.doi.org/10.1152/ajprenal.90352.2008] [PMID: 19279131]
[56]
Tan, X.H.; Zheng, X.M.; Yu, L.X.; He, J.; Zhu, H.M.; Ge, X.P.; Ren, X.L.; Ye, F.Q.; Bellusci, S.; Xiao, J.; Li, X.K.; Zhang, J.S. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. J. Cell. Mol. Med., 2017, 21(11), 2909-2925.
[http://dx.doi.org/10.1111/jcmm.13203] [PMID: 28544332]
[57]
Mattison, P.C.; Soler-García, Á.A.; Das, J.R.; Jerebtsova, M.; Perazzo, S.; Tang, P.; Ray, P.E. Role of circulating fibroblast growth factor-2 in lipopolysaccharide-induced acute kidney injury in mice. Pediatr. Nephrol., 2012, 27(3), 469-483.
[http://dx.doi.org/10.1007/s00467-011-2001-z] [PMID: 21959768]
[58]
Tan, X.; Zhu, H.; Tao, Q.; Guo, L.; Jiang, T.; Xu, L.; Yang, R.; Wei, X.; Wu, J.; Li, X.; Zhang, J.S. FGF10 protects against renal ischemia/reperfusion injury by regulating autophagy and inflammatory signaling. Front. Genet., 2018, 9, 556.
[http://dx.doi.org/10.3389/fgene.2018.00556] [PMID: 30532765]
[59]
Christov, M.; Neyra, J.A.; Gupta, S.; Leaf, D.E. Fibroblast Growth Factor 23 and Klotho in AKI. Semin. Nephrol., 2019, 39(1), 57-75.
[http://dx.doi.org/10.1016/j.semnephrol.2018.10.005] [PMID: 30606408]
[60]
Kim, H.W.; Lee, J.E.; Cha, J.J.; Hyun, Y.Y.; Kim, J.E.; Lee, M.H.; Song, H.K.; Nam, D.H.; Han, J.Y.; Han, S.Y.; Han, K.H.; Kang, Y.S.; Cha, D.R. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology, 2013, 154(9), 3366-3376.
[http://dx.doi.org/10.1210/en.2012-2276] [PMID: 23825123]
[61]
Brazil, D.P.; Church, R.H.; Surae, S.; Godson, C.; Martin, F. BMP signalling: Agony and antagony in the family. Trends Cell Biol., 2015, 25(5), 249-264.
[http://dx.doi.org/10.1016/j.tcb.2014.12.004] [PMID: 25592806]
[62]
Miyazono, K.; Maeda, S.; Imamura, T. BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev., 2005, 16(3), 251-263.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.009] [PMID: 15871923]
[63]
Nishinakamura, R.; Sakaguchi, M. BMP signaling and its modifiers in kidney development. Pediatr. Nephrol., 2014, 29(4), 681-686.
[http://dx.doi.org/10.1007/s00467-013-2671-9] [PMID: 24217785]
[64]
Wetzel, P.; Haag, J.; Câmpean, V.; Goldschmeding, R.; Atalla, A.; Amann, K.; Aigner, T. Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominently localized to the distal nephron. Kidney Int., 2006, 70(4), 717-723.
[http://dx.doi.org/10.1038/sj.ki.5001653] [PMID: 16807538]
[65]
Ivanac-Janković, R.; Ćorić, M.; Furić-Čunko, V.; Lovičić, V.; Bašić-Jukić, N.; Kes, P. Bmp-7 protein expression is downregulated in human diabetic nephropathy. Acta Clin. Croat., 2015, 54(2), 164-168.
[PMID: 26415312]
[66]
Nichols, L.A.; Slusarz, A.; Grunz-Borgmann, E.A.; Parrish, A.R. α(E)-catenin regulates BMP-7 expression and migration in renal epithelial cells. Am. J. Nephrol., 2014, 39(5), 409-417.
[http://dx.doi.org/10.1159/000362250] [PMID: 24818804]
[67]
Zeisberg, M.; Hanai, J.; Sugimoto, H.; Mammoto, T.; Charytan, D.; Strutz, F.; Kalluri, R. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med., 2003, 9(7), 964-968.
[http://dx.doi.org/10.1038/nm888] [PMID: 12808448]
[68]
Higgins, D.F.; Ewart, L.M.; Masterson, E.; Tennant, S.; Grebnev, G.; Prunotto, M.; Pomposiello, S.; Conde-Knape, K.; Martin, F.M.; Godson, C. BMP7-induced-Pten inhibits Akt and prevents renal fibrosis. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(12), 3095-3104.
[http://dx.doi.org/10.1016/j.bbadis.2017.09.011] [PMID: 28923783]
[69]
Yao, E.; Chuang, P.T. Hedgehog signaling: From basic research to clinical applications. J. Formos. Med. Assoc., 2015, 114(7), 569-576.
[http://dx.doi.org/10.1016/j.jfma.2015.01.005] [PMID: 25701396]
[70]
Le, H.; Kleinerman, R.; Lerman, O.Z.; Brown, D.; Galiano, R.; Gurtner, G.C.; Warren, S.M.; Levine, J.P.; Saadeh, P.B. Hedgehog signaling is essential for normal wound healing. Wound Repair Regen., 2008, 16(6), 768-773.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00430.x] [PMID: 19128247]
[71]
Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev., 2008, 22(18), 2454-2472.
[http://dx.doi.org/10.1101/gad.1693608] [PMID: 18794343]
[72]
Robbins, D.J.; Fei, D.L.; Riobo, N.A. The Hedgehog signal transduction network. Sci. Signal., 2012, 5(246), re6.
[http://dx.doi.org/10.1126/scisignal.2002906] [PMID: 23074268]
[73]
Zhou, D.; Fu, H.; Liu, S.; Zhang, L.; Xiao, L.; Bastacky, S.I.; Liu, Y. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J., 2019, 33(11), 12576-12587.
[http://dx.doi.org/10.1096/fj.201900651RR] [PMID: 31461626]
[74]
Ding, H.; Zhou, D.; Hao, S.; Zhou, L.; He, W.; Nie, J.; Hou, F.F.; Liu, Y. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol., 2012, 23(5), 801-813.
[http://dx.doi.org/10.1681/ASN.2011060614] [PMID: 22302193]
[75]
Zhou, D.; Li, Y.; Zhou, L.; Tan, R.J.; Xiao, L.; Liang, M.; Hou, F.F.; Liu, Y. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol., 2014, 25(10), 2187-2200.
[http://dx.doi.org/10.1681/ASN.2013080893] [PMID: 24744439]
[76]
Fabian, S.L.; Penchev, R.R.; St-Jacques, B.; Rao, A.N.; Sipilä, P.; West, K.A.; McMahon, A.P.; Humphreys, B.D. Hedgehog-Gli pathway activation during kidney fibrosis. Am. J. Pathol., 2012, 180(4), 1441-1453.
[http://dx.doi.org/10.1016/j.ajpath.2011.12.039] [PMID: 22342522]
[77]
Kramann, R.; Fleig, S.V.; Schneider, R.K.; Fabian, S.L.; DiRocco, D.P.; Maarouf, O.; Wongboonsin, J.; Ikeda, Y.; Heckl, D.; Chang, S.L.; Rennke, H.G.; Waikar, S.S.; Humphreys, B.D. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J. Clin. Invest., 2015, 125(8), 2935-2951.
[http://dx.doi.org/10.1172/JCI74929] [PMID: 26193634]
[78]
Bai, Y.; Lu, H.; Lin, C.; Xu, Y.; Hu, D.; Liang, Y.; Hong, W.; Chen, B. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis. Int. J. Mol. Med., 2016, 37(5), 1317-1327.
[http://dx.doi.org/10.3892/ijmm.2016.2546] [PMID: 27035418]
[79]
Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res., 2010, 16(11), 2927-2931.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2329] [PMID: 20484021]
[80]
Petit, I.; Jin, D.; Rafii, S. The SDF-1–CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol., 2007, 28(7), 299-307.
[http://dx.doi.org/10.1016/j.it.2007.05.007] [PMID: 17560169]
[81]
Chen, L.H.; Advani, S.L.; Thai, K.; Kabir, M.G.; Sood, M.M.; Gibson, I.W.; Yuen, D.A.; Connelly, K.A.; Marsden, P.A.; Kelly, D.J.; Gilbert, R.E.; Advani, A. SDF-1/CXCR4 signaling preserves microvascular integrity and renal function in chronic kidney disease. PLoS One, 2014, 9(3), e92227.
[http://dx.doi.org/10.1371/journal.pone.0092227] [PMID: 24637920]
[82]
Tögel, F.; Isaac, J.; Hu, Z.; Weiss, K.; Westenfelder, C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int., 2005, 67(5), 1772-1784.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00275.x] [PMID: 15840024]
[83]
Stokman, G.; Stroo, I.; Claessen, N.; Teske, G.J.D.; Florquin, S.; Leemans, J.C. SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury. Nephrol. Dial. Transplant., 2010, 25(12), 3852-3859.
[http://dx.doi.org/10.1093/ndt/gfq311] [PMID: 20519232]
[84]
Ge, G.; Zhang, H.; Li, R.; Liu, H. The function of SDF-1-CXCR4 axis in sp cells-mediated protective role for renal ischemia/reperfusion injury by SHH/GLI1-ABCG2 pathway. Shock, 2017, 47(2), 251-259.
[http://dx.doi.org/10.1097/SHK.0000000000000694] [PMID: 27454381]
[85]
Ghyselinck, N.B.; Duester, G. Retinoic acid signaling pathways. Development, 2019, 146(13), dev167502.
[http://dx.doi.org/10.1242/dev.167502] [PMID: 31273085]
[86]
Gudas, L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2012, 1821(1), 213-221.
[http://dx.doi.org/10.1016/j.bbalip.2011.08.002] [PMID: 21855651]
[87]
Wagner, J.U.C.D.R.G.E.N.; Dechow, C.; Morath, C.; Lehrke, I.; Amann, K.; Waldherr, R.U.C.D.D.I.G.E.R.; Floege, J.U.C.D.R.G.E.N.; Ritz, E. Retinoic acid reduces glomerular injury in a rat model of glomerular damage. J. Am. Soc. Nephrol., 2000, 11(8), 1479-1487.
[http://dx.doi.org/10.1681/ASN.V1181479] [PMID: 10906161]
[88]
Chiba, T.; Skrypnyk, N.I.; Skvarca, L.B.; Penchev, R.; Zhang, K.X.; Rochon, E.R.; Fall, J.L.; Paueksakon, P.; Yang, H.; Alford, C.E.; Roman, B.L.; Zhang, M.Z.; Harris, R.; Hukriede, N.A.; de Caestecker, M.P. Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J. Am. Soc. Nephrol., 2016, 27(2), 495-508.
[http://dx.doi.org/10.1681/ASN.2014111108] [PMID: 26109319]
[89]
Han, S.Y.; So, G.A.; Jee, Y.H.; Han, K.H.; Kang, Y.S.; Kim, H.K.; Kang, S.W.; Han, D.S.; Han, J.Y.; Cha, D.R. Effect of retinoic acid in experimental diabetic nephropathy. Immunol. Cell Biol., 2004, 82(6), 568-576.
[http://dx.doi.org/10.1111/j.1440-1711.2004.01287.x] [PMID: 15550114]
[90]
Ratnam, K.K.; Feng, X.; Chuang, P.Y.; Verma, V.; Lu, T.C.; Wang, J.; Jin, Y.; Farias, E.F.; Napoli, J.L.; Chen, N.; Kaufman, L.; Takano, T.; D’Agati, V.D.; Klotman, P.E.; He, J.C. Role of the retinoic acid receptor-α in HIV-associated nephropathy. Kidney Int., 2011, 79(6), 624-634.
[http://dx.doi.org/10.1038/ki.2010.470] [PMID: 21150871]
[91]
He, J.C.; Lu, T.C.; Fleet, M.; Sunamoto, M.; Husain, M.; Fang, W.; Neves, S.; Chen, Y.; Shankland, S.; Iyengar, R.; Klotman, P.E. Retinoic acid inhibits HIV-1-induced podocyte proliferation through the cAMP pathway. J. Am. Soc. Nephrol., 2007, 18(1), 93-102.
[http://dx.doi.org/10.1681/ASN.2006070727] [PMID: 17182884]
[92]
Lin, F.; Xu, L.; Yuan, R.; Han, S.; Xie, J.; Jiang, K.; Li, B.; Yu, W.; Rao, T.; Zhou, X.; Cheng, F. Identification of inflammatory response and alternative splicing in acute kidney injury and experimental verification of the involvement of RNA-binding protein RBFOX1 in this disease. Int. J. Mol. Med., 2022, 49(3), 32.
[http://dx.doi.org/10.3892/ijmm.2022.5087] [PMID: 35059728]
[93]
Li, T.; Yu, C.; Zhuang, S. Histone methyltransferase EZH2: A potential therapeutic target for kidney diseases. Front. Physiol., 2021, 12, 640700.
[http://dx.doi.org/10.3389/fphys.2021.640700] [PMID: 33679454]
[94]
Liu, Z.; Wang, Y.; Shu, S.; Cai, J.; Tang, C.; Dong, Z. Non-coding RNAs in kidney injury and repair. Am. J. Physiol. Cell Physiol., 2019, 317(2), C177-C188.
[http://dx.doi.org/10.1152/ajpcell.00048.2019] [PMID: 30969781]
[95]
Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[96]
Ren, G.L.; Zhu, J.; Li, J.; Meng, X.M. Noncoding RNAs in acute kidney injury. J. Cell. Physiol., 2019, 234(3), 2266-2276.
[http://dx.doi.org/10.1002/jcp.27203] [PMID: 30146769]
[97]
Wei, Q.; Bhatt, K.; He, H.Z.; Mi, Q.S.; Haase, V.H.; Dong, Z. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol., 2010, 21(5), 756-761.
[http://dx.doi.org/10.1681/ASN.2009070718] [PMID: 20360310]
[98]
Lan, Y.F.; Chen, H.H.; Lai, P.F.; Cheng, C.F.; Huang, Y.T.; Lee, Y.C.; Chen, T.W.; Lin, H. MicroRNA-494 reduces ATF3 expression and promotes AKI. J. Am. Soc. Nephrol., 2012, 23(12), 2012-2023.
[http://dx.doi.org/10.1681/ASN.2012050438] [PMID: 23160513]
[99]
Yang, C.; Yang, C.; Huang, Z.; Zhang, J.; Chen, N.; Guo, Y.; Zahoor, A.; Deng, G. Reduced expression of MiR-125a-5p aggravates LPS-induced experimental acute kidney injury pathology by targeting TRAF6. Life Sci., 2022, 288, 119657.
[http://dx.doi.org/10.1016/j.lfs.2021.119657] [PMID: 34048808]
[100]
Huang, X; Hou, X; Chuan, L; Wei, S; Wang, J; Yang, X miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway. Int. Immunopharmacol., 2020, 89((Pt A)), 107016.
[101]
zhang, L.; He, S.; Wang, Y.; Zhu, X.; Shao, W.; Xu, Q.; Cui, Z. miRNA-20a suppressed lipopolysaccharide-induced HK-2 cells injury via NFκB and ERK1/2 signaling by targeting CXCL12. Mol. Immunol., 2020, 118, 117-123.
[http://dx.doi.org/10.1016/j.molimm.2019.12.009] [PMID: 31874343]
[102]
Iskander, K.N.; Osuchowski, M.F.; Stearns-Kurosawa, D.J.; Kurosawa, S.; Stepien, D.; Valentine, C.; Remick, D.G. Sepsis: Multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol. Rev., 2013, 93(3), 1247-1288.
[http://dx.doi.org/10.1152/physrev.00037.2012] [PMID: 23899564]
[103]
Safari, S.; Hashemi, B.; Forouzanfar, M.M.; Shahhoseini, M.; Heidari, M. Epidemiology and outcome of patients with acute kidney injury in emergency department; a cross-sectional study. emergency, 2018, 6(1), e30.
[PMID: 30009232]
[104]
Colbert, J.F.; Ford, J.A.; Haeger, S.M.; Yang, Y.; Dailey, K.L.; Allison, K.C.; Neudecker, V.; Evans, C.M.; Richardson, V.L.; Brodsky, K.S.; Faubel, S.; Eltzschig, H.K.; Schmidt, E.P.; Ginde, A.A. A model-specific role of microRNA-223 as a mediator of kidney injury during experimental sepsis. Am. J. Physiol. Renal Physiol., 2017, 313(2), F553-F559.
[http://dx.doi.org/10.1152/ajprenal.00493.2016] [PMID: 28515178]
[105]
Bhatt, K.; Wei, Q.; Pabla, N.; Dong, G.; Mi, Q.S.; Liang, M.; Mei, C.; Dong, Z. MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury. J. Am. Soc. Nephrol., 2015, 26(7), 1588-1596.
[http://dx.doi.org/10.1681/ASN.2014050463] [PMID: 25587068]
[106]
Lorenzen, J.M.; Kaucsar, T.; Schauerte, C.; Schmitt, R.; Rong, S.; Hübner, A.; Scherf, K.; Fiedler, J.; Martino, F.; Kumarswamy, R.; Kölling, M.; Sörensen, I.; Hinz, H.; Heineke, J.; van Rooij, E.; Haller, H.; Thum, T. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J. Am. Soc. Nephrol., 2014, 25(12), 2717-2729.
[http://dx.doi.org/10.1681/ASN.2013121329] [PMID: 24854275]
[107]
Wei, Q.; Liu, Y.; Liu, P.; Hao, J.; Liang, M.; Mi, Q.; Chen, J.K.; Dong, Z. MicroRNA-489 induction by hypoxia–inducible factor–1 protects against ischemic kidney injury. J. Am. Soc. Nephrol., 2016, 27(9), 2784-2796.
[http://dx.doi.org/10.1681/ASN.2015080870] [PMID: 26975439]
[108]
Hao, J.; Wei, Q.; Mei, S.; Li, L.; Su, Y.; Mei, C.; Dong, Z. Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6. Kidney Int., 2017, 91(1), 106-118.
[http://dx.doi.org/10.1016/j.kint.2016.07.017] [PMID: 27622990]
[109]
Amrouche, L.; Desbuissons, G.; Rabant, M.; Sauvaget, V.; Nguyen, C.; Benon, A.; Barre, P.; Rabaté, C.; Lebreton, X.; Gallazzini, M.; Legendre, C.; Terzi, F.; Anglicheau, D. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J. Am. Soc. Nephrol., 2017, 28(2), 479-493.
[http://dx.doi.org/10.1681/ASN.2016010045] [PMID: 27444565]
[110]
Xu, X.; Kriegel, A.J.; Liu, Y.; Usa, K.; Mladinov, D.; Liu, H.; Fang, Y.; Ding, X.; Liang, M. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int., 2012, 82(11), 1167-1175.
[http://dx.doi.org/10.1038/ki.2012.241] [PMID: 22785173]
[111]
Wei, Q.; Sun, H.; Song, S.; Liu, Y.; Liu, P.; Livingston, M.J.; Wang, J.; Liang, M.; Mi, Q.S.; Huo, Y.; Nahman, N.S.; Mei, C.; Dong, Z. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J. Clin. Invest., 2018, 128(12), 5448-5464.
[http://dx.doi.org/10.1172/JCI121859] [PMID: 30325740]
[112]
Bijkerk, R.; van Solingen, C.; de Boer, H.C.; van der Pol, P.; Khairoun, M.; de Bruin, R.G.; van Oeveren-Rietdijk, A.M.; Lievers, E.; Schlagwein, N.; van Gijlswijk, D.J.; Roeten, M.K.; Neshati, Z.; de Vries, A.A.F.; Rodijk, M.; Pike-Overzet, K.; van den Berg, Y.W.; van der Veer, E.P.; Versteeg, H.H.; Reinders, M.E.J.; Staal, F.J.T.; van Kooten, C.; Rabelink, T.J.; van Zonneveld, A.J. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J. Am. Soc. Nephrol., 2014, 25(8), 1710-1722.
[http://dx.doi.org/10.1681/ASN.2013060640] [PMID: 24610930]
[113]
Qiu, Z.; Zhong, Z.; Zhang, Y.; Tan, H.; Deng, B.; Meng, G. Human umbilical cord mesenchymal stem cell-derived exosomal miR-335-5p attenuates the inflammation and tubular epithelial–myofibroblast transdifferentiation of renal tubular epithelial cells by reducing ADAM19 protein levels. Stem Cell Res. Ther., 2022, 13(1), 373.
[http://dx.doi.org/10.1186/s13287-022-03071-z] [PMID: 35902972]
[114]
Hao, J. MicroRNA-375 is induced in cisplatin nephrotoxicity to repress hepatocyte nuclear factor 1-β. J. Biol. Chem., 2017, 292(11), 4571-4582.
[115]
Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med., 2010, 16(9-10), 409-416.
[http://dx.doi.org/10.2119/molmed.2010.00002] [PMID: 20386864]
[116]
Lee, C.G.; Kim, J.G.; Kim, H.J.; Kwon, H.K.; Cho, I.J.; Choi, D.W.; Lee, W.H.; Kim, W.D.; Hwang, S.J.; Choi, S.; Kim, S.G. Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int., 2014, 86(5), 943-953.
[http://dx.doi.org/10.1038/ki.2014.117] [PMID: 24759152]
[117]
Pellegrini, K.L.; Han, T.; Bijol, V.; Saikumar, J.; Craciun, F.L.; Chen, W.W.; Fuscoe, J.C.; Vaidya, V.S. MicroRNA-155 deficient mice experience heightened kidney toxicity when dosed with cisplatin. Toxicol. Sci., 2014, 141(2), 484-492.
[http://dx.doi.org/10.1093/toxsci/kfu143] [PMID: 25015656]
[118]
Qin, W.; Xie, W.; Yang, X.; Xia, N.; Yang, K. Inhibiting microRNA-449 attenuates cisplatin-induced injury in NRK-52E cells possibly via regulating the SIRT1/P53/BAX pathway. Med. Sci. Monit., 2016, 22, 818-823.
[http://dx.doi.org/10.12659/MSM.897187] [PMID: 26968221]
[119]
Guo, Y.; Ni, J.; Chen, S.; Bai, M.; Lin, J.; Ding, G.; Zhang, Y.; Sun, P.; Jia, Z.; Huang, S.; Yang, L.; Zhang, A. MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function. J. Am. Soc. Nephrol., 2018, 29(2), 449-461.
[http://dx.doi.org/10.1681/ASN.2017040381] [PMID: 29042455]
[120]
Joo, M; Lee, C; Koo, J; Kim, S. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis., 2013, 4(10), e899.
[121]
Wang, S.; Zhang, Z.; Wang, J.; Miao, H. MiR-107 induces TNF-α secretion in endothelial cells causing tubular cell injury in patients with septic acute kidney injury. Biochem. Biophys. Res. Commun., 2017, 483(1), 45-51.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.013] [PMID: 28063928]
[122]
Mai, H.; Huang, Z.; Zhang, X.; Zhang, Y.; Chen, J.; Chen, M.; Zhang, Y.; Song, Y.; Wang, B.; Lin, Y.; Gu, S. Protective effects of endothelial progenitor cell microvesicles carrying miR-98-5p on angiotensin II-induced rat kidney cell injury. Exp. Ther. Med., 2022, 24(5), 702.
[http://dx.doi.org/10.3892/etm.2022.11638] [PMID: 36277153]
[123]
Shi, W.; Zhou, X.; Li, X.; Peng, X.; Chen, G.; Li, Y.; Zhang, C.; Yu, H.; Feng, Z.; Gou, X.; Fan, J. Human umbilical cord mesenchymal stem cells protect against renal ischemia-reperfusion injury by secreting extracellular vesicles loaded with miR-148b-3p that target pyruvate dehydrogenase kinase 4 to inhibit endoplasmic reticulum stress at the reperfusion stages. Int. J. Mol. Sci., 2023, 24(10), 8899.
[http://dx.doi.org/10.3390/ijms24108899] [PMID: 37240246]
[124]
Ji, X.; Liu, X.; Li, X.; Du, X.; Fan, L. MircoRNA-322-5p promotes lipopolysaccharide-induced acute kidney injury mouse models and mouse primary proximal renal tubular epithelial cell injury by regulating T-box transcription factor 21/mitogen-activated protein kinase/extracellular signal-related kinase axis. Nefrologia, 2023, S2013-2514(23), 00079-2.
[125]
Zhang, Y.; Lv, X.; Fan, Q.; Chen, F.; Wan, Z.; Nibaruta, J.; Wang, H.; Wang, X.; Yuan, Y.; Guo, W.; Leng, Y. miRNA155-5P participated in DDX3X targeted regulation of pyroptosis to attenuate renal ischemia/reperfusion injury. Aging, 2023, 15(9), 3586-3597.
[http://dx.doi.org/10.18632/aging.204692] [PMID: 37142295]
[126]
Chen, T.; Jiang, Z.; Zhang, H.; Yang, R.; Wu, Y.; Guo, Y. MiRNA-200b level in peripheral blood predicts renal interstitial injury in patients with diabetic nephropathy. J. Med. Biochem., 2023, 42(2), 289-295.
[http://dx.doi.org/10.5937/jomb0-40379] [PMID: 36987413]
[127]
Chen, Y.; Zhang, C.; Du, Y.; Yang, X.; Liu, M.; Yang, W.; Lei, G.; Wang, G. Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion injury regulates autophagy by targeting TRAF6. Chin. Med. J., 2022, 135(20), 2467-2477.
[http://dx.doi.org/10.1097/CM9.0000000000002377] [PMID: 36449688]
[128]
Zhang, M.; Zhi, D.; Lin, J.; Liu, P.; Wang, Y.; Duan, M. miR-181a-5p inhibits pyroptosis in sepsis-induced acute kidney injury through downregulation of NEK7. J. Immunol. Res., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/1825490] [PMID: 35991122]
[129]
Ma, W.; Miao, X.; Xia, F.; Ruan, C.; Tao, D.; Li, B. The potential of miR-370-3p and miR-495-3p serving as biomarkers for sepsis-associated acute kidney injury. Comput. Math. Methods Med., 2022, 2022, 1-5.
[http://dx.doi.org/10.1155/2022/2439509] [PMID: 35860182]
[130]
Yin, Q.; Zhao, Y.J.; Ni, W.J.; Tang, T.T.; Wang, Y.; Cao, J.Y.; Yin, D.; Wen, Y.; Li, Z.L.; Zhang, Y.L.; Jiang, W.; Zhang, Y.; Lu, X.Y.; Zhang, A.Q.; Gan, W.H.; Lv, L.L.; Liu, B.C.; Wang, B. MiR-155 deficiency protects renal tubular epithelial cells from telomeric and genomic DNA damage in cisplatin-induced acute kidney injury. Theranostics, 2022, 12(10), 4753-4766.
[http://dx.doi.org/10.7150/thno.72456] [PMID: 35832084]
[131]
Zhang, Z.; Chen, H.; Zhou, L.; Li, C.; Lu, G.; Wang, L. Macrophage-derived exosomal miRNA-155 promotes tubular injury in ischemia-induced acute kidney injury. Int. J. Mol. Med., 2022, 50(3), 116.
[http://dx.doi.org/10.3892/ijmm.2022.5172] [PMID: 35795997]
[132]
Wang, X.; Jia, P.; Ren, T.; Zou, Z.; Xu, S.; Zhang, Y.; Shi, Y.; Bao, S.; Li, Y.; Fang, Y.; Ding, X. MicroRNA-382 promotes M2-like macrophage via the SIRP-α/STAT3 signaling pathway in aristolochic acid-induced renal fibrosis. Front. Immunol., 2022, 13, 864984.
[http://dx.doi.org/10.3389/fimmu.2022.864984] [PMID: 35585990]
[133]
Ding, G.; an, J.; Li, L. MicroRNA-103a-3p enhances sepsis-induced acute kidney injury via targeting CXCL12. Bioengineered, 2022, 13(4), 10288-10298.
[http://dx.doi.org/10.1080/21655979.2022.2062195] [PMID: 35510354]
[134]
Ding, Y.; Guo, F.; Zhu, T.; Li, J.; Gu, D.; Jiang, W.; Lu, Y.; Zhou, D. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway. Int. J. Mol. Med., 2018, 41(1), 446-454.
[PMID: 29115409]
[135]
Xu, L.; Hu, G.; Xing, P.; Zhou, M.; Wang, D. Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci., 2020, 262, 118505.
[http://dx.doi.org/10.1016/j.lfs.2020.118505] [PMID: 32998017]
[136]
Zhu, S.; Lu, Y. dexmedetomidine suppressed the biological behavior of hk-2 cells treated with lps by down-regulating ALKBH5. Inflammation, 2020, 43(6), 2256-2263.
[http://dx.doi.org/10.1007/s10753-020-01293-y] [PMID: 32656611]
[137]
Zhou, S.G.; Zhang, W.; Ma, H.J.; Guo, Z.Y.; Xu, Y. Silencing of LncRNA TCONS_00088786 reduces renal fibrosis through miR-132. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(1), 166-173.
[PMID: 29364484]
[138]
Wang, P.; Luo, M.L.; Song, E.; Zhou, Z.; Ma, T.; Wang, J.; Jia, N.; Wang, G.; Nie, S.; Liu, Y.; Hou, F. Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci. Transl. Med., 2018, 10(462), eaat2039.
[http://dx.doi.org/10.1126/scitranslmed.aat2039] [PMID: 30305452]
[139]
Xiao, H.; Liao, Y.; Tang, C.; Xiao, Z.; Luo, H.; Li, J.; Liu, H.; Sun, L.; Zeng, D.; Li, Y. RNA-Seq analysis of potential lncRNAs and genes for the anti-renal fibrotic effect of norcantharidin. J. Cell. Biochem., 2019, 120(10), 17354-17367.
[http://dx.doi.org/10.1002/jcb.28999] [PMID: 31104327]
[140]
Wu, H.; Wang, J.; Ma, Z. Long noncoding RNA HOXA-AS2 mediates microRNA-106b-5p to repress sepsis-engendered acute kidney injury. J. Biochem. Mol. Toxicol., 2020, 34(4), e22453.
[http://dx.doi.org/10.1002/jbt.22453] [PMID: 32048402]
[141]
Deng, J.; Tan, W.; Luo, Q.; Lin, L.; Zheng, L.; Yang, J. Long non-coding RNA MEG3 promotes renal tubular epithelial cell pyroptosis by regulating the miR-18a-3p/GSDMD pathway in lipopolysaccharide-induced acute kidney injury. Front. Physiol., 2021, 12, 663216.
[http://dx.doi.org/10.3389/fphys.2021.663216] [PMID: 34012408]
[142]
Qiu, J.; Chen, Y.; Huang, G.; Zhang, Z.; Chen, L.; Na, N. Transforming growth factor-β activated long non-coding RNA ATB plays an important role in acute rejection of renal allografts and may impacts the postoperative pharmaceutical immunosuppression therapy. nephrology, 2017, 22(10), 796-803.
[http://dx.doi.org/10.1111/nep.12851] [PMID: 27414253]
[143]
Lv, P.; Liu, H.; Ye, T.; Yang, X.; Duan, C.; Yao, X.; Li, B.; Tang, K.; Chen, Z.; Liu, J.; Deng, Y.; Wang, T.; Xing, J.; Liang, C.; Xu, H.; Ye, Z. XIST inhibition attenuates calcium oxalate nephrocalcinosis-induced renal inflammation and oxidative injury via the miR-223/NLRP3 pathway. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/1676152] [PMID: 34512861]
[144]
Chen, W.; Zhou, Z.Q.; Ren, Y.Q.; Zhang, L.; Sun, L.N.; Man, Y.L.; Wang, Z.K. Effects of long non-coding RNA LINC00667 on renal tubular epithelial cell proliferation, apoptosis and renal fibrosis via the miR-19b-3p/LINC00667/CTGF signaling pathway in chronic renal failure. Cell. Signal., 2019, 54, 102-114.
[http://dx.doi.org/10.1016/j.cellsig.2018.10.016] [PMID: 30555030]
[145]
Huang, P.; Gu, X.J.; Huang, M.Y.; Tan, J.H.; Wang, J. Down-regulation of LINC00667 hinders renal tubular epithelial cell apoptosis and fibrosis through miR-34c. Clin. Transl. Oncol., 2021, 23(3), 572-581.
[http://dx.doi.org/10.1007/s12094-020-02451-2] [PMID: 32705492]
[146]
Xiao, X.; Yuan, Q.; Chen, Y.; Huang, Z.; Fang, X.; Zhang, H.; Peng, L.; Xiao, P. LncRNA ENST00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis. J. Cell. Physiol., 2019, 234(6), 9130-9143.
[http://dx.doi.org/10.1002/jcp.27590] [PMID: 30317629]
[147]
Millis, M.P.; Bowen, D.; Kingsley, C.; Watanabe, R.M.; Wolford, J.K. Variants in the plasmacytoma variant translocation gene (PVT1) are associated with end-stage renal disease attributed to type 1 diabetes. Diabetes, 2007, 56(12), 3027-3032.
[http://dx.doi.org/10.2337/db07-0675] [PMID: 17881614]
[148]
Hanson, R.L.; Craig, D.W.; Millis, M.P.; Yeatts, K.A.; Kobes, S.; Pearson, J.V.; Lee, A.M.; Knowler, W.C.; Nelson, R.G.; Wolford, J.K. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes, 2007, 56(4), 975-983.
[http://dx.doi.org/10.2337/db06-1072] [PMID: 17395743]
[149]
Alvarez, M.L.; DiStefano, J.K. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One, 2011, 6(4), e18671.
[http://dx.doi.org/10.1371/journal.pone.0018671] [PMID: 21526116]
[150]
Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One, 2013, 8(10), e77468.
[http://dx.doi.org/10.1371/journal.pone.0077468] [PMID: 24204837]
[151]
Zhang, R.; Li, J.; Huang, T.; Wang, X. Danggui buxue tang suppresses high glucose-induced proliferation and extracellular matrix accumulation of mesangial cells via inhibiting lncRNA PVT1. Am. J. Transl. Res., 2017, 9(8), 3732-3740.
[PMID: 28861164]
[152]
Chen, W.; Zhang, L.; Zhou, Z.Q.; Ren, Y.Q.; Sun, L.N.; Man, Y.L.; Ma, Z.W.; Wang, Z.K. Effects of long non-coding RNA LINC00963 on renal interstitial fibrosis and oxidative stress of rats with chronic renal failure via the foxo signaling pathway. Cell. Physiol. Biochem., 2018, 46(2), 815-828.
[http://dx.doi.org/10.1159/000488739] [PMID: 29627834]
[153]
Liu, L.; Zhang, Y.; Zhong, L. LncRNA TUG1 relieves renal mesangial cell injury by modulating the miR-153-3p/Bcl-2 axis in lupus nephritis. Immun. Inflamm. Dis., 2023, 11(4), e811.
[http://dx.doi.org/10.1002/iid3.811] [PMID: 37102641]
[154]
Jia, L.; Wang, W.; Liu, H.; Zhu, F.; Huang, Y. LncRNA TTN-AS1 exacerbates extracellular matrix accumulation via miR-493-3p/FOXP2 axis in diabetic nephropathy. J. Genet., 2023, 102, 102.
[PMID: 36722214]
[155]
Li, X.; Wu, Z.; Yang, J.; Zhang, D. LncRNA 148400 promotes the apoptosis of renal tubular epithelial cells in ischemic AKI by targeting the miR−10b−3p/GRK4 axis. Cells, 2022, 11(24), 3986.
[http://dx.doi.org/10.3390/cells11243986] [PMID: 36552750]
[156]
Xu, J.; Wang, Q.; Song, Y.F.; Xu, X.H.; Zhu, H.; Chen, P.D.; Ren, Y.P. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J. Diabetes, 2022, 13(4), 358-375.
[http://dx.doi.org/10.4239/wjd.v13.i4.358] [PMID: 35582664]
[157]
Yu, Q.; Lin, J.; Ma, Q.; Li, Y.; Wang, Q.; Chen, H.; Liu, Y.; Liu, B. Long noncoding RNA ENSG00000254693 promotes diabetic kidney disease via interacting with HuR. J. Diabetes Res., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/8679548] [PMID: 35493610]
[158]
Wu, Z.; Pan, J.; Yang, J.; Zhang, D. LncRNA136131 suppresses apoptosis of renal tubular epithelial cells in acute kidney injury by targeting the miR-378a-3p/Rab10 axis. Aging, 2022, 14(8), 3666-3686.
[http://dx.doi.org/10.18632/aging.204036] [PMID: 35482482]
[159]
Xue, Q.; Yang, L.; Wang, J.; Li, L.; Wang, H.; He, Y. lncRNA ROR and miR-125b predict the prognosis in heart failure combined acute renal failure. Dis. Markers, 2022, 2022, 1-6.
[http://dx.doi.org/10.1155/2022/6853939] [PMID: 35096206]
[160]
Zheng, W.; Guo, J.; Lu, X.; Qiao, Y.; Liu, D.; Pan, S.; Liang, L.; Liu, C.; Zhu, H.; Liu, Z.; Liu, Z. cAMP-response element binding protein mediates podocyte injury in diabetic nephropathy by targeting lncRNA DLX6-AS1. Metabolism, 2022, 129, 155155.
[http://dx.doi.org/10.1016/j.metabol.2022.155155] [PMID: 35093327]
[161]
Wang, J.; Jiao, P.; Wei, X.; Zhou, Y. Silencing long non-coding RNA kcnq1ot1 limits acute kidney injury by promoting MIR-204-5p and blocking the activation of NLRP3 inflammasome. Front. Physiol., 2021, 12, 721524.
[http://dx.doi.org/10.3389/fphys.2021.721524] [PMID: 34858199]
[162]
Wang, H.; Mou, H.; Xu, X.; Liu, C.; Zhou, G.; Gao, B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered, 2021, 12(2), 11353-11368.
[http://dx.doi.org/10.1080/21655979.2021.2005987] [PMID: 34783627]
[163]
Li, Y.; Ding, T.; Hu, H.; Zhao, T.; Zhu, C.; Ding, J.; Yuan, J.; Guo, Z. LncRNA-ATB participates in the regulation of calcium oxalate crystal-induced renal injury by sponging the miR-200 family. Mol. Med., 2021, 27(1), 143.
[http://dx.doi.org/10.1186/s10020-021-00403-2] [PMID: 34736391]
[164]
Ding, Y.; Zhou, D.; Yu, H.; Zhu, T.; Guo, F.; He, Y.; Guo, X.; Lin, Y.; Liu, Y.; Yu, Y. Upregulation of lncRNA NONRATG019935.2 suppresses the p53-mediated apoptosis of renal tubular epithelial cells in septic acute kidney injury. Cell Death Dis., 2021, 12(8), 771.
[http://dx.doi.org/10.1038/s41419-021-03953-9] [PMID: 34719669]
[165]
Jing, X.; Han, J.; Zhang, J.; Chen, Y.; Yuan, J.; Wang, J.; Neo, S.; Li, S.; Yu, X.; Wu, J. Long non-coding RNA MEG3 promotes cisplatin-induced nephrotoxicity through regulating AKT/TSC/mTOR-mediated autophagy. Int. J. Biol. Sci., 2021, 17(14), 3968-3980.
[http://dx.doi.org/10.7150/ijbs.58910] [PMID: 34671212]
[166]
Wang, T.; Cui, S.; Liu, X.; Han, L.; Duan, X.; Feng, S.; Zhang, S.; Li, G. LncTUG1 ameliorates renal tubular fibrosis in experimental diabetic nephropathy through the miR-145-5p/dual-specificity phosphatase 6 axis. Ren. Fail., 2023, 45(1), 2173950.
[http://dx.doi.org/10.1080/0886022X.2023.2173950] [PMID: 36794657]
[167]
Hu, J.; Wang, Q.; Fan, X.; Zhen, J.; Wang, C.; Chen, H.; Liu, Y.; Zhou, P.; Zhang, T.; Huang, T.; Wang, R.; Lv, Z. Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B. Cell Death Dis., 2023, 14(2), 130.
[http://dx.doi.org/10.1038/s41419-023-05658-7] [PMID: 36792603]
[168]
Xie, K.; Liu, X.; Jia, J.; Zhong, X.; Han, R.; Tan, R.; Wang, L. Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. Int. Immunopharmacol., 2022, 112, 109247.
[http://dx.doi.org/10.1016/j.intimp.2022.109247] [PMID: 36155281]
[169]
Sun, Z.; Wu, J.; Bi, Q.; Wang, W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res. Ther., 2022, 13(1), 297.
[http://dx.doi.org/10.1186/s13287-022-02986-x] [PMID: 35841017]
[170]
Song, P.; Chen, Y.; Liu, Z.; Liu, H.; Xiao, L.; Sun, L.; Wei, J.; He, L. LncRNA MALAT1 aggravates renal tubular injury via Activating LIN28A and the Nox4/AMPK/mTOR signaling axis in diabetic nephropathy. Front. Endocrinol., 2022, 13, 895360.
[http://dx.doi.org/10.3389/fendo.2022.895360] [PMID: 35813614]
[171]
Jia, P.; Xu, S.; Ren, T.; Pan, T.; Wang, X.; Zhang, Y.; Zou, Z.; Guo, M.; Zeng, Q.; Shen, B.; Ding, X. LncRNA IRAR regulates chemokines production in tubular epithelial cells thus promoting kidney ischemia-reperfusion injury. Cell Death Dis., 2022, 13(6), 562.
[http://dx.doi.org/10.1038/s41419-022-05018-x] [PMID: 35732633]
[172]
Wen, L.; Zhao, Z.; Li, F.; Ji, F.; Wen, J. ICAM-1 related long noncoding RNA is associated with progression of IgA nephropathy and fibrotic changes in proximal tubular cells. Sci. Rep., 2022, 12(1), 9645.
[http://dx.doi.org/10.1038/s41598-022-13521-6] [PMID: 35688937]
[173]
Huang, J.; Xu, C. LncRNA MALAT1-deficiency restrains lipopolysaccharide (LPS)-induced pyroptotic cell death and inflammation in HK-2 cells by releasing microRNA-135b-5p. Ren. Fail., 2021, 43(1), 1288-1297.
[http://dx.doi.org/10.1080/0886022X.2021.1974037] [PMID: 34503385]
[174]
Xu, Z.; Huang, X.; Lin, Q.; Xiang, W. Long non-coding RNA TUG1 knockdown promotes autophagy and improves acute renal injury in ischemia-reperfusion-treated rats by binding to microRNA-29 to silence PTEN. BMC Nephrol., 2021, 22(1), 288.
[http://dx.doi.org/10.1186/s12882-021-02473-0] [PMID: 34429073]
[175]
Fan, H.P.; Zhu, Z.X.; Xu, J.J.; Li, Y.T.; Guo, C.W.; Yan, H. The lncRNA CASC9 alleviates lipopolysaccharide-induced acute kidney injury by regulating the miR-424-5p/TXNIP pathway. J. Int. Med. Res., 2021, 49(8)
[http://dx.doi.org/10.1177/03000605211037495] [PMID: 34407684]
[176]
Lu, H.Y.; Wang, G.Y.; Zhao, J.W.; Jiang, H.T. Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J. Clin. Lab. Anal., 2021, 35(8), e23881.
[http://dx.doi.org/10.1002/jcla.23881] [PMID: 34240756]
[177]
Jin, J.; Gong, J.; Zhao, L.; Li, Y.; He, Q. LncRNA Hoxb3os protects podocytes from high glucose-induced cell injury through autophagy dependent on the Akt-mTOR signaling pathway. Acta Biochim. Pol., 2021, 68(4), 619-625.
[http://dx.doi.org/10.18388/abp.2020_5483] [PMID: 34648253]
[178]
Hu, H.; Zhang, J.; Li, Y.; Ding, J.; Chen, W.; Guo, Z. LncRNA SPANXA2-OT1 participates in the occurrence and development of EMT in calcium oxalate crystal-induced kidney injury by adsorbing miR-204 and up-regulating Smad5. Front. Med., 2021, 8, 719980.
[http://dx.doi.org/10.3389/fmed.2021.719980] [PMID: 34646842]
[179]
Zhao, S.; Chen, W.; Li, W.; Yu, W.; Li, S.; Rao, T.; Ruan, Y.; Zhou, X.; Liu, C.; Qi, Y.; Cheng, F. LncRNA TUG1 attenuates ischaemia-reperfusion-induced apoptosis of renal tubular epithelial cells by sponging miR-144-3p via targeting Nrf2. J. Cell. Mol. Med., 2021, 25(20), 9767-9783.
[http://dx.doi.org/10.1111/jcmm.16924] [PMID: 34547172]
[180]
Ling, H.; Li, Q.; Duan, Z.P.; Wang, Y.J.; Hu, B.Q.; Dai, X.G. LncRNA GAS5 inhibits miR-579-3p to activate SIRT1/PGC-1α/Nrf2 signaling pathway to reduce cell pyroptosis in sepsis-associated renal injury. Am. J. Physiol. Cell Physiol., 2021, 321(1), C117-C133.
[http://dx.doi.org/10.1152/ajpcell.00394.2020] [PMID: 34010066]
[181]
Yuan, Y.; Li, X.; Chu, Y.; Ye, G.; Yang, L.; Dong, Z. Long Non-coding RNA H19 augments hypoxia/reoxygenation-induced renal tubular epithelial cell apoptosis and injury by the miR-130a/BCL2L11 Pathway. Front. Physiol., 2021, 12, 632398.
[http://dx.doi.org/10.3389/fphys.2021.632398] [PMID: 33716779]
[182]
Li, H.; Zhang, X.; Wang, P.; Zhou, X.; Liang, H.; Li, C. Knockdown of circ-FANCA alleviates LPS-induced HK2 cell injury via targeting miR-93-5p/OXSR1 axis in septic acute kidney injury. Diabetol. Metab. Syndr., 2021, 13(1), 7.
[http://dx.doi.org/10.1186/s13098-021-00625-8] [PMID: 33468219]
[183]
Zhou, Y.; Qing, M.; Xu, M. Circ-BNIP3L knockdown alleviates LPS-induced renal tubular epithelial cell injury during sepsis-associated acute kidney injury by miR-370-3p/MYD88 axis. J. Bioenerg. Biomembr., 2021, 53(6), 665-677.
[http://dx.doi.org/10.1007/s10863-021-09925-0] [PMID: 34731384]
[184]
Lu, H.; Chen, Y.; Wang, X.; Yang, Y.; Ding, M.; Qiu, F. Circular RNA HIPK3 aggravates sepsis-induced acute kidney injury via modulating the microRNA-338/forkhead box A1 axis. Bioengineered, 2022, 13(3), 4798-4809.
[http://dx.doi.org/10.1080/21655979.2022.2032974] [PMID: 35148669]
[185]
Xu, L.; Cao, H.; Xu, P.; Nie, M.; Zhao, C. Circ_0114427 promotes LPS-induced septic acute kidney injury by modulating miR-495-3p/TRAF6 through the NF-κB pathway. Autoimmunity, 2022, 55(1), 52-64.
[http://dx.doi.org/10.1080/08916934.2021.1995861] [PMID: 34730059]
[186]
He, Y.; Sun, Y.; Peng, J. Circ_0114428 regulates sepsis-induced kidney injury by targeting the miR-495-3p/CRBN axis. Inflammation, 2021, 44(4), 1464-1477.
[http://dx.doi.org/10.1007/s10753-021-01432-z] [PMID: 33830389]
[187]
Xu, H.P.; Ma, X.Y.; Yang, C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis. Front. Mol. Biosci., 2021, 8, 660269.
[http://dx.doi.org/10.3389/fmolb.2021.660269] [PMID: 34250012]
[188]
Xu, Y.; Li, X.; Li, H.; Zhong, L.; Lin, Y.; Xie, J.; Zheng, D. Circ_0023404 sponges miR-136 to induce HK-2 cells injury triggered by hypoxia/reoxygenation via up-regulating IL-6R. J. Cell. Mol. Med., 2021, 25(11), 4912-4921.
[http://dx.doi.org/10.1111/jcmm.15986] [PMID: 33942982]
[189]
Xu, Y.; Jiang, W.; Zhong, L.; Li, H.; Bai, L.; Chen, X.; Lin, Y.; Zheng, D. circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p/Wnt/β-catenin pathway and oxidative stress. J. Cell. Mol. Med., 2022, 26(6), 1766-1775.
[http://dx.doi.org/10.1111/jcmm.16072] [PMID: 33200535]
[190]
Hou, J.; Li, A.L.; Xiong, W.Q.; Chen, R. Hsa Circ 001839 promoted inflammation in renal ischemia-reperfusion injury through NLRP3 by miR-432-3p. Nephron J., 2021, 145(5), 540-552.
[http://dx.doi.org/10.1159/000515279] [PMID: 33975327]
[191]
Zhou, W.; Chen, Y.X.; Ke, B.; He, J.K.; Zhu, N.; Zhang, A.F.; Fang, X.D.; Tu, W.P. circPlekha7 suppresses renal fibrosis via targeting miR-493-3p/KLF4. Epigenomics, 2022, 14(4), 199-217.
[http://dx.doi.org/10.2217/epi-2021-0370] [PMID: 35172608]
[192]
Tang, B.; Li, W.; Ji, T.T.; Li, X.Y.; Qu, X.; Feng, L.; Bai, S. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals. J. Cell. Mol. Med., 2020, 24(15), 8779-8788.
[http://dx.doi.org/10.1111/jcmm.15513] [PMID: 32597022]
[193]
Hu, W.; Han, Q.; Zhao, L.; Wang, L. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1. J. Cell. Physiol., 2019, 234(2), 1469-1476.
[http://dx.doi.org/10.1002/jcp.26959] [PMID: 30054916]
[194]
Peng, F.; Gong, W.; Li, S.; Yin, B.; Zhao, C.; Liu, W.; Chen, X.; Luo, C.; Huang, Q.; Chen, T.; Sun, L.; Fang, S.; Zhou, W.; Li, Z.; Long, H. circRNA_010383 acts as a sponge for miR-135a and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes, 2020, db200203.
[http://dx.doi.org/10.2337/db200203] [PMID: 33203695]
[195]
Ouyang, Q.; Huang, Q.; Jiang, Z.; Zhao, J.; Shi, G.P.; Yang, M. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol. Immunol., 2018, 101, 531-538.
[http://dx.doi.org/10.1016/j.molimm.2018.07.029] [PMID: 30172209]
[196]
Zhou, H.; Hasni, S.A.; Perez, P.; Tandon, M.; Jang, S.I.; Zheng, C.; Kopp, J.B.; Austin, H., III; Balow, J.E.; Alevizos, I.; Illei, G.G. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J. Am. Soc. Nephrol., 2013, 24(7), 1073-1087.
[http://dx.doi.org/10.1681/ASN.2012080849] [PMID: 23723424]
[197]
Luan, J.; Jiao, C.; Kong, W.; Fu, J.; Qu, W.; Chen, Y.; Zhu, X.; Zeng, Y.; Guo, G.; Qi, H.; Yao, L.; Pi, J.; Wang, L.; Zhou, H. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol. Ther. Nucleic Acids, 2018, 10, 245-253.
[http://dx.doi.org/10.1016/j.omtn.2017.12.006] [PMID: 29499937]
[198]
Cao, Y.; Gao, X.; Yang, Y.; Ye, Z.; Wang, E.; Dong, Z. Changing expression profiles of long non-coding RNAs, mRNAs and circular RNAs in ethylene glycol-induced kidney calculi rats. BMC Genomics, 2018, 19(1), 660.
[http://dx.doi.org/10.1186/s12864-018-5052-8] [PMID: 30200873]
[199]
Zhengbiao, Z.; Liang, C.; Zhi, Z.; Youmin, P. Circular RNA_HIPK3-targeting miR-93-5p regulates KLF9 expression level to control acute kidney injury. Comput. Math. Methods Med., 2023, 2023, 1-13.
[http://dx.doi.org/10.1155/2023/1318817] [PMID: 36846202]
[200]
Gao, Q.; Zheng, Y.; Wang, H.; Hou, L.; Hu, X. circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/toll like receptor 4 axis. Bioengineered, 2022, 13(5), 11388-11401.
[http://dx.doi.org/10.1080/21655979.2022.2061293] [PMID: 35510365]
[201]
Gao, Y.; Xu, W.; Guo, C.; Huang, T. GATA1 regulates the microRNA-328-3p/PIM1 axis via circular RNA ITGB1 to promote renal ischemia/reperfusion injury in HK-2 cells. Int. J. Mol. Med., 2022, 50(2), 100.
[http://dx.doi.org/10.3892/ijmm.2022.5156] [PMID: 35674159]
[202]
Kölling, M.; Seeger, H.; Haddad, G.; Kistler, A.; Nowak, A.; Faulhaber-Walter, R.; Kielstein, J.; Haller, H.; Fliser, D.; Mueller, T.; Wüthrich, R.P.; Lorenzen, J.M. The Circular RNA ciRs-126 predicts survival in critically ill patients with acute kidney injury. Kidney Int. Rep., 2018, 3(5), 1144-1152.
[http://dx.doi.org/10.1016/j.ekir.2018.05.012] [PMID: 30197981]
[203]
Huang, T.; Cao, Y.; Wang, H.; Wang, Q.; Ji, J.; Sun, X.; Dong, Z. Circular RNA YAP1 acts as the sponge of microRNA-21-5p to secure HK-2 cells from ischaemia/reperfusion-induced injury. J. Cell. Mol. Med., 2020, 24(8), 4707-4715.
[http://dx.doi.org/10.1111/jcmm.15142] [PMID: 32160412]
[204]
Lu, C.; Chen, B.; Chen, C.; Li, H.; Wang, D.; Tan, Y.; Weng, H. CircNr1h4 regulates the pathological process of renal injury in salt-sensitive hypertensive mice by targeting miR-155-5p. J. Cell. Mol. Med., 2020, 24(2), 1700-1712.
[http://dx.doi.org/10.1111/jcmm.14863] [PMID: 31782248]
[205]
Liu, F.; Huang, J.; Zhang, C.; Xie, Y.; Cao, Y.; Tao, L.; Tang, H.; Lin, J.; Hammes, H.P.; Huang, K.; Yi, F.; Su, H.; Zhang, C. Regulation of podocyte injury by CircHIPK3/FUS complex in diabetic kidney disease. Int. J. Biol. Sci., 2022, 18(15), 5624-5640.
[http://dx.doi.org/10.7150/ijbs.75994] [PMID: 36263181]
[206]
Huang, Y.; Zheng, G. Circ_UBE2D2 attenuates the progression of septic acute kidney injury in rats by targeting miR-370-3p/NR4A3 axis. J. Microbiol. Biotechnol., 2022, 32(6), 740-748.
[http://dx.doi.org/10.4014/jmb.2112.12038] [PMID: 35722711]
[207]
Feng, T.; Li, W.; Li, T.; Jiao, W.; Chen, S. Circular RNA_0037128 aggravates high glucose-induced damage in HK-2 cells via regulation of microRNA-497-5p/nuclear factor of activated T cells 5 axis. Bioengineered, 2021, 12(2), 10959-10970.
[http://dx.doi.org/10.1080/21655979.2021.2001912] [PMID: 34753398]
[208]
Shi, Y.; Sun, C.F.; Ge, W.H.; Du, Y.P.; Hu, N.B. Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress. J. Cell. Mol. Med., 2020, 24(19), 11397-11408.
[http://dx.doi.org/10.1111/jcmm.15741] [PMID: 32827242]
[209]
Cao, S.; Huang, Y.; Dai, Z.; Liao, Y.; Zhang, J.; Wang, L.; Hao, Z.; Wang, F.; Wang, D.; Liu, L. Circular RNA mmu_circ_0001295 from hypoxia pretreated adipose-derived mesenchymal stem cells (ADSCs) exosomes improves outcomes and inhibits sepsis-induced renal injury in a mouse model of sepsis. Bioengineered, 2022, 13(3), 6323-6331.
[http://dx.doi.org/10.1080/21655979.2022.2044720] [PMID: 35212606]
[210]
Pan, J.J.; Yang, Y.; Chen, X.Q.; Shi, J.; Wang, M.Z.; Tong, M.L.; Zhou, X.G. RNA sequencing and bioinformatics analysis of circular RNAs in asphyxial newborns with acute kidney injury. Kaohsiung J. Med. Sci., 2023, 39(4), 337-344.
[http://dx.doi.org/10.1002/kjm2.12644] [PMID: 36655871]
[211]
Luan, J.; Jiao, C.; Ma, C.; Zhang, Y.; Hao, X.; Zhou, G.; Fu, J.; Qiu, X.; Li, H.; Yang, W.; Illei, G.G.; Kopp, J.B.; Pi, J.; Zhou, H. circMTND5 participates in renal mitochondrial injury and fibrosis by sponging mir6812 in lupus nephritis. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/2769487] [PMID: 36267809]
[212]
Meng, F.; Chen, Q.; Gu, S.; Cui, R.; Ma, Q.; Cao, R.; Zhao, M. Inhibition of Circ-Snrk ameliorates apoptosis and inflammation in acute kidney injury by regulating the MAPK pathway. Ren. Fail., 2022, 44(1), 672-681.
[http://dx.doi.org/10.1080/0886022X.2022.2032746] [PMID: 35416113]
[213]
Wang, H.; Huang, S.; Hu, T.; Fei, S.; Zhang, H. Circ_0000064 promotes high glucose-induced renal tubular epithelial cells injury to facilitate diabetic nephropathy progression through miR-532-3p/ROCK1 axis. BMC Endocr. Disord., 2022, 22(1), 67.
[http://dx.doi.org/10.1186/s12902-022-00968-x] [PMID: 35291991]
[214]
Fan, X.; Yin, X.; Zhao, Q.; Yang, Y. Hsa_circRNA_0045861 promotes renal injury in ureteropelvic junction obstruction via the microRNA-181d-5p/sirtuin 1 signaling axis. Ann. Transl. Med., 2021, 9(20), 1571.
[http://dx.doi.org/10.21037/atm-21-5060] [PMID: 34790777]
[215]
Pan, J.; Wang, X.; Cang, X.; Jiang, Y.; Tang, R. Hsa_circ_0010957 knockdown attenuates lipopolysaccharide-induced HK2 cell injury by regulating the miR-1224-5p/IRAK1 axis. Cent. Eur. J. Immunol., 2021, 46(3), 314-324.
[http://dx.doi.org/10.5114/ceji.2021.108772] [PMID: 34764803]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy