Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer

Author(s): Surovi Saikia, Humzah Postwala, Vishnu Prabhu Athilingam, Aparna Anandan, V. Vijaya Padma, Partha P. Kalita*, Mehul Chorawala and Bhupendra Prajapati*

Volume 25, Issue 15, 2024

Published on: 15 January, 2024

Page: [1915 - 1938] Pages: 24

DOI: 10.2174/0113892010265004231116092802

Price: $65

Abstract

Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.

Graphical Abstract

[1]
Smyth, E.C.; Lagergren, J.; Fitzgerald, R.C.; Lordick, F.; Shah, M.A.; Lagergren, P.; Cunningham, D. Oesophageal cancer. Nat. Rev. Dis. Primers, 2017, 3(1), 17048.
[http://dx.doi.org/10.1038/nrdp.2017.48] [PMID: 28748917]
[2]
Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology, 2022, 163(3), 649-658.e2.
[http://dx.doi.org/10.1053/j.gastro.2022.05.054] [PMID: 35671803]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Statistics for Esophageal Cancer: Esophageal Cancer Stats. Available from: www.cancer.org/cancer/types/esophagus-cancer/about/key-statistics.html (Accessed on: 27 May 2023).
[5]
Pourhoseingholi, M.A.; Vahedi, M.; Baghestani, A.R. Burden of gastrointestinal cancer in Asia; an overview. Gastroenterol. Hepatol. Bed Bench, 2015, 8(1), 19-27.
[PMID: 25584172]
[6]
Mosavi-Jarrahi, A.; Mohagheghi, M.A. Epidemiology of esophageal cancer in the high-risk population of iran. Asian Pac. J. Cancer Prev., 2006, 7(3), 375-380.
[PMID: 17059325]
[7]
Samarasam, I. Esophageal cancer in India: Current status and future perspectives. Int. J. Adv. Med. Health Res., 2017, 4(1), 5.
[http://dx.doi.org/10.4103/IJAMR.IJAMR_19_17]
[8]
Chitra, S.; Ashok, L.; Anand, L.; Srinivasan, V.; Jayanthi, V. Risk factors for esophageal cancer in Coimbatore, southern India: A hospital-based case-control study. Indian J. Gastroenterol., 2004, 23(1), 19-21.
[PMID: 15106710]
[9]
Kumar Phukan, R.; Kanta Chetia, C.; Shahadat Ali, M.; Mahanta, J. Role of dietary habits in the development of esophageal cancer in Assam, the north-eastern region of India. Nutr. Cancer, 2001, 39(2), 204-209.
[http://dx.doi.org/10.1207/S15327914nc392_7] [PMID: 11759281]
[10]
Saikia, S.; Rehman, A.U.; Barooah, P.; Sarmah, P.; Bhattacharyya, M.; Deka, M.; Deka, M.; Goswami, B.; Husain, S.A.; Medhi, S. Alteration in the expression of MGMT and RUNX3 due to non-CpG promoter methylation and their correlation with different risk factors in esophageal cancer patients. Tumour Biol., 2017, 39(5)
[http://dx.doi.org/10.1177/1010428317701630] [PMID: 28468586]
[11]
Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol., 2020, 13(6), 1010-1021.
[http://dx.doi.org/10.1007/s12328-020-01237-x] [PMID: 32965635]
[12]
Hvid-Jensen, F.; Pedersen, L.; Drewes, A.M. Sّrensen, H.T.; Funch-Jensen, P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med., 2011, 365(15), 1375-1383.
[http://dx.doi.org/10.1056/NEJMoa1103042] [PMID: 21995385]
[13]
Khara, H.S.; Jackson, S.A.; Nair, S.; Deftereos, G.; Patel, S.; Silverman, J.F.; Ellsworth, E.; Sumner, C.; Corcoran, B.; Smith, D.M., Jr; Finkelstein, S.; Gross, S.A. Assessment of mutational load in biopsy tissue provides additional information about genomic instability to histological classifications of Barrett’s esophagus. J. Gastrointest. Cancer, 2014, 45(2), 137-145.
[http://dx.doi.org/10.1007/s12029-013-9570-y] [PMID: 24402860]
[14]
Lagergren, J. Bergström, R.; Lindgren, A.; Nyrén, O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med., 1999, 340(11), 825-831.
[http://dx.doi.org/10.1056/NEJM199903183401101] [PMID: 10080844]
[15]
Masukume, G.; Mmbaga, B.T.; Dzamalala, C.P.; Mlombe, Y.B.; Finch, P.; Nyakunga-Maro, G.; Mremi, A.; Middleton, D.R.S.; Narh, C.T.; Chasimpha, S.J.D.; Abedi-Ardekani, B.; Menya, D.; Schüz, J.; McCormack, V. A very-hot food and beverage thermal exposure index and esophageal cancer risk in Malawi and Tanzania: Findings from the ESCCAPE case–control studies. Br. J. Cancer, 2022, 127(6), 1106-1115.
[http://dx.doi.org/10.1038/s41416-022-01890-8] [PMID: 35768549]
[16]
Middleton, D.R.S.; Mmbaga, B.T.; Menya, D.; Dzamalala, C.; Nyakunga-Maro, G.; Finch, P.; Mlombe, Y.; Schüz, J.; McCormack, V.; Kigen, N.; Oduor, M.; Karuru Maina, S.; Some, F.; Kibosia, C.; Mwasamwaja, A.; Mremi, A.; Kiwelu, I.; Swai, R.; Kiwelu, G.; Mustapha, S.; Mghase, E.; Mchome, A.; Shao, R.; Mallya, E.; Kilonzo, K.; Kamkwantira, A.; Kamdolozi, M.; Liomba, G.; Chasimpha, S.; Narh, C.; Bouaoun, L.; Abedi-Ardekani, B.; Mushi, G.; Namwai, T.; Suwedi, M.; Solomon, T.; Malamba, R.; Carreira, C. Alcohol consumption and oesophageal squamous cell cancer risk in east Africa: findings from the large multicentre ESCCAPE case-control study in Kenya, Tanzania, and Malawi. Lancet Glob. Health, 2022, 10(2), e236-e245.
[http://dx.doi.org/10.1016/S2214-109X(21)00506-4] [PMID: 34921758]
[17]
Sheikh, M.; Poustchi, H.; Pourshams, A.; Etemadi, A.; Islami, F.; Khoshnia, M.; Gharavi, A.; Hashemian, M.; Roshandel, G.; Khademi, H.; Zahedi, M.; Abedi-Ardekani, B.; Boffetta, P.; Kamangar, F.; Dawsey, S.M.; Pharaoh, P.D.; Abnet, C.C.; Day, N.E.; Brennan, P.; Malekzadeh, R. Individual and combined effects of environmental risk factors for esophageal cancer based on results from the golestan cohort study. Gastroenterology, 2019, 156(5), 1416-1427.
[http://dx.doi.org/10.1053/j.gastro.2018.12.024] [PMID: 30611753]
[18]
Wang, J.M.; Xu, B.; Rao, J.Y.; Shen, H.B.; Xue, H.C.; Jiang, Q.W. Diet habits, alcohol drinking, tobacco smoking, green tea drinking, and the risk of esophageal squamous cell carcinoma in the Chinese population. Eur. J. Gastroenterol. Hepatol., 2007, 19(2), 171-176.
[http://dx.doi.org/10.1097/MEG.0b013e32800ff77a] [PMID: 17273005]
[19]
Lin, S.; Wang, X.; Huang, C.; Liu, X.; Zhao, J.; Yu, I.T.S.; Christiani, D.C. Consumption of salted meat and its interactions with alcohol drinking and tobacco smoking on esophageal squamous-cell carcinoma. Int. J. Cancer, 2015, 137(3), 582-589.
[http://dx.doi.org/10.1002/ijc.29406] [PMID: 25544988]
[20]
Phukan, R.K.; Ali, M.S.; Chetia, C.K.; Mahanta, J. Betel nut and tobacco chewing; potential risk factors of cancer of oesophagus in Assam, India. Br. J. Cancer, 2001, 85(5), 661-667.
[http://dx.doi.org/10.1054/bjoc.2001.1920] [PMID: 11531248]
[21]
Hiyama, T.; Yoshihara, M.; Tanaka, S.; Chayama, K. Genetic polymorphisms and esophageal cancer risk. Int. J. Cancer, 2007, 121(8), 1643-1658.
[http://dx.doi.org/10.1002/ijc.23044] [PMID: 17674367]
[22]
Chen, X.X.; Zhong, Q.; Liu, Y.; Yan, S.M.; Chen, Z.H.; Jin, S.Z.; Xia, T.L.; Li, R.Y.; Zhou, A.J.; Su, Z.; Huang, Y.H.; Huang, Q.T.; Huang, L.Y.; Zhang, X.; Zhao, Y.N.; Yun, J.P.; Wu, Q.L.; Lin, D.X.; Bai, F.; Zeng, M.S. Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-exome sequencing. Nat. Commun., 2017, 8(1), 524.
[http://dx.doi.org/10.1038/s41467-017-00650-0] [PMID: 28900112]
[23]
Song, Y.; Li, L.; Ou, Y.; Gao, Z.; Li, E.; Li, X.; Zhang, W.; Wang, J.; Xu, L.; Zhou, Y.; Ma, X.; Liu, L.; Zhao, Z.; Huang, X.; Fan, J.; Dong, L.; Chen, G.; Ma, L.; Yang, J.; Chen, L.; He, M.; Li, M.; Zhuang, X.; Huang, K.; Qiu, K.; Yin, G.; Guo, G.; Feng, Q.; Chen, P.; Wu, Z.; Wu, J.; Ma, L.; Zhao, J.; Luo, L.; Fu, M.; Xu, B.; Chen, B.; Li, Y.; Tong, T.; Wang, M.; Liu, Z.; Lin, D.; Zhang, X.; Yang, H.; Wang, J.; Zhan, Q. Identification of genomic alterations in oesophageal squamous cell cancer. Nature, 2014, 509(7498), 91-95.
[http://dx.doi.org/10.1038/nature13176] [PMID: 24670651]
[24]
Gao, Y.B.; Chen, Z.L.; Li, J.G.; Hu, X.D.; Shi, X.J.; Sun, Z.M.; Zhang, F.; Zhao, Z.R.; Li, Z.T.; Liu, Z.Y.; Zhao, Y.D.; Sun, J.; Zhou, C.C.; Yao, R.; Wang, S.Y.; Wang, P.; Sun, N.; Zhang, B.H.; Dong, J.S.; Yu, Y.; Luo, M.; Feng, X.L.; Shi, S.S.; Zhou, F.; Tan, F.W.; Qiu, B.; Li, N.; Shao, K.; Zhang, L.J.; Zhang, L.J.; Xue, Q.; Gao, S.G.; He, J. Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet., 2014, 46(10), 1097-1102.
[http://dx.doi.org/10.1038/ng.3076] [PMID: 25151357]
[25]
Ma, S.; Zhou, B.; Yang, Q.; Pan, Y.; Yang, W.; Freedland, S.J.; Ding, L.W.; Freeman, M.R.; Breunig, J.J.; Bhowmick, N.A.; Pan, J.; Koeffler, H.P.; Lin, D.C. A transcriptional regulatory loop of master regulator transcription factors, PPARG, and fatty acid synthesis promotes esophageal adenocarcinoma. Cancer Res., 2021, 81(5), 1216-1229.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0652] [PMID: 33402390]
[26]
Kumar, S.; Buon, L.; Talluri, S.; Roncador, M.; Liao, C.; Zhao, J.; Shi, J.; Chakraborty, C.; Gonzalez, G.; Tai, Y.T.; Prabhala, R.; Samur, M.K.; Munshi, N.C.; Shammas, M.A. Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Commun. Biol., 2021, 4(1), 617.
[http://dx.doi.org/10.1038/s42003-021-02125-x] [PMID: 34031527]
[27]
Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; McKenna, A.; Carter, S.L.; Cibulskis, K.; Sivachenko, A.; Saksena, G.; Voet, D.; Ramos, A.H.; Auclair, D.; Thompson, K.; Sougnez, C.; Onofrio, R.C.; Guiducci, C.; Beroukhim, R.; Zhou, Z.; Lin, L.; Lin, J.; Reddy, R.; Chang, A.; Landrenau, R.; Pennathur, A.; Ogino, S.; Luketich, J.D.; Golub, T.R.; Gabriel, S.B.; Lander, E.S.; Beer, D.G.; Godfrey, T.E.; Getz, G.; Bass, A.J. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet., 2013, 45(5), 478-486.
[http://dx.doi.org/10.1038/ng.2591] [PMID: 23525077]
[28]
Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet, 2017, 390(10110), 2383-2396.
[http://dx.doi.org/10.1016/S0140-6736(17)31462-9] [PMID: 28648400]
[29]
Yue, C.; Li, M.; Da, C.; Meng, H.; Lv, S.; Zhao, X. Association between genetic variants and esophageal cancer risk. Oncotarget, 2017, 8(29), 47167-47174.
[http://dx.doi.org/10.18632/oncotarget.17006] [PMID: 28454086]
[30]
Zhang, C.; Liao, Z.; Yu, G.; Huang, W.; Song, X. Study on association between ERCC5 single nucleotide polymorphism and susceptibility to esophageal cancer. J. BUON, 2017, 22(4), 979-984.
[31]
de Almeida, R.A.; Fraczek, M.G.; Parker, S.; Delneri, D.; O’Keefe, R.T. Non-coding RNAs and disease: The classical ncRNAs make a comeback. Biochem. Soc. Trans., 2016, 44(4), 1073-1078.
[http://dx.doi.org/10.1042/BST20160089] [PMID: 27528754]
[32]
Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol., 2013, 10(6), 924-933.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[33]
Evans, J.R.; Feng, F.Y.; Chinnaiyan, A.M. The bright side of dark matter: lncRNAs in cancer. J. Clin. Invest., 2016, 126(8), 2775-2782.
[http://dx.doi.org/10.1172/JCI84421] [PMID: 27479746]
[34]
Zarrilli, G.; Galuppini, F.; Angerilli, V.; Munari, G.; Sabbadin, M.; Lazzarin, V.; Nicolè, L.; Biancotti, R.; Fassan, M. miRNAs involved in esophageal carcinogenesis and miRNA-related therapeutic perspectives in esophageal carcinoma. Int. J. Mol. Sci., 2021, 22(7), 3640.
[http://dx.doi.org/10.3390/ijms22073640] [PMID: 33807389]
[35]
Hou, X.; Wen, J.; Ren, Z.; Zhang, G. Non-coding RNAs: New biomarkers and therapeutic targets for esophageal cancer. Oncotarget, 2017, 8(26), 43571-43578.
[http://dx.doi.org/10.18632/oncotarget.16721] [PMID: 28388588]
[36]
Liu, W.; Zhang, Y.; Chen, M.; Shi, L.; Xu, L.; Zou, X. A genome‐wide analysis of long noncoding RNA profile identifies differentially expressed lnc RNA s associated with Esophageal cancer. Cancer Med., 2018, 7(8), 4181-4189.
[http://dx.doi.org/10.1002/cam4.1536] [PMID: 29926523]
[37]
Ma, L.; Yan, W.; Sun, X.; Chen, P. Long noncoding RNA VPS9D1-AS1 promotes esophageal squamous cell carcinoma progression via the Wnt/β-catenin signaling pathway. J. Cancer, 2021, 12(22), 6894-6904.
[http://dx.doi.org/10.7150/jca.54556] [PMID: 34659577]
[38]
Wang, X.; Wang, X. Long non coding RNA colon cancer associated transcript 2 may promote esophageal cancer growth and metastasis by regulating the Wnt signaling pathway. Oncol. Lett., 2019, 18(2), 1745-1754.
[http://dx.doi.org/10.3892/ol.2019.10488] [PMID: 31423241]
[39]
Yang, L.; Ye, Y.; Chu, J.; Jia, J.; Qu, Y.; Sun, T.; Yin, H.; Ming, L.; Wan, J.; He, F. Long noncoding RNA FEZF1-AS1 promotes the motility of esophageal squamous cell carcinoma through Wnt/β-catenin pathway. Cancer Manag. Res., 2019, 11, 4425-4435.
[http://dx.doi.org/10.2147/CMAR.S196004] [PMID: 31191005]
[40]
Guo, Y.; Sun, P.; Guo, W.; Yin, Q.; Han, J.; Sheng, S.; Liang, J.; Dong, Z. LncRNA DDX11 antisense RNA 1 promotes EMT process of esophageal squamous cell carcinoma by sponging miR-30d-5p to regulate SNAI1/ZEB2 expression and Wnt/β-catenin pathway. Bioengineered, 2021, 12(2), 11425-11440.
[http://dx.doi.org/10.1080/21655979.2021.2008759] [PMID: 34866524]
[41]
Li, W.; Zhao, W.; Lu, Z.; Zhang, W.; Yang, X. Long noncoding RNA GAS5 promotes proliferation, migration, and invasion by regulation of miR-301a in esophageal cancer. Oncol. Res., 2018, 26(8), 1285-1294.
[http://dx.doi.org/10.3727/096504018X15166193231711] [PMID: 29386089]
[42]
Yang, C.; Li, F.; Zhou, W.; Huang, J. Knockdown of long non-coding RNA CCAT2 suppresses growth and metastasis of esophageal squamous cell carcinoma by inhibiting the β -catenin/WISP1 signaling pathway. J. Int. Med. Res., 2021, 49(5)
[http://dx.doi.org/10.1177/03000605211019938] [PMID: 34057837]
[43]
Colak, S.; ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer, 2017, 3(1), 56-71.
[http://dx.doi.org/10.1016/j.trecan.2016.11.008] [PMID: 28718426]
[44]
Zhu, P.; Huang, H.; Gu, S.; Liu, Z.; Zhang, X.; Wu, K.; Lu, T.; Li, L.; Dong, C.; Zhong, C.; Zhou, Y. Long noncoding RNA FAM225A promotes esophageal squamous cell carcinoma development and progression via sponging MicroRNA-197-5p and upregulating NONO. J. Cancer, 2021, 12(4), 1073-1084.
[http://dx.doi.org/10.7150/jca.51292] [PMID: 33442405]
[45]
Fu, X.; Chen, X.; Si, Y.; Yao, Y.; Jiang, Z.; Chen, K. Long non-coding RNA NCK1-AS1 is overexpressed in esophageal squamous cell carcinoma and predicts survival. Bioengineered, 2022, 13(4), 8302-8310.
[http://dx.doi.org/10.1080/21655979.2022.2038449] [PMID: 35311444]
[46]
Hu, L.; Wu, Y.; Tan, D.; Meng, H.; Wang, K.; Bai, Y.; Yang, K. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2015, 34(1), 7.
[http://dx.doi.org/10.1186/s13046-015-0123-z] [PMID: 25613496]
[47]
Chen, M.; Xia, Z.; Chen, C.; Hu, W.; Yuan, Y. LncRNA MALAT1 promotes epithelial-to-mesenchymal transition of esophageal cancer through Ezh2-Notch1 signaling pathway. Anticancer Drugs, 2018, 29(8), 767-773.
[http://dx.doi.org/10.1097/CAD.0000000000000645] [PMID: 29916899]
[48]
Wang, X.; Li, M.; Wang, Z.; Han, S.; Tang, X.; Ge, Y.; Zhou, L.; Zhou, C.; Yuan, Q.; Yang, M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem., 2015, 290(7), 3925-3935.
[http://dx.doi.org/10.1074/jbc.M114.596866] [PMID: 25538231]
[49]
Zhang, W.; Chen, Q.; Lei, C. lncRNA MIAT promotes cell invasion and migration in esophageal cancer. Exp. Ther. Med., 2020, 19(5), 3267-3274.
[http://dx.doi.org/10.3892/etm.2020.8588] [PMID: 32266022]
[50]
Chen, M.J.; Deng, J.; Chen, C.; Hu, W.; Yuan, Y.C.; Xia, Z.K. LncRNA H19 promotes epithelial mesenchymal transition and metastasis of esophageal cancer via STAT3/EZH2 axis. Int. J. Biochem. Cell Biol., 2019, 113, 27-36.
[http://dx.doi.org/10.1016/j.biocel.2019.05.011] [PMID: 31102664]
[51]
Hu, J.; Gao, W. Long noncoding RNA PVT1 promotes tumour progression via the miR-128/ZEB1 axis and predicts poor prognosis in esophageal cancer. Clin. Res. Hepatol. Gastroenterol., 2021, 45(4), 101701.
[http://dx.doi.org/10.1016/j.clinre.2021.101701] [PMID: 33848670]
[52]
Liu, T.; Wang, Z.; Zhou, R.; Liang, W. Focally amplified lncRNA on chromosome 1 regulates apoptosis of esophageal cancer cells via DRP1 and mitochondrial dynamics. IUBMB Life, 2019, 71(2), 254-260.
[http://dx.doi.org/10.1002/iub.1971] [PMID: 30501006]
[53]
Liang, X.S.; Sun, Y.; Liu, T. Long non-coding RNA FAL1 regulated cell proliferation through Akt pathway via targeting PDK1 in esophageal cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(16), 5214-5222.
[PMID: 30178844]
[54]
Qi, Y.; Song, C.; Zhang, J.; Guo, C.; Yuan, C. Oncogenic LncRNA CASC9 in cancer progression. Curr. Pharm. Des., 2021, 27(4), 575-582.
[http://dx.doi.org/10.2174/1381612826666200917150130] [PMID: 32940174]
[55]
Smith, C.M.; Watson, D.I.; Leong, M.P.; Mayne, G.C.; Michael, M.Z.; Wijnhoven, B.P.; Hussey, D.J. miR-200 family expression is downregulated upon neoplastic progression of Barrett’s esophagus. World J. Gastroenterol., 2011, 17(8), 1036-1044.
[PMID: 21448356]
[56]
Shen, Y.; Ding, Y.; Ma, Q.; Zhao, L.; Guo, X.; Shao, Y.; Niu, C.; He, Y.; Zhang, F.; Zheng, D.; Wei, W.; Liu, F. Identification of novel circulating miRNA biomarkers for the diagnosis of esophageal squamous cell carcinoma and squamous dysplasia. Cancer Epidemiol. Biomarkers Prev., 2019, 28(7), 1212-1220.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-1199] [PMID: 30988139]
[57]
Xiao, Q.; Chen, T.; Wu, Y.; Wu, W.; Xu, Y.; Gong, Z.; Chen, S. MicroRNA 675 3p promotes esophageal squamous cell cancer cell migration and invasion. Mol. Med. Rep., 2018, 18(4), 3631-3640.
[http://dx.doi.org/10.3892/mmr.2018.9372] [PMID: 30106155]
[58]
Wen, S.W.; Zhang, Y.F.; Li, Y.; Liu, Z.X.; Lv, H.L.; Li, Z.H.; Xu, Y.Z.; Zhu, Y.G.; Tian, Z.Q. Characterization and effects of miR-21 expression in esophageal cancer. Genet. Mol. Res., 2015, 14(3), 8810-8818.
[http://dx.doi.org/10.4238/2015.August.3.4] [PMID: 26345812]
[59]
Chen, Z.; Zhao, X.; Wang, J.; Li, B.; Wang, Z.; Sun, J.; Tan, F.; Ding, D.; Xu, X.; Zhou, F.; Tan, X.; Hang, J.; Shi, S.; Feng, X.; He, J. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J. Biol. Chem., 2011, 286(12), 10725-10734.
[http://dx.doi.org/10.1074/jbc.M110.165654] [PMID: 21148309]
[60]
Zhang, J.; Cheng, C.; Yuan, X.; He, J.T.; Pan, Q.H.; Sun, F.Y. microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(2), 602-610.
[PMID: 24551280]
[61]
Wang, B.; Yang, J.; Xiao, B. MicroRNA-20b (miR-20b) promotes the proliferation, migration, invasion, and tumorigenicity in esophageal cancer cells via the regulation of phosphatase and tensin homologue expression. PLoS One, 2016, 11(10), e0164105.
[http://dx.doi.org/10.1371/journal.pone.0164105] [PMID: 27701465]
[62]
Shen, Y.; Shao, Y.; Ruan, X.; Zhu, L.; Zang, Z.; Wei, T.; Nakyeyune, R.; Wei, W.; Liu, F. Genetic variant in miR-17-92 cluster binding sites is associated with esophageal squamous cell carcinoma risk in Chinese population. BMC Cancer, 2022, 22(1), 1253.
[http://dx.doi.org/10.1186/s12885-022-10360-6] [PMID: 36461008]
[63]
Eltayeb, M.M.; Ali, M.M.; Omar, S.M.; Mohamed, N.S.; Adam, I.; Hamdan, H.Z. Gene polymorphisms of cyclin‐dependent kinase inhibitor and matrix metalloproteinase‐9 in Sudanese patients with esophageal squamous cell carcinoma. Mol. Genet. Genomic Med., 2022, 10(12), e2074.
[http://dx.doi.org/10.1002/mgg3.2074] [PMID: 36259348]
[64]
Chang, T.G.; Yen, T.T.; Wei, C.Y.; Hsiao, T.H.; Chen, I.C. Impacts ofADH1B rs1229984 andALDH2 rs671 polymorphisms on risks of alcohol‐related disorder and cancer. Cancer Med., 2023, 12(1), 747-759.
[http://dx.doi.org/10.1002/cam4.4920] [PMID: 35670037]
[65]
Chen, J.; Li, X.; Liu, R.; Xie, Y.; Liu, Z.; Xiong, H.; Li, Y. The correlation of mouse double minute 4 (MDM4) Polymorphisms (rs4245739, rs1563828, rs11801299, rs10900598, and rs1380576) with cancer susceptibility: A meta-analysis. Med. Sci. Monit., 2022, 28, e935671.
[http://dx.doi.org/10.12659/MSM.935671] [PMID: 35347102]
[66]
Wang, Z.; Li, C.; Li, X.; Shi, J.; Wu, W. Effect of vascular endothelial growth factor rs35569394 in esophageal cancer and response to chemotherapy. Biomolecules. Biochim., 2023, 23(2), 271-276.
[67]
Wang, J.; Chen, T.; Tang, W.; Kang, M.; Chen, S. Associations of interleukin-4 and interleukin-4 receptor loci with esophageal squamous cell carcinoma susceptibility. Int. Immunopharmacol., 2021, 97, 107659.
[http://dx.doi.org/10.1016/j.intimp.2021.107659] [PMID: 33895482]
[68]
Wang, R.; Si, L.; Zhu, D.; Shen, G.; Long, Q.; Zhao, Y. Genetic variants in GHR and PLCE1 genes are associated with susceptibility to esophageal cancer. Mol. Genet. Genomic Med., 2020, 8(10), e1474.
[http://dx.doi.org/10.1002/mgg3.1474] [PMID: 32869542]
[69]
Zhao, R.; Chen, X.; Ren, W.; Dai, H.; Li, H.; Li, H.; Jia, A.; Wu, Y.; Han, P.; Shao, Y. IL-1B rs2853550 polymorphism contributes to esophageal cancer susceptibility in Chinese Han population of Northwest China. Mol. Med., 2020, 26(1), 57.
[http://dx.doi.org/10.1186/s10020-020-00178-y] [PMID: 32527212]
[70]
Shah, R.; Sharma, V.; Bhat, A.; Singh, H.; Sharma, I.; Verma, S.; Bhat, G.R.; Sharma, B.; Bakshi, D.; Kumar, R.; Dar, N.A. MassARRAY analysis of twelve cancer related SNPs in esophageal squamous cell carcinoma in J&K, India. BMC Cancer, 2020, 20(1), 497.
[http://dx.doi.org/10.1186/s12885-020-06991-2] [PMID: 32487238]
[71]
Zang, B.; Chen, C.; Zhao, J.Q. PD-1 gene rs10204525 and rs7421861 polymorphisms are associated with increased risk and clinical features of esophageal cancer in a Chinese Han population. Aging, 2020, 12(4), 3771-3790.
[http://dx.doi.org/10.18632/aging.102845] [PMID: 32084010]
[72]
Wang, J.; Wang, Q.; Wei, B.; Zhou, Y.; Qian, Z.; Gao, Y.; Chen, X. Intronic polymorphisms in genes LRFN2 (rs2494938) and DNAH11 (rs2285947) are prognostic indicators of esophageal squamous cell carcinoma. BMC Med. Genet., 2019, 20(1), 72.
[http://dx.doi.org/10.1186/s12881-019-0796-9] [PMID: 31053115]
[73]
Cremer, M.; Grasser, F.; Lanctôt, C.; Müller, S.; Neusser, M.; Zinner, R.; Solovei, I.; Cremer, T. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol., 2012, 463, 205-239.
[http://dx.doi.org/10.1007/978-1-59745-406-3_15] [PMID: 18951171]
[74]
Kibel, A.S.; Ahn, J.; Isikbay, M.; Klim, A.; Wu, W.S.; Hayes, R.B.; Isaacs, W.B.; Daw, E.W. Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma. Prostate, 2016, 76(5), 479-490.
[http://dx.doi.org/10.1002/pros.23139] [PMID: 26708993]
[75]
Bulgakova, O.; Kussainova, A.; Bersimbaev, R. The cell cycle regulatory gene polymorphisms TP53 (rs1042522) and MDM2 (rs2279744) in lung cancer: a meta-analysis. Vavilovskii Zhurnal Genet. Selektsii, 2020, 24(7), 77-784.
[http://dx.doi.org/10.18699/VJ20.673] [PMID: 33959694]
[76]
Duan, G.; Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLOS Comput. Biol., 2015, 11(2), e1004049.
[http://dx.doi.org/10.1371/journal.pcbi.1004049] [PMID: 25692714]
[77]
Fraser, P.; Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature, 2007, 447(7143), 413-417.
[http://dx.doi.org/10.1038/nature05916] [PMID: 17522674]
[78]
Schübeler, D. Function and information content of DNA methylation. Nature, 2015, 517(7534), 321-326.
[http://dx.doi.org/10.1038/nature14192] [PMID: 25592537]
[79]
Dekker, J.; Mirny, L. The 3D genome as moderator of chromosomal communication. Cell, 2016, 164(6), 1110-1121.
[http://dx.doi.org/10.1016/j.cell.2016.02.007] [PMID: 26967279]
[80]
Javierre, B.M.; Burren, O.S.; Wilder, S.P.; Kreuzhuber, R.; Hill, S.M.; Sewitz, S.; Cairns, J.; Wingett, S.W. Várnai, C.; Thiecke, M.J.; Burden, F.; Farrow, S.; Cutler, A.J.; Rehnström, K.; Downes, K.; Grassi, L.; Kostadima, M.; Freire-Pritchett, P.; Wang, F.; Stunnenberg, H.G.; Todd, J.A.; Zerbino, D.R.; Stegle, O.; Ouwehand, W.H.; Frontini, M.; Wallace, C.; Spivakov, M.; Fraser, P.; Martens, J.H.; Kim, B.; Sharifi, N.; Janssen-Megens, E.M.; Yaspo, M-L.; Linser, M.; Kovacsovics, A.; Clarke, L.; Richardson, D.; Datta, A.; Flicek, P. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell, 2016, 167(5), 1369-1384.e19.
[http://dx.doi.org/10.1016/j.cell.2016.09.037] [PMID: 27863249]
[81]
Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature, 2000, 403(6765), 41-45.
[http://dx.doi.org/10.1038/47412] [PMID: 10638745]
[82]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[83]
Berger, S.L. The complex language of chromatin regulation during transcription. Nature, 2007, 447(7143), 407-412.
[http://dx.doi.org/10.1038/nature05915] [PMID: 17522673]
[84]
Suganuma, T.; Workman, J.L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem., 2011, 80(1), 473-499.
[http://dx.doi.org/10.1146/annurev-biochem-061809-175347] [PMID: 21529160]
[85]
Henikoff, S.; Shilatifard, A. Histone modification: Cause or cog? Trends Genet., 2011, 27(10), 389-396.
[http://dx.doi.org/10.1016/j.tig.2011.06.006] [PMID: 21764166]
[86]
Buenrostro, J.D.; Giresi, P.G.; Zaba, L.C.; Chang, H.Y.; Greenleaf, W.J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 2013, 10(12), 1213-1218.
[http://dx.doi.org/10.1038/nmeth.2688] [PMID: 24097267]
[87]
Heintzman, N.D.; Stuart, R.K.; Hon, G.; Fu, Y.; Ching, C.W.; Hawkins, R.D.; Barrera, L.O.; Van Calcar, S.; Qu, C.; Ching, K.A.; Wang, W.; Weng, Z.; Green, R.D.; Crawford, G.E.; Ren, B. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet., 2007, 39(3), 311-318.
[http://dx.doi.org/10.1038/ng1966] [PMID: 17277777]
[88]
Li, B.; Carey, M.; Workman, J.L. The role of chromatin during transcription. Cell, 2007, 128(4), 707-719.
[http://dx.doi.org/10.1016/j.cell.2007.01.015] [PMID: 17320508]
[89]
Levine, M.; Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci., 2005, 102(14), 4936-4942.
[http://dx.doi.org/10.1073/pnas.0408031102] [PMID: 15788537]
[90]
Esteller, M. Epigenetics in Cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159.
[http://dx.doi.org/10.1056/NEJMra072067] [PMID: 18337604]
[91]
Nikbakht, H.A.; Sahraian, S.; Ghaem, H.; Javadi, A.; Janfada, M.; Hassanipour, S.; Mirahmadizadeh, A.R. Trends in mortality rates for gastrointestinal cancers in fars province, Iran (2005–2015). J. Gastrointest. Cancer, 2020, 51(1), 63-69.
[http://dx.doi.org/10.1007/s12029-019-00204-1] [PMID: 30663013]
[92]
Wu, Y.Y.; Kuo, H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci., 2020, 27(1), 49.
[http://dx.doi.org/10.1186/s12929-020-00636-z] [PMID: 32264890]
[93]
Toden, S.; Goel, A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br. J. Cancer, 2022, 126(3), 351-360.
[http://dx.doi.org/10.1038/s41416-021-01672-8] [PMID: 35013579]
[94]
Chen, R.; Xia, W.; Wang, X.; Qiu, M.; Yin, R.; Wang, S.; Xi, X.; Wang, J.; Xu, Y.; Dong, G.; Xu, L.; De, W. Upregulated long non-coding RNA SBF2-AS1 promotes proliferation in esophageal squamous cell carcinoma. Oncol. Lett., 2018, 15(4), 5071-5080.
[http://dx.doi.org/10.3892/ol.2018.7968] [PMID: 29552140]
[95]
Zong, M.Z.; Shao, Q.; An, X.S. Expression and prognostic significance of long noncoding RNA AK001796 in esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(1), 181-186.
[PMID: 30657559]
[96]
Cao, T.; Shen, J.; Pan, W.; Li, C.; Qiao, Z. Upregulation of long noncoding RNA ANRIL correlates with tumor progression and poor prognosis in esophageal squamous cell carcinoma. J. BUON, 2018, 23(6), 1862-1866.
[97]
Bao, J.; Zhou, C.; Zhang, J.; Mo, J.; Ye, Q.; He, J.; Diao, J. Upregulation of the long noncoding RNA FOXD2-AS1 predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Biomark., 2018, 21(3), 527-533.
[http://dx.doi.org/10.3233/CBM-170260] [PMID: 29286915]
[98]
Zong, M.Z.; Feng, W.T.; Du, N.; Yu, X.J.; Yu, W.Y. Upregulation of long noncoding RNA LEF1-AS1 predicts a poor prognosis in patients with esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(18), 7929-7934.
[PMID: 31599448]
[99]
Wang, B.; Liang, T.; Li, J. Long noncoding RNA LINC01296 is associated with poor prognosis in ESCC and promotes ESCC cell proliferation, migration and invasion. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(14), 4524-4531.
[PMID: 30058683]
[100]
Xie, J.J.; Jiang, Y.Y.; Jiang, Y.; Li, C.Q.; Lim, M.C.; An, O.; Mayakonda, A.; Ding, L.W.; Long, L.; Sun, C.; Lin, L.H.; Chen, L.; Wu, J.Y.; Wu, Z.Y.; Cao, Q.; Fang, W.K.; Yang, W.; Soukiasian, H.; Meltzer, S.J.; Yang, H.; Fullwood, M.; Xu, L.Y.; Li, E.M.; Lin, D.C.; Koeffler, H.P. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma. Gastroenterology, 2018, 154(8), 2137-2151.e1.
[http://dx.doi.org/10.1053/j.gastro.2018.02.018] [PMID: 29454790]
[101]
Tong, Y.; Zhou, X.; Wang, X.; Wu, Q.; Yang, T.; Lv, J.; Yang, J.; Zhu, B.; Cao, X. Association of decreased expression of long non-coding RNA LOC285194 with chemoradiotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. J. Transl. Med., 2014, 12(1), 233.
[http://dx.doi.org/10.1186/s12967-014-0233-y] [PMID: 25169763]
[102]
Cao, X.; Zhao, R.; Chen, Q.; Zhao, Y.; Zhang, B.; Zhang, Y.; Yu, J.; Han, G.; Cao, W.; Li, J.; Chen, X. MALAT1 might be a predictive marker of poor prognosis in patients who underwent radical resection of middle thoracic esophageal squamous cell carcinoma. Cancer Biomark., 2015, 15(6), 717-723.
[http://dx.doi.org/10.3233/CBM-150513] [PMID: 26406400]
[103]
Ma, J.; Li, T.F.; Han, X.W.; Yuan, H.F. Downregulated MEG3 contributes to tumour progression and poor prognosis in oesophagal squamous cell carcinoma by interacting with miR-4261, downregulating DKK2 and activating the Wnt/β-catenin signalling. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1513-1523.
[http://dx.doi.org/10.1080/21691401.2019.1602538] [PMID: 30990378]
[104]
Luo, D.; Huang, Z.; Lv, H.; Wang, Y.; Sun, W.; Sun, X. Up-regulation of MicroRNA-21 indicates poor prognosis and promotes cell proliferation in esophageal squamous cell carcinoma via upregulation of lncRNA SNHG1. Cancer Manag. Res., 2020, 12, 1-14.
[http://dx.doi.org/10.2147/CMAR.S221731] [PMID: 32021418]
[105]
Wang, Y.L.; Bai, Y.; Yao, W.J.; Guo, L.; Wang, Z.M. Expression of long non-coding RNA ZEB1-AS1 in esophageal squamous cell carcinoma and its correlation with tumor progression and patient survival. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11871-11876.
[PMID: 26617942]
[106]
Ge, X.S.; Ma, H.J.; Zheng, X.H.; Ruan, H.L.; Liao, X.Y.; Xue, W.Q.; Chen, Y.B.; Zhang, Y.; Jia, W.H. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF ‐1 expression and activates W nt pathway. Cancer Sci., 2013, 104(12), 1675-1682.
[http://dx.doi.org/10.1111/cas.12296] [PMID: 24118380]
[107]
Li, X.; Wu, Z.; Mei, Q.; Li, X.; Guo, M.; Fu, X.; Han, W. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br. J. Cancer, 2013, 109(8), 2266-2278.
[http://dx.doi.org/10.1038/bjc.2013.548] [PMID: 24022190]
[108]
Xie, H.W.; Wu, Q.Q.; Zhu, B.; Chen, F.J.; Ji, L.; Li, S.Q.; Wang, C.M.; Tong, Y.S.; Tuo, L.; Wu, M.; Liu, Z.H.; Lv, J.; Shi, W.H.; Cao, X.F. Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumour Biol., 2014, 35(8), 7743-7754.
[http://dx.doi.org/10.1007/s13277-014-2013-y] [PMID: 24810925]
[109]
Wu, H.; Zheng, J.; Deng, J.; Zhang, L.; Li, N.; Li, W.; Li, F.; Lu, J.; Zhou, Y. LincRNA-uc002yug.2 involves in alternative splicing of RUNX1 and serves as a predictor for esophageal cancer and prognosis. Oncogene, 2015, 34(36), 4723-4734.
[http://dx.doi.org/10.1038/onc.2014.400] [PMID: 25486427]
[110]
Zhou, X.L.; Wang, W.W.; Zhu, W.G.; Yu, C.H.; Tao, G.Z.; Wu, Q.Q.; Song, Y.Q.; Pan, P.; Tong, Y.S. High expression of long non‐coding RNA AFAP1‐AS1 predicts chemoradioresistance and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Mol. Carcinog., 2016, 55(12), 2095-2105.
[http://dx.doi.org/10.1002/mc.22454] [PMID: 26756568]
[111]
Guan, Z.; Wang, Y.; Wang, Y.; Liu, X.; Wang, Y.; Zhang, W.; Chi, X.; Dong, Y.; Liu, X.; Shao, S.; Zhan, Q. Long non‐coding RNA LOC100133669 promotes cell proliferation in oesophageal squamous cell carcinoma. Cell Prolif., 2020, 53(4), e12750.
[http://dx.doi.org/10.1111/cpr.12750] [PMID: 32130753]
[112]
Sud, A.; Kinnersley, B.; Houlston, R.S. Genome-wide association studies of cancer: Current insights and future perspectives. Nat. Rev. Cancer, 2017, 17(11), 692-704.
[http://dx.doi.org/10.1038/nrc.2017.82] [PMID: 29026206]
[113]
Law, P.J.; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.; Fernandez-Tajes, J.; Farrington, S.; Svinti, V.; Palles, C.; Orlando, G.; Sud, A.; Holroyd, A.; Penegar, S.; Theodoratou, E.; Vaughan-Shaw, P.; Campbell, H.; Zgaga, L.; Hayward, C.; Campbell, A.; Harris, S.; Deary, I.J.; Starr, J.; Gatcombe, L.; Pinna, M.; Briggs, S.; Martin, L.; Jaeger, E.; Sharma-Oates, A.; East, J.; Leedham, S.; Arnold, R.; Johnstone, E.; Wang, H.; Kerr, D.; Kerr, R.; Maughan, T.; Kaplan, R.; Al-Tassan, N.; Palin, K. Hänninen, U.A.; Cajuso, T.; Tanskanen, T.; Kondelin, J.; Kaasinen, E.; Sarin, A.P.; Eriksson, J.G.; Rissanen, H.; Knekt, P.; Pukkala, E.; Jousilahti, P.; Salomaa, V.; Ripatti, S.; Palotie, A.; Renkonen-Sinisalo, L.; Lepistö, A.; Böhm, J.; Mecklin, J.P.; Buchanan, D.D.; Win, A.K.; Hopper, J.; Jenkins, M.E.; Lindor, N.M.; Newcomb, P.A.; Gallinger, S.; Duggan, D.; Casey, G.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.H.; Easton, D.F.; Pharoah, P.D.P.; Peto, J.; Canzian, F.; Swerdlow, A.; Eeles, R.A.; Kote-Jarai, Z.; Muir, K.; Pashayan, N.; Henderson, B.E.; Haiman, C.A.; Schumacher, F.R.; Al Olama, A.A.; Benlloch, S.; Berndt, S.I.; Conti, D.V.; Wiklund, F.; Chanock, S.; Gapstur, S.; Stevens, V.L.; Tangen, C.M.; Batra, J.; Clements, J.; Gronberg, H.; Schleutker, J.; Albanes, D.; Wolk, A.; West, C.; Mucci, L.; Cancel-Tassin, G.; Koutros, S.; Sorensen, K.D.; Grindedal, E.M.; Neal, D.E.; Hamdy, F.C.; Donovan, J.L.; Travis, R.C.; Hamilton, R.J.; Ingles, S.A.; Rosenstein, B.S.; Lu, Y-J.; Giles, G.G.; Kibel, A.S.; Vega, A.; Kogevinas, M.; Penney, K.L.; Park, J.Y.; Stanford, J.L.; Cybulski, C.; Nordestgaard, B.G.; Maier, C.; Kim, J.; John, E.M.; Teixeira, M.R.; Neuhausen, S.L.; De Ruyck, K.; Razack, A.; Newcomb, L.F.; Gamulin, M.; Kaneva, R.; Usmani, N.; Claessens, F.; Townsend, P.A.; Gago-Dominguez, M.; Roobol, M.J.; Menegaux, F.; Khaw, K-T.; Cannon-Albright, L.; Pandha, H.; Thibodeau, S.N.; Harkin, A.; Allan, K.; McQueen, J.; Paul, J.; Iveson, T.; Saunders, M.; Butterbach, K.; Chang-Claude, J.; Hoffmeister, M.; Brenner, H.; Kirac, I.; Matošević, P.; Hofer, P.; Brezina, S.; Gsur, A.; Cheadle, J.P.; Aaltonen, L.A.; Tomlinson, I.; Houlston, R.S.; Dunlop, M.G. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun., 2019, 10(1), 2154.
[http://dx.doi.org/10.1038/s41467-019-09775-w] [PMID: 31089142]
[114]
Cui, Y.S.; Song, Y.P.; Fang, B.J. The role of long non‐coding RNAs in multiple myeloma. Eur. J. Haematol., 2019, 103(1), 3-9.
[http://dx.doi.org/10.1111/ejh.13237] [PMID: 30985973]
[115]
Pardini, B.; Sabo, A.A.; Birolo, G.; Calin, G.A. Noncoding RNAs in extracellular fluids as cancer biomarkers: The new frontier of liquid biopsies. Cancers, 2019, 11(8), 1170.
[http://dx.doi.org/10.3390/cancers11081170] [PMID: 31416190]
[116]
Liu, Z.; Yang, T.; Xu, Z.; Cao, X. Upregulation of the long non-coding RNA BANCR correlates with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Biomed. Pharmacother., 2016, 82, 406-412.
[http://dx.doi.org/10.1016/j.biopha.2016.05.014]
[117]
Gao, G.D.; Liu, X.Y.; Lin, Y.; Liu, H.F.; Zhang, G.J. LncRNA CASC9 promotes tumorigenesis by affecting EMT and predicts poor prognosis in esophageal squamous cell cancer. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(2), 422-429.
[PMID: 29424900]
[118]
Xu, L.J.; Yu, X.J.; Wei, B.; Hui, H.X.; Sun, Y.; Dai, J.; Chen, X.F. Long non-coding RNA DUXAP8 regulates proliferation and invasion of esophageal squamous cell cancer. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(9), 2646-2652.
[PMID: 29771416]
[119]
Li, X.; Yang, H.; Wang, J.; Li, X.; Fan, Z.; Zhao, J.; Liu, L.; Zhang, M.; Goscinski, M.A.; Wang, J.; Xu, R.; Fan, H.; Li, H.; Suo, Z. High level of lncRNA H19 expression is associated with shorter survival in esophageal squamous cell cancer patients. Pathol. Res. Pract., 2019, 215(11), 152638.
[http://dx.doi.org/10.1016/j.prp.2019.152638] [PMID: 31551175]
[120]
Yang, X.; Song, J.H.; Cheng, Y.; Wu, W.; Bhagat, T.; Yu, Y.; Abraham, J.M.; Ibrahim, S.; Ravich, W.; Roland, B.C.; Khashab, M.; Singh, V.K.; Shin, E.J.; Yang, X.; Verma, A.K.; Meltzer, S.J.; Mori, Y. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut, 2014, 63(6), 881-890.
[http://dx.doi.org/10.1136/gutjnl-2013-305266] [PMID: 24000294]
[121]
Wang, W.; Wu, D.; He, X.; Hu, X.; Hu, C.; Shen, Z.; Lin, J.; Pan, Z.; He, Z.; Lin, H.; Wang, M. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett., 2019, 460, 18-28.
[http://dx.doi.org/10.1016/j.canlet.2019.06.009] [PMID: 31207321]
[122]
Kang, K.; Huang, Y.; Li, H.; Guo, S. Expression of UCA1 and MALAT1 long-chain non-coding RNAs in esophageal squamous cell carcinoma tissues is predictive of patient prognosis. Arch. Med. Sci., 2018, 14(4), 752-759.
[http://dx.doi.org/10.5114/aoms.2018.73713] [PMID: 30002691]
[123]
Dong, Z.; Zhang, A.; Liu, S.; Lu, F.; Guo, Y.; Zhang, G.; Xu, F.; Shi, Y.; Shen, S.; Liang, J.; Guo, W. aberrant methylation-mediated silencing of lncRNA MEG3 functions as a ceRNA in esophageal cancer. Mol. Cancer Res., 2017, 15(7), 800-810.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0385] [PMID: 28539329]
[124]
Yan, S.; Du, L.; Jiang, X.; Duan, W.; Li, J.; Xie, Y.; Zhan, Y.; Zhang, S.; Wang, L.; Li, S.; Wang, C. Evaluation of serum exosomal lncRNAs as diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Cancer Manag. Res., 2020, 12, 9753-9763.
[http://dx.doi.org/10.2147/CMAR.S250971] [PMID: 33116835]
[125]
Shi, W.; Wu, Q.; Li, S.; Yang, T.; Liu, Z.; Tong, Y.; Tuo, L.; Wang, S.; Cao, X.F. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma. Tumour Biol., 2015, 36(4), 2501-2507.
[http://dx.doi.org/10.1007/s13277-014-2863-3] [PMID: 25731728]
[126]
Xu, Y.; Li, Y.; Jin, J.; Han, G.; Sun, C.; Pizzi, M.P.; Huo, L.; Scott, A.; Wang, Y.; Ma, L.; Lee, J.H.; Bhutani, M.S.; Weston, B.; Vellano, C.; Yang, L.; Lin, C.; Kim, Y.; MacLeod, A.R.; Wang, L.; Wang, Z.; Song, S.; Ajani, J.A. LncRNA PVT1 up-regulation is a poor prognosticator and serves as a therapeutic target in esophageal adenocarcinoma. Mol. Cancer, 2019, 18(1), 141.
[http://dx.doi.org/10.1186/s12943-019-1064-5] [PMID: 31601234]
[127]
Dong, Z.; Liang, X.; Wu, X.; Kang, X.; Guo, Y.; Shen, S.; Liang, J.; Guo, W. Promoter hypermethylation-mediated downregulation of tumor suppressor gene SEMA3B and lncRNA SEMA3B-AS1 correlates with progression and prognosis of esophageal squamous cell carcinoma. Clin. Exp. Metastasis, 2019, 36(3), 225-241.
[http://dx.doi.org/10.1007/s10585-019-09964-3] [PMID: 30915595]
[128]
Yao, J.; Zhang, H.; Li, H.; Qian, R.; Liu, P.; Huang, J. P53‐regulated lncRNA uc061hsf.1 inhibits cell proliferation and metastasis in human esophageal squamous cell cancer. IUBMB Life, 2020, 72(3), 401-412.
[http://dx.doi.org/10.1002/iub.2196] [PMID: 31743955]
[129]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs — microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[130]
Hoffman, A.E.; Zheng, T.; Yi, C.; Leaderer, D.; Weidhaas, J.; Slack, F.; Zhang, Y.; Paranjape, T.; Zhu, Y. microRNA miR-196a-2 and breast cancer: A genetic and epigenetic association study and functional analysis. Cancer Res., 2009, 69(14), 5970-5977.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0236] [PMID: 19567675]
[131]
Shen, C.; Yan, T.; Wang, Z.; Su, H.; Zhu, X.; Tian, X.; Fang, J.Y.; Chen, H.; Hong, J. Variant of SNP rs1317082 at CCSlnc362 (RP11-362K14.5) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis., 2018, 9(12), 1177.
[http://dx.doi.org/10.1038/s41419-018-1222-5] [PMID: 30518759]
[132]
Feng, T.; Feng, N.; Zhu, T.; Li, Q.; Zhang, Q.; Wang, Y.; Gao, M.; Zhou, B.; Yu, H.; Zheng, M.; Qian, B. A SNP-mediated lncRNA (LOC146880) and microRNA (miR-539-5p) interaction and its potential impact on the NSCLC risk. J. Exp. Clin. Cancer Res., 2020, 39(1), 157.
[http://dx.doi.org/10.1186/s13046-020-01652-5] [PMID: 32795333]
[133]
Wang, J.; Zou, Y.; Du, B.; Li, W.; Yu, G.; Li, L.; Zhou, L.; Gu, X.; Song, S.; Liu, Y.; Zhou, W.; Xu, B.; Wang, Z. SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling. Cell Death Dis., 2021, 12(7), 672.
[http://dx.doi.org/10.1038/s41419-021-03958-4] [PMID: 34218253]
[134]
Fu, Y.; Zhang, Y.; Cui, J.; Yang, G.; Peng, S.; Mi, W.; Yin, X.; Yu, Y.; Jiang, J.; Liu, Q.; Qin, Y.; Xu, W. SNP rs12982687 affects binding capacity of lncRNA UCA1 with miR-873-5p: involvement in smoking-triggered colorectal cancer progression. Cell Commun. Signal., 2020, 18(1), 37.
[http://dx.doi.org/10.1186/s12964-020-0518-0] [PMID: 32143722]
[135]
Hou, Y.; Zhou, M.; Li, Y.; Tian, T.; Sun, X.; Chen, M.; Xu, W.; Lu, M. Risk SNP‐mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol. Carcinog., 2022, 61(8), 797-811.
[http://dx.doi.org/10.1002/mc.23422] [PMID: 35687049]
[136]
Zhang, Z.Y.; Xuan, Y.; Jin, X.Y.; Tian, X.; Wu, R. Meta-analysis demonstrates association of XRCC1 genetic polymorphism Arg399Gln with esophageal cancer risk in the Chinese population. Genet. Mol. Res., 2013, 12(3), 2567-2577.
[http://dx.doi.org/10.4238/2013.January.16.2] [PMID: 23359058]
[137]
Yin, M.; Tan, D.; Wei, Q. Genetic variants of the XRCC1 gene and susceptibility to esophageal cancer: A meta-analysis. Int. J. Clin. Exp. Med., 2009, 2(1), 26-35.
[PMID: 19436829]
[138]
Warchoł, T.; Mostowska, A.; Lianeri, M.; Łącki, J.K.; Jagodziński, P.P. XRCC1 Arg399Gln gene polymorphism and the risk of systemic lupus erythematosus in the Polish population. DNA Cell Biol., 2012, 31(1), 50-56.
[http://dx.doi.org/10.1089/dna.2011.1246] [PMID: 21682595]
[139]
Bosetti, C.; La Vecchia, C.; Talamini, R.; Simonato, L.; Zambon, P.; Negri, E.; Trichopoulos, D.; Lagiou, P.; Bardini, R.; Franceschi, S. Food groups and risk of squamous cell esophageal cancer in Northern Italy. Int. J. Cancer, 2000, 87(2), 289-294.
[http://dx.doi.org/10.1002/1097-0215(20000715)87:2<289:AID-IJC22>3.0.CO;2-9] [PMID: 10861489]
[140]
Ba, X.; Boldogh, I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol., 2018, 14, 669-678.
[http://dx.doi.org/10.1016/j.redox.2017.11.008] [PMID: 29175754]
[141]
Li, S.; Deng, Y.; You, J.P.; Chen, Z.P.; Peng, Q.L.; Huang, X.M.; Lu, Q.H.; Huang, X.; Zhao, J.M.; Qin, X. XRCC1 Arg399Gln, Arg194Trp, and Arg280His polymorphisms in esophageal cancer risk: A meta-analysis. Dig. Dis. Sci., 2013, 58(7), 1880-1890.
[http://dx.doi.org/10.1007/s10620-013-2569-1] [PMID: 23543084]
[142]
Wallenstein, S.; Hodge, S.E.; Weston, A. Logistic regression model for analyzing extended haplotype data. Genet. Epidemiol., 1998, 15(2), 173-181.
[http://dx.doi.org/10.1002/(SICI)1098-2272(1998)15:2<173:AID-GEPI5>3.0.CO;2-7] [PMID: 9554554]
[143]
Goldstein, D.B.; Ahmadi, K.R.; Weale, M.E.; Wood, N.W. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet., 2003, 19(11), 615-622.
[http://dx.doi.org/10.1016/j.tig.2003.09.006] [PMID: 14585613]
[144]
Garnham, R.; Scott, E.; Livermore, K.E.; Munkley, J. ST6GAL1: A key player in cancer. Oncol. Lett., 2019, 18(2), 983-989.
[PMID: 31423157]
[145]
Kuschel, B.; Auranen, A.; McBride, S.; Novik, K.L.; Antoniou, A.; Lipscombe, J.M.; Day, N.E.; Easton, D.F.; Ponder, B.A.; Pharoah, P.D.; Dunning, A. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum. Mol. Genet., 2002, 11(12), 1399-1407.
[http://dx.doi.org/10.1093/hmg/11.12.1399] [PMID: 12023982]
[146]
Mohrenweiser, H.W.; Xi, T. Vázquez-Matías, J.; Jones, I.M. Identification of 127 amino acid substitution variants in screening 37 DNA repair genes in humans. Cancer Epidemiol. Biomarkers Prev., 2002, 11(10 Pt 1), 1054-1064.
[PMID: 12376507]
[147]
Kraus, W.L.; Lis, J.T. PARP goes transcription. Cell, 2003, 113(6), 677-683.
[http://dx.doi.org/10.1016/S0092-8674(03)00433-1] [PMID: 12809599]
[148]
Soldatenkov, V.A.; Smulson, M. Poly(ADP-ribose) polymerase in DNA damage-response pathway:Implications for radiation oncology. Int. J. Cancer, 2000, 90(2), 59-67.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000420)90:2<59:AID-IJC1>3.0.CO;2-4] [PMID: 10814955]
[149]
Caldecott, K.W. XRCC1 and DNA strand break repair. DNA Repair, 2003, 2(9), 955-969.
[http://dx.doi.org/10.1016/S1568-7864(03)00118-6] [PMID: 12967653]
[150]
Talamini, G.; Capelli, P.; Zamboni, G.; Mastromauro, M.; Pasetto, M.; Castagnini, A.; Angelini, G.; Bassi, C.; Scarpa, A. Alcohol, smoking and papillomavirus infection as risk factors for esophageal squamous-cell papilloma and esophageal squamous-cell carcinoma in Italy. Int. J. Cancer, 2000, 86(6), 874-878.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000615)86:6<874:AID-IJC18>3.0.CO;2-V] [PMID: 10842204]
[151]
Dai, L.; Wang, K.; Zhang, J.; Lv, Q.; Wu, X.; Wang, Y. XRCC1 gene polymorphisms and esophageal squamous cell carcinoma risk in Chinese population: A meta-analysis of case-control studies. Int. J. Cancer, 2009, 125(5), 1102-1109.
[http://dx.doi.org/10.1002/ijc.24446] [PMID: 19444915]
[152]
Pu, Y.; Zhao, L.; Dai, N.; Xu, M. Comprehensive analysis of the correlation between base excision repair gene SNPs and esophageal squamous cell carcinoma risk in a Chinese Han population. Mol. Clin. Oncol., 2020, 13(2), 228-236.
[http://dx.doi.org/10.3892/mco.2020.2066] [PMID: 32714550]
[153]
Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet., 2019, 20(8), 467-484.
[http://dx.doi.org/10.1038/s41576-019-0127-1] [PMID: 31068683]
[154]
Gamazon, E.R.; Stranger, B.E. The impact of human copy number variation on gene expression: Figure 1. Brief. Funct. Genomics, 2015, 14(5), 352-357.
[http://dx.doi.org/10.1093/bfgp/elv017] [PMID: 25922366]
[155]
Yang, H.H.; Liu, H.; Hu, N.; Su, H.; Wang, C.; Giffen, C.; Goldstein, A.M.; Taylor, P.R.; Lee, M.P. Modified eQTL and somatic DNA segment alterations in esophageal squamous cell carcinoma for genes related to immunity, DNA repair, and inflammation. Cancers, 2022, 14(7), 1629.
[http://dx.doi.org/10.3390/cancers14071629] [PMID: 35406404]
[156]
Yin, J.; Vogel, U.; Ma, Y.; Qi, R.; Wang, H. Haplotypes of nine single nucleotide polymorphisms on chromosome 19q13.2-3 associated with susceptibility of lung cancer in a Chinese population. Mutat. Res., 2008, 641(1-2), 12-18.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.02.004] [PMID: 18358500]
[157]
Xing, D.; Qi, J.; Miao, X.; Lu, W.; Tan, W.; Lin, D. Polymorphisms of DNA repair genes XRCC1 and XPD and their associations with risk of esophageal squamous cell carcinoma in a Chinese population. Int. J. Cancer, 2002, 100(5), 600-605.
[http://dx.doi.org/10.1002/ijc.10528] [PMID: 12124811]
[158]
Riccio, A.; Aaltonen, L.A.; Godwin, A.K.; Loukola, A.; Percesepe, A.; Salovaara, R.; Masciullo, V.; Genuardi, M.; Paravatou-Petsotas, M.; Bassi, D.E.; Ruggeri, B.A.; Klein-Szanto, A.J.P.; Testa, J.R.; Neri, G.; Bellacosa, A. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat. Genet., 1999, 23(3), 266-268.
[http://dx.doi.org/10.1038/15443] [PMID: 10545939]
[159]
Fu, Y.P.; Yu, J.C.; Cheng, T.C.; Lou, M.A.; Hsu, G.C.; Wu, C.Y.; Chen, S.T.; Wu, H.S.; Wu, P.E.; Shen, C.Y. Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: A multigenic study on cancer susceptibility. Cancer Res., 2003, 63(10), 2440-2446.
[PMID: 12750264]
[160]
Hemminki, K.; Xu, G.; Le Curieux, F. Re: markers of DNA repair and susceptibility to cancer in humans: An epidemiologic review. J. Natl. Cancer Inst., 2000, 92(18), 1536-1537.
[http://dx.doi.org/10.1093/jnci/92.18.1536] [PMID: 10995815]
[161]
Stranger, B.E.; Forrest, M.S.; Dunning, M.; Ingle, C.E.; Beazley, C.; Thorne, N.; Redon, R.; Bird, C.P.; de Grassi, A.; Lee, C.; Tyler-Smith, C.; Carter, N.; Scherer, S.W.; Tavaré, S.; Deloukas, P.; Hurles, M.E.; Dermitzakis, E.T. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 2007, 315(5813), 848-853.
[http://dx.doi.org/10.1126/science.1136678] [PMID: 17289997]
[162]
Bellacosa, A. Role ofMED1 (MBD4) Gene in DNA repair and human cancer. J. Cell. Physiol., 2001, 187(2), 137-144.
[http://dx.doi.org/10.1002/jcp.1064] [PMID: 11267993]
[163]
Hendrich, B.; Hardeland, U.; Ng, H.H.; Jiricny, J.; Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature, 1999, 401(6750), 301-304.
[http://dx.doi.org/10.1038/45843] [PMID: 10499592]
[164]
Petronzelli, F.; Riccio, A.; Markham, G.D.; Seeholzer, S.H.; Stoerker, J.; Genuardi, M.; Yeung, A.T.; Matsumoto, Y.; Bellacosa, A. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J. Biol. Chem., 2000, 275(42), 32422-32429.
[http://dx.doi.org/10.1074/jbc.M004535200] [PMID: 10930409]
[165]
Screaton, R.A.; Kiessling, S.; Sansom, O.J.; Millar, C.B.; Maddison, K.; Bird, A.; Clarke, A.R.; Frisch, S.M. Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: A potential link between genome surveillance and apoptosis. Proc. Natl. Acad. Sci., 2003, 100(9), 5211-5216.
[http://dx.doi.org/10.1073/pnas.0431215100] [PMID: 12702765]
[166]
Bader, S.; Walker, M.; Hendrich, B.; Bird, A.; Bird, C.; Hooper, M.; Wyllie, A. Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene, 1999, 18(56), 8044-8047.
[http://dx.doi.org/10.1038/sj.onc.1203229] [PMID: 10637515]
[167]
Bader, S.; Walker, M.; Harrison, D. Most microsatellite unstable sporadic colorectal carcinomas carry MBD4 mutations. Br. J. Cancer, 2000, 83(12), 1646-1649.
[http://dx.doi.org/10.1054/bjoc.2000.1482] [PMID: 11104560]
[168]
Rice, P.A. Holding damaged DNA together. Nat. Struct. Biol., 1999, 6(9), 805-806.
[http://dx.doi.org/10.1038/12257] [PMID: 10467087]
[169]
Tomkinson, A.E.; Naila, T.; Khattri Bhandari, S. Altered DNA ligase activity in human disease. Mutagenesis, 2020, 35(1), 51-60.
[http://dx.doi.org/10.1093/mutage/gez026] [PMID: 31630206]
[170]
Millar, C.B.; Guy, J.; Sansom, O.J.; Selfridge, J.; MacDougall, E.; Hendrich, B.; Keightley, P.D.; Bishop, S.M.; Clarke, A.R.; Bird, A. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science, 2002, 297(5580), 403-405.
[http://dx.doi.org/10.1126/science.1073354] [PMID: 12130785]
[171]
Wong, E.; Yang, K.; Kuraguchi, M.; Werling, U.; Avdievich, E.; Fan, K.; Fazzari, M.; Jin, B.; Brown, A.M.C.; Lipkin, M.; Edelmann, W. Mbd4 inactivation increases C→T transition mutations and promotes gastrointestinal tumor formation. Proc. Natl. Acad. Sci., 2002, 99(23), 14937-14942.
[http://dx.doi.org/10.1073/pnas.232579299] [PMID: 12417741]
[172]
Wu, J.; Liu, J.; Zhou, Y.; Ying, J.; Zou, H.; Guo, S.; Wang, L.; Zhao, N.; Hu, J.; Lu, D.; Jin, L.; Li, Q.; Wang, J.C. Predictive value of XRCC1 gene polymorphisms on platinum-based chemotherapy in advanced non-small cell lung cancer patients: A systematic review and meta-analysis. Clin. Cancer Res., 2012, 18(14), 3972-3981.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1531] [PMID: 22705987]
[173]
El-Khamisy, S.F.; Masutani, M.; Suzuki, H.; Caldecott, K.W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res., 2003, 31(19), 5526-5533.
[http://dx.doi.org/10.1093/nar/gkg761] [PMID: 14500814]
[174]
Pan, J.L.; Gao, J.; Hou, J.H.; Hu, D.Z.; Li, L. Interaction between environmental risk factors and catechol-o-methyltransferase (COMT) and X-ray repair cross-complementing protein 1 (XRCC1) gene polymorphisms in risk of lung cancer among non-smoking chinese women: A case-control study. Med. Sci. Monit., 2018, 24, 5689-5697.
[http://dx.doi.org/10.12659/MSM.908240] [PMID: 30109864]
[175]
Zhu, M.L.; He, J.; Wang, M.; Sun, M.H.; Jin, L.; Wang, X.; Yang, Y.J.; Wang, J.C.; Zheng, L.; Xiang, J.Q.; Wei, Q.Y. Potentially functional polymorphisms in the ERCC2 gene and risk of Esophageal Squamous Cell Carcinoma in Chinese populations. Sci. Rep., 2014, 4(1), 6281.
[http://dx.doi.org/10.1038/srep06281] [PMID: 25209371]
[176]
Hao, B.; Wang, H.; Zhou, K.; Li, Y.; Chen, X.; Zhou, G.; Zhu, Y.; Miao, X.; Tan, W.; Wei, Q.; Lin, D.; He, F. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res., 2004, 64(12), 4378-4384.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0372] [PMID: 15205355]
[177]
Shao, X.; Lv, N.; Liao, J.; Long, J.; Xue, R.; Ai, N.; Xu, D.; Fan, X. Copy number variation is highly correlated with differential gene expression: A pan-cancer study. BMC Med. Genet., 2019, 20(1), 175.
[http://dx.doi.org/10.1186/s12881-019-0909-5] [PMID: 31706287]
[178]
Abdi, E.; Latifi-Navid, S.; Zahri, S.; Kholghi-Oskooei, V.; Mostafaiy, B.; Yazdanbod, A.; Pourfarzi, F. SNP-SNP interactions of oncogenic long non-coding RNAs HOTAIR and HOTTIP on gastric cancer susceptibility. Sci. Rep., 2020, 10(1), 16763.
[http://dx.doi.org/10.1038/s41598-020-73682-0] [PMID: 33028884]
[179]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[180]
Lu, L.; Zhu, G.; Zhang, C.; Deng, Q.; Katsaros, D.; Mayne, S.T.; Risch, H.A.; Mu, L.; Canuto, E.M.; Gregori, G.; Benedetto, C.; Yu, H. Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res. Treat., 2012, 136(3), 875-883.
[http://dx.doi.org/10.1007/s10549-012-2314-z] [PMID: 23124417]
[181]
Chisholm, K.M.; Wan, Y.; Li, R.; Montgomery, K.D.; Chang, H.Y.; West, R.B. Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One, 2012, 7(10), e47998.
[http://dx.doi.org/10.1371/journal.pone.0047998] [PMID: 23133536]
[182]
Yang, Z.; Zhou, L.; Wu, L.M.; Lai, M.C.; Xie, H.Y.; Zhang, F.; Zheng, S.S. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol., 2011, 18(5), 1243-1250.
[http://dx.doi.org/10.1245/s10434-011-1581-y] [PMID: 21327457]
[183]
Geng, Y.J.; Xie, S.L.; Li, Q.; Ma, J.; Wang, G.Y. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J. Int. Med. Res., 2011, 39(6), 2119-2128.
[http://dx.doi.org/10.1177/147323001103900608] [PMID: 22289527]
[184]
Ishibashi, M.; Kogo, R.; Shibata, K.; Sawada, G.; Takahashi, Y.; Kurashige, J.; Akiyoshi, S.; Sasaki, S.; Iwaya, T.; Sudo, T.; Sugimachi, K.; Mimori, K.; Wakabayashi, G.; Mori, M. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncol. Rep., 2013, 29(3), 946-950.
[http://dx.doi.org/10.3892/or.2012.2219] [PMID: 23292722]
[185]
Kogo, R.; Shimamura, T.; Mimori, K.; Kawahara, K.; Imoto, S.; Sudo, T.; Tanaka, F.; Shibata, K.; Suzuki, A.; Komune, S.; Miyano, S.; Mori, M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res., 2011, 71(20), 6320-6326.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1021] [PMID: 21862635]
[186]
Milhem, M.M.; Knutson, T.; Yang, S.; Zhu, D.; Wang, X.; Leslie, K.K.; Meng, X. Correlation of MTDH/AEG-1 and HOTAIR expression with metastasis and response to treatment in sarcoma patients. J. Cancer Sci. Ther., 2011, S5(4), 004.
[PMID: 23543869]
[187]
Kim, K.; Jutooru, I.; Chadalapaka, G.; Johnson, G.; Frank, J.; Burghardt, R.; Kim, S.; Safe, S. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 2013, 32(13), 1616-1625.
[http://dx.doi.org/10.1038/onc.2012.193] [PMID: 22614017]
[188]
Li, D.; Feng, J.; Wu, T.; Wang, Y.; Sun, Y.; Ren, J.; Liu, M. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am. J. Pathol., 2013, 182(1), 64-70.
[http://dx.doi.org/10.1016/j.ajpath.2012.08.042] [PMID: 23141928]
[189]
Nie, Y.; Liu, X.; Qu, S.; Song, E.; Zou, H.; Gong, C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci., 2013, 104(4), 458-464.
[http://dx.doi.org/10.1111/cas.12092] [PMID: 23281836]
[190]
Nakagawa, T.; Endo, H.; Yokoyama, M.; Abe, J.; Tamai, K.; Tanaka, N.; Sato, I.; Takahashi, S.; Kondo, T.; Satoh, K. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2013, 436(2), 319-324.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.101] [PMID: 23743197]
[191]
Chen, F.J.; Sun, M.; Li, S.Q.; Wu, Q.Q.; Ji, L.; Liu, Z.L.; Zhou, G.Z.; Cao, G.; Jin, L.; Xie, H.W.; Wang, C.M.; Lv, J.; De, W.; Wu, M.; Cao, X.F. Upregulation of the long non‐coding rna hotair promotes esophageal squamous cell carcinoma metastasis and poor prognosis. Mol. Carcinog., 2013, 52(11), 908-915.
[http://dx.doi.org/10.1002/mc.21944] [PMID: 24151120]
[192]
Xu, Z.Y.; Yu, Q.M.; Du, Y.A.; Yang, L.T.; Dong, R.Z.; Huang, L.; Yu, P.F.; Cheng, X.D. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int. J. Biol. Sci., 2013, 9(6), 587-597.
[http://dx.doi.org/10.7150/ijbs.6339] [PMID: 23847441]
[193]
Hajjari, M.; Behmanesh, M.; Sadeghizadeh, M.; Zeinoddini, M. Up-regulation of HOTAIR long non-coding RNA in human gastric adenocarcinoma tissues. Med. Oncol., 2013, 30(3), 670.
[http://dx.doi.org/10.1007/s12032-013-0670-0] [PMID: 23888369]
[194]
Lv, X.B.; Lian, G.Y.; Wang, H.R.; Song, E.; Yao, H.; Wang, M.H. Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PLoS One, 2013, 8(5), e63516.
[http://dx.doi.org/10.1371/journal.pone.0063516] [PMID: 23717443]
[195]
Zhang, X.; Zhou, L.; Fu, G.; Sun, F.; Shi, J.; Wei, J.; Lu, C.; Zhou, C.; Yuan, Q.; Yang, M. The identification of an ESCC susceptibility SNP rs920778 that regulates the expression of lncRNA HOTAIRvia a novel intronic enhancer. Carcinogenesis, 2014, 35(9), 2062-2067.
[http://dx.doi.org/10.1093/carcin/bgu103] [PMID: 24788237]
[196]
Ge, Y.; Jiang, R.; Zhang, M.; Wang, H.; Zhang, L.; Tang, J.; Liang, C. Analyzing 37,900 samples shows significant association between HOTAIR polymorphisms and cancer susceptibility: a meta-analysis. Int. J. Biol. Markers, 2017, 32(2), 231-242.
[http://dx.doi.org/10.5301/jbm.5000235] [PMID: 27791260]
[197]
Hajjari, M.; Rahnama, S. Association between SNPs of long non-coding RNA HOTAIR and risk of different cancers. Front. Genet., 2019, 10, 113.
[http://dx.doi.org/10.3389/fgene.2019.00113] [PMID: 30873206]
[198]
Lampropoulou, D.I.; Laschos, K.; Aravantinos, G.; Georgiou, K.; Papiris, K.; Theodoropoulos, G.; Gazouli, M.; Filippou, D. Association between homeobox protein transcript antisense intergenic ribonucleic acid genetic polymorphisms and cholangiocarcinoma. World J. Clin. Cases, 2021, 9(8), 1785-1792.
[http://dx.doi.org/10.12998/wjcc.v9.i8.1785] [PMID: 33748227]
[199]
Minn, A.K.K.; Sato, N.; Mieno, M.N.; Arai, T.; Muramatsu, M. Association study of long non-coding RNA HOTAIR rs920778 polymorphism with the risk of cancer in an elderly Japanese population. Gene, 2020, 729, 144263.
[http://dx.doi.org/10.1016/j.gene.2019.144263] [PMID: 31759985]
[200]
Qi, Q.; Wang, J.; Huang, B.; Chen, A.; Li, G.; Li, X.; Wang, J. Association of HOTAIR polymorphisms rs4759314 and rs920778 with cancer susceptibility on the basis of ethnicity and cancer type. Oncotarget, 2016, 7(25), 38775-38784.
[http://dx.doi.org/10.18632/oncotarget.9608] [PMID: 27246974]
[201]
Jin, H.; Lu, X.; Ni, J.; Sun, J.; Gu, B.; Ding, B.; Zhu, H.; Ma, C.; Cui, M.; Xu, Y.; Zhang, Z.; Lercher, M.; Chen, J.; Gao, N.; Wang, S. HOTAIR rs7958904 polymorphism is associated with increased cervical cancer risk in a Chinese population. Sci. Rep., 2017, 7(1), 3144.
[http://dx.doi.org/10.1038/s41598-017-03174-1] [PMID: 28600545]
[202]
Rajagopal, T.; Seshachalam, A.; Akshaya, R.L.; Rathnam, K.K.; Talluri, S.; Jothi, A.; Dunna, N.R. Association of HOTAIR (rs920778 and rs1899663) and NME1 (rs16949649 and rs2302254) gene polymorphisms with breast cancer risk in India. Gene, 2020, 762, 145033.
[http://dx.doi.org/10.1016/j.gene.2020.145033] [PMID: 32781191]
[203]
Taheri, M.; Habibi, M.; Noroozi, R.; Rakhshan, A.; Sarrafzadeh, S.; Sayad, A.; Omrani, M.D.; Ghafouri-Fard, S. HOTAIR genetic variants are associated with prostate cancer and benign prostate hyperplasia in an Iranian population. Gene, 2017, 613, 20-24.
[http://dx.doi.org/10.1016/j.gene.2017.02.031] [PMID: 28259691]
[204]
Yalınbaş, K.B.; Peker, B.; Tuğrul, F.; Alkan, T.Ö.; Bayram, S. Association of HOTAIR rs1899663 G>T polymorphism with colorectal cancer in the turkish population: A case-control study. Turk. J. Gastroenterol., 2022, 33(8), 689-695.
[205]
Bayram, S.; Sümbül, A.T.; Batmacı, C.Y.; Genç, A. Effect of HOTAIR rs920778 polymorphism on breast cancer susceptibility and clinicopathologic features in a Turkish population. Tumour Biol., 2015, 36(5), 3863-3870.
[http://dx.doi.org/10.1007/s13277-014-3028-0] [PMID: 25586347]
[206]
Zhu, H.; Lv, Z.; An, C.; Shi, M.; Pan, W.; Zhou, L.; Yang, W.; Yang, M. Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Sci. Rep., 2016, 6(1), 31969.
[http://dx.doi.org/10.1038/srep31969] [PMID: 27549736]
[207]
Eivazi, N.; Mirfakhraie, R.; Nazemalhosseini, M.E.; Behroozi, J.; Yassaee, V.R.; Tahmaseb, M.; Sadeghi, H. Association of HOTAIR rs2366152 and rs1899663 polymorphisms with colorectal cancer susceptibility in Iranian population: A case–control study. J. Clin. Lab. Anal., 2023, 37(9-10), e24931.
[http://dx.doi.org/10.1002/jcla.24931] [PMID: 37337955]
[208]
Liu, Y.; Zhang, Q.; Ni, R. Association between genetic variants (rs920778, rs4759314, and rs217727) in LncRNAs and cervical cancer susceptibility in Chinese population: A systematic review and meta-analysis. Front. Genet., 2022, 13, 988207.
[http://dx.doi.org/10.3389/fgene.2022.988207] [PMID: 36313463]
[209]
Yang, C.S. Research on esophageal cancer in China: A review. Cancer Res., 1980, 40(8 Pt 1), 2633-2644.
[PMID: 6992989]
[210]
Li, J.; Li, L.; You, P.; Wei, Y.; Xu, B. Towards artificial intelligence to multi-omics characterization of tumor heterogeneity in esophageal cancer. Semin. Cancer Biol., 2023, 91, 35-49.
[http://dx.doi.org/10.1016/j.semcancer.2023.02.009] [PMID: 36868394]
[211]
Zhao, W.S.; Yan, W.P.; Chen, D.B.; Dai, L.; Yang, Y.B.; Kang, X.Z.; Fu, H.; Chen, P.; Deng, K.J.; Wang, X.Y.; Xie, X.W.; Chen, H.S.; Chen, K.N. Genome-scale CRISPR activation screening identifies a role of ELAVL2-CDKN1A axis in paclitaxel resistance in esophageal squamous cell carcinoma. Am. J. Cancer Res., 2019, 9(6), 1183-1200.
[PMID: 31285951]
[212]
Hoeben, A.; Joosten, E.A.J.; van den Beuken-van, E.M.H. J. Personalized medicine: Recent progress in cancer therapy. Cancers, 2021, 13(2), 242.
[http://dx.doi.org/10.3390/cancers13020242] [PMID: 33440729]
[213]
Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M. Rosellَ, S.; Fleitas, T.; Roda, D.; Cervantes, A. Personalized medicine: Recent progress in cancer therapy. Cancers , 2020, 12(4), 1009.
[http://dx.doi.org/10.3390/cancers12041009] [PMID: 32325878]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy