Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Influence of SDS on the Growth of Natural Gas Hydrates in a Sand Bed Depending on Saturation and Mineralization of Pore Moisture

Author(s): Aleksey M. Reshetnikov*

Volume 17, Issue 1, 2024

Published on: 12 January, 2024

Page: [69 - 81] Pages: 13

DOI: 10.2174/0124055204283697231224155414

Price: $65

conference banner
Abstract

Introduction: Evaluate the effect of SDS on induction time and conversion of water to hydrate in a porous medium model depending on the saturation and salinity of pore moisture.

Methods: The work presents data on the formation of natural gas hydrates in sand bed fraction of 200-500 μm. The silica sand was saturated with water, solutions of SDS or NaCl, or a mixture of these. The saturation was 50% or 100%. The experiments were carried out under isochoric conditions at a temperature of 275 K and an initial pressure of 8 MPa.

Results: It was shown that the main hydrate formation occurred in the first 60 minutes. The addition of SDS 0.05-0.2 wt.% in the sand bed does not exhibit a promoting effect, as was previously shown for pure water. The addition of NaCl 3 wt.% reduces the conversion of water to hydrate by 1.6 and 2 times for 50% and 100% saturation of the sand bed.

Conclusion: The optimal concentration of the SDS additive to the salt solution has been found to reduce the inhibitory effect of the salt. The data obtained can be used to develop technologies for storing and transporting natural gas using sand and seawater.

« Previous
Graphical Abstract

[1]
Sloan ED, Koh C. Clathrate Hydrates of Natural Gases. (3rd ed.), CRC Press 2007.
[http://dx.doi.org/10.1201/9781420008494]
[2]
Ye Y, Changling L. Natural Gas Hydrates Experimental Techniques and Their Applications. Springer 2013.
[http://dx.doi.org/10.1007/978-3-642-31101-7]
[3]
Wang W, Bray CL, Adams DJ, Cooper AI. Methane storage in dry water gas hydrates. J Am Chem Soc 2008; 130(35): 11608-9.
[http://dx.doi.org/10.1021/ja8048173] [PMID: 18683923]
[4]
Rehder G, Eckl R, Elfgen M, et al. Methane hydrate pellet transport using the self-preservation effect: A techno-economic analysis. Energies 2012; 5(7): 2499-523.
[http://dx.doi.org/10.3390/en5072499]
[5]
Veluswamy HP, Kumar A, Seo Y, Lee JD, Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl Energy 2018; 216: 262-85.
[http://dx.doi.org/10.1016/j.apenergy.2018.02.059]
[6]
Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, et al. Tuning clathrate hydrates for hydrogen storage. In: Materials for Sustainable Energy. Nature Publishing Group 2010.
[http://dx.doi.org/10.1142/9789814317665_0042]
[7]
Veluswamy HP, Wong AJH, Babu P, et al. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem Eng J 2016; 290: 161-73.
[http://dx.doi.org/10.1016/j.cej.2016.01.026]
[8]
Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M, et al. Gas hydrates in sustainable chemistry. Chem Soc Rev 2020; 49(15): 5225-309.
[http://dx.doi.org/10.1039/C8CS00989A] [PMID: 32567615]
[9]
Sabil KM, Partoon B. Recent advances on carbon dioxide capture through a hydrate-based gas separation process. Curr Opin Green Sustain Chem 2018; 11: 22-6.
[http://dx.doi.org/10.1016/j.cogsc.2018.03.006]
[10]
Dashti H, Zhehao Yew L, Lou X. Recent advances in gas hydrate-based CO2 capture. J Nat Gas Sci Eng 2015; 23: 195-207.
[http://dx.doi.org/10.1016/j.jngse.2015.01.033]
[11]
Englezos P, Lee JD. Gas hydrates: A cleaner source of energy and opportunity for innovative technologies. Korean J Chem Eng 2005; 22(5): 671-81.
[http://dx.doi.org/10.1007/BF02705781]
[12]
Babu P, Linga P, Kumar R, Englezos P. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015; 85: 261-79.
[http://dx.doi.org/10.1016/j.energy.2015.03.103]
[13]
Tajima H, Yamasaki A, Kiyono F. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 2004; 29(11): 1713-29.
[http://dx.doi.org/10.1016/j.energy.2004.03.003]
[14]
Lee HJ, Lee JD, Linga P, et al. Gas hydrate formation process for pre-combustion capture of carbon dioxide. Energy 2010; 35(6): 2729-33.
[http://dx.doi.org/10.1016/j.energy.2009.05.026]
[15]
Kang SP, Lee H. Recovery of CO 2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements. Environ Sci Technol 2000; 34(20): 4397-400.
[http://dx.doi.org/10.1021/es001148l]
[16]
Park K, Hong SY, Lee JW, et al. A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 2011; 274(1-3): 91-6.
[http://dx.doi.org/10.1016/j.desal.2011.01.084]
[17]
Barduhn AJ, Towlson HE, Hu YC. The properties of some new gas hydrates and their use in demineralizing sea water. AIChE J 1962; 8(2): 176-83.
[http://dx.doi.org/10.1002/aic.690080210]
[18]
Babu P, Nambiar A, He T, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus. ACS Sustain Chem Eng 2018; 6(7): 8093-107.
[http://dx.doi.org/10.1021/acssuschemeng.8b01616]
[19]
Cha JH, Seol Y. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests. ACS Sustain Chem Eng 2013; 1(10): 1218-24.
[http://dx.doi.org/10.1021/sc400160u]
[20]
Park SS, Lee SB, Kim NJ. Effect of multi-walled carbon nanotubes on methane hydrate formation. J Ind Eng Chem 2010; 16(4): 551-5.
[http://dx.doi.org/10.1016/j.jiec.2010.03.023]
[21]
Liang S, Kusalik PG. The mobility of water molecules through gas hydrates. J Am Chem Soc 2011; 133(6): 1870-6.
[http://dx.doi.org/10.1021/ja108434h] [PMID: 21247110]
[22]
Taylor CJ, Miller KT, Koh CA, Sloan ED Jr. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface. Chem Eng Sci 2007; 62(23): 6524-33.
[http://dx.doi.org/10.1016/j.ces.2007.07.038]
[23]
Li SL, Sun CY, Liu B, Li ZY, Chen GJ, Sum AK. New observations and insights into the morphology and growth kinetics of hydrate films. Sci Rep 2014; 4(1): 4129.
[http://dx.doi.org/10.1038/srep04129] [PMID: 24549241]
[24]
Kutergin OB, Melnikov VP, Nesterov AN. Influence of surfactants on the mechanism and kinetics of the formation of gas hydrates. Dokl Akad Nauk 1992; 323: 549-53.
[25]
Kumar A, Bhattacharjee G, Kulkarni BD, Kumar R. Role of surfactants in promoting gas hydrate formation. Ind Eng Chem Res 2015; 54(49): 12217-32.
[http://dx.doi.org/10.1021/acs.iecr.5b03476]
[26]
Pan Z, Wu Y, Shang L, Zhou L, Zhang Z. Progress in use of surfactant in nearly static conditions in natural gas hydrate formation. Front Energy 2020; 14(3): 463-81.
[http://dx.doi.org/10.1007/s11708-020-0675-2]
[27]
Merey S, Sinayuc C. Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions. J Nat Gas Sci Eng 2016; 29: 66-79.
[http://dx.doi.org/10.1016/j.jngse.2015.12.048]
[28]
Kalogerakis N, Jamaluddin AKM, Dholabhai PD, Bishnoi PR. Effect of surfactants on hydrate formation kinetics. Proceedings of the 1993 SPE International Symposium on Oilfield Chemistry. New Orleans, Louisiana. 1993; pp. 375-83.
[http://dx.doi.org/10.2118/25188-MS]
[29]
Lin ZY, Wu DT, Lin ST. Equilibrium and transport properties of methane at the methane/water interface with the presence of SDS. J Phys Chem C 2018; 122(51): 29259-67.
[http://dx.doi.org/10.1021/acs.jpcc.8b08830]
[30]
Khurana M, Yin Z, Linga P. A review of clathrate hydrate nucleation. ACS Sustain Chem Eng 2017; 5(12): 11176-203.
[http://dx.doi.org/10.1021/acssuschemeng.7b03238]
[31]
Stern LA, Kirby SH, Durham WB. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science 1996; 273(5283): 1843-8.
[http://dx.doi.org/10.1126/science.273.5283.1843]
[32]
Stern LA, Circone S, Kirby SH, Durham WB. Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Can J Phys 2003; 81(1-2): 271-83.
[http://dx.doi.org/10.1139/p03-018]
[33]
Bagherzadeh SA, Moudrakovski IL, Ripmeester JA, Englezos P. Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles. Energy Fuels 2011; 25(7): 3083-92.
[http://dx.doi.org/10.1021/ef200399a]
[34]
Adeyemo A, Kumar R, Linga P, Ripmeester J, Englezos P. Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. Int J Greenh Gas Control 2010; 4(3): 478-85.
[http://dx.doi.org/10.1016/j.ijggc.2009.11.011]
[35]
Kim NJ, Park SS, Shin SW, Hyun JH, Chun W. An experimental investigation into the effects of zeolites on the formation of methane hydrates. Int J Energy Res 2015; 39(1): 26-32.
[http://dx.doi.org/10.1002/er.3201]
[36]
Chari VD, Raju B, Prasad PSR, Rao DN. Methane hydrates in spherical silica matrix: Optimization of capillary water. Energy Fuels 2013; 27(7): 3679-84.
[http://dx.doi.org/10.1021/ef400397x]
[37]
Babu P, Yee D, Linga P, et al. Morphology of methane hydrate formation in porous media. Energy Fuels 2013; 27(6): 3364-72.
[http://dx.doi.org/10.1021/ef4004818]
[38]
Bhattacharjee G, Kumar A, Sakpal T, Kumar R. Carbon dioxide sequestration: Influence of porous media on hydrate formation kinetics. ACS Sustain Chem Eng 2015; 3(6): 1205-14.
[http://dx.doi.org/10.1021/acssuschemeng.5b00171]
[39]
Park T, Lee JY, Kwon TH. Effect of pore size distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments. Energy Fuels 2018; 32(4): 5321-30.
[http://dx.doi.org/10.1021/acs.energyfuels.8b00074]
[40]
Kumar A, Sakpal T, Roy S, Kumar R. Methane hydrate formation in a test sediment of sand and clay at various levels of water saturation. Can J Chem 2015; 93(8): 874-81.
[http://dx.doi.org/10.1139/cjc-2014-0537]
[41]
Fitzgerald GC, Castaldi MJ, Schicks JM. Methane hydrate formation and thermal based dissociation behavior in silica glass bead porous media. Ind Eng Chem Res 2014; 53(16): 6840-54.
[http://dx.doi.org/10.1021/ie4036737]
[42]
Zhang Y, Zhao Y, Lei X, Yang M, Zhang Y, Song Y. Quantitatively study on methane hydrate formation/decomposition process in hydrate-bearing sediments using low-field MRI. Fuel 2020; 262: 116555.
[http://dx.doi.org/10.1016/j.fuel.2019.116555]
[43]
Ge BB, Zhong DL, Lu YY. Influence of water saturation and particle size on methane hydrate formation and dissociation in a fixed bed of silica sand. Energy Proc 2019; 158: 5402-7.
[http://dx.doi.org/10.1016/j.egypro.2019.01.623]
[44]
Zhang P, Wu Q, Pu Y, Jiang G, Zhan J, Wang Y. Water transfer characteristics during methane hydrate formation and dissociation processes inside saturated sand. J Nat Gas Chem 2010; 19(1): 71-6.
[http://dx.doi.org/10.1016/S1003-9953(09)60034-7]
[45]
Babu P, Kumar R, Linga P. Unusual behavior of propane as a co-guest during hydrate formation in silica sand: Potential application to seawater desalination and carbon dioxide capture. Chem Eng Sci 2014; 117: 342-51.
[http://dx.doi.org/10.1016/j.ces.2014.06.044]
[46]
Kou X, Li X-S, Wang Y, Liu JW, Chen ZY. Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media. Energy 2021; 226: 120401.
[http://dx.doi.org/10.1016/j.energy.2021.120401]
[47]
Pan Z, Liu Z, Zhang Z, Shang L, Ma S. Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. J Nat Gas Sci Eng 2018; 56: 266-80.
[http://dx.doi.org/10.1016/j.jngse.2018.06.018]
[48]
Abdi-Khanghah M, Adelizadeh M, Naserzadeh Z, Barati H. Methane hydrate formation in the presence of ZnO nanoparticle and SDS: Application to transportation and storage. J Nat Gas Sci Eng 2018; 54: 120-30.
[http://dx.doi.org/10.1016/j.jngse.2018.04.005]
[49]
Chong ZR, Chan AHM, Babu P, Yang M, Linga P. Effect of NaCl on methane hydrate formation and dissociation in porous media. J Nat Gas Sci Eng 2015; 27: 178-89.
[http://dx.doi.org/10.1016/j.jngse.2015.08.055]
[50]
Sun SC, Kong YY, Zhang Y, Liu CL. Phase equilibrium of methane hydrate in silica sand containing chloride salt solution. J Chem Thermodyn 2015; 90: 116-21.
[http://dx.doi.org/10.1016/j.jct.2015.06.030]
[51]
Ren Z, Liu D, Liu Z, Pan Z. Influence of sodium chloride on the kinetics of methane hydrate formation in the presence of surfactant. J Nat Gas Sci Eng 2020; 83: 103622.
[http://dx.doi.org/10.1016/j.jngse.2020.103622]
[52]
Nesterov AN, Reshetnikov AM. Combined effect of NaCl and sodium dodecyl sulfate on the mechanism and kinetics of methane hydrate formation in an unstirred system. J Nat Gas Sci Eng 2022; 99: 104424.
[http://dx.doi.org/10.1016/j.jngse.2022.104424]
[53]
Sun X, Liu D, Chang D, Wang W, Pan Z. Analysis of natural gas hydrate formation in sodium dodecyl sulfate and quartz sand complex system under saline environment. Petrol Sci Technol 2018; 36(14): 1073-9.
[http://dx.doi.org/10.1080/10916466.2018.1460613]
[54]
Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fundam 1976; 15(1): 59-64.
[http://dx.doi.org/10.1021/i160057a011]
[55]
Kashchiev D, Firoozabadi A. Induction time in crystallization of gas hydrates. J Cryst Growth 2003; 250(3-4): 499-515.
[http://dx.doi.org/10.1016/S0022-0248(02)02461-2]
[56]
Zhang Q, Wu Q, Zhang H. Effect of propane and NaCl-SDS solution on nucleation process of mine gas hydrate. J Chem 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/1059109]
[57]
Zhong Y, Rogers RE. Surfactant effects on gas hydrate formation. Chem Eng Sci 2000; 55(19): 4175-87.
[http://dx.doi.org/10.1016/S0009-2509(00)00072-5]
[58]
Nesterov AN, Reshetnikov AM. New combination of thermodynamic and kinetic promoters to enhance carbon dioxide hydrate formation under static conditions. Chem Eng J 2019; 378: 122165.
[http://dx.doi.org/10.1016/j.cej.2019.122165]
[59]
Di Profio P, Arca S, Germani R, Savelli G. Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved? Chem Eng Sci 2005; 60(15): 4141-5.
[http://dx.doi.org/10.1016/j.ces.2005.02.051]
[60]
Chen L, Sun C, Chen G, Nie Y, Sun Z, Liu Y. Measurements of hydrate equilibrium conditions for CH4, CO2, and CH4 + C2H6 + C3H8 in various systems by step-heating method. Chin J Chem Eng 2009; 17(4): 635-41.
[http://dx.doi.org/10.1016/S1004-9541(08)60256-6]
[61]
Woolfrey SG, Banzon GM, Groves MJ. The effect of sodium chloride on the dynamic surface tension of sodium dodecyl sulfate solutions. J Colloid Interface Sci 1986; 112(2): 583-7.
[http://dx.doi.org/10.1016/0021-9797(86)90129-3]
[62]
Umlong IM, Ismail K. Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. Colloids Surf A Physicochem Eng Asp 2007; 299(1-3): 8-14.
[http://dx.doi.org/10.1016/j.colsurfa.2006.11.010]
[63]
Khan H, Seddon JM, Law RV, et al. Effect of glycerol with sodium chloride on the Krafft point of sodium dodecyl sulfate using surface tension. J Colloid Interface Sci 2019; 538: 75-82.
[http://dx.doi.org/10.1016/j.jcis.2018.11.021] [PMID: 30500469]
[64]
Okutani K, Kuwabara Y, Mori YH. Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and sodium alkyl sulfates. Chem Eng Sci 2008; 63(1): 183-94.
[http://dx.doi.org/10.1016/j.ces.2007.09.012]
[65]
Nesterov AN, Reshetnikov AM, Manakov AY, Adamova TP. Synergistic effect of combination of surfactant and oxide powder on enhancement of gas hydrates nucleation. J Energy Chem 2017; 26(4): 808-14.
[http://dx.doi.org/10.1016/j.jechem.2017.04.001]
[66]
Melnikov V, Nesterov A. Modelling of gas hydrates formation in porous media. The 2nd International Conference on Gas Hydrates. Toulouse, France.. 1996; pp. 541-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy