Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Moroccan Antihypertensive Plants and their Mechanisms of Action

Author(s): Smail Amtaghri, Miloudia Slaoui and Mohamed Eddouks*

Volume 24, Issue 11, 2024

Published on: 12 January, 2024

Page: [1254 - 1279] Pages: 26

DOI: 10.2174/0118715303272284231126145853

Price: $65

Abstract

Background: The use of herbal remedies, medicinal plants, and their derivatives for the treatment and control of hypertension is well-known and widespread throughout Morocco.

Aims: The aim of the study was to review the antihypertensive and vasorelaxant medicinal plants of the Moroccan pharmacopeia.

Objective: To date, no review on Moroccan medicinal plants exhibiting antihypertensive effects has been performed, and their mechanism of action has not been specified. The objective of this review was to collect, analyze, and critically assess published publications on experimental and clinical research that explored the blood pressure-reducing abilities of Moroccan medicinal plant extracts.

Materials and Methods: This study collected, processed, and critically analyzed published studies related to experimental and clinical research that investigated Moroccan herbal derivatives' blood pressure-lowering abilities using a number of scientific databases, including ScienceDirect, Scopus, PubMed, Google Scholar, and others. Plantlist.org was used to validate the right plant names.

Results: The results revealed 22 species of Moroccan medicinal plants belonging to 13 different groups with recognized antihypertensive properties. The species were abundant in a variety of chemical elements. Asteraceae (08 species), Lamiaceae (3 species), Apiaceae (2 species), and 1 species each from the following families: Parmeliaceae, Fabaceae, Cistaceae, Malvaceae, Polygonaceae, Brassicaceae, Myrtaceae, Rutaceae, Amaranthaceae, Rosaceae, and Lauraceae were the most frequently mentioned families for their antihypertensive properties. The most used parts were the leaves and the aerial parts. The two main methods of preparation among Moroccans were decoction and infusion. This study demonstrated the known antihypertensive and vasorelaxant properties of Moroccan medicinal plants in vivo and in vitro, as well as their mechanisms of action. Interestingly, phytochemicals can operate on blood vessels directly via a vasorelaxant impact involving a range of signaling cascades or indirectly by blocking or activating multiple systems, such as an angiotensin-converting enzyme (ACE), renin-angiotensin system (RAS), or diuretic activity.

Conclusion: The review of the available data reveals that more work needs to be done to examine all the Moroccan medicinal plants that have been suggested as antihypertensive in published ethnopharmacological surveys. A review of the literature in this area reveals that methodologies of the experimental study need to be standardized, and purified molecules need to be studied. In addition, mechanistic investigations, when they exist, are generally incomplete. In contrast, only a few advanced clinical investigations have been conducted. However, all studies fail to determine the efficacy/safety ratio.

Graphical Abstract

[1]
Bellakhdar, J. Pharmacopée marocaine traditionnelle; Ibis press, 1997.
[2]
Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Dassouli, A.; Serhrouchni, M.; Benjelloun, W. Phytotherapy of hypertension and diabetes in oriental Morocco. J. Ethnopharmacol., 1997, 58(1), 45-54.
[http://dx.doi.org/10.1016/S0378-8741(97)00077-9] [PMID: 9324004]
[3]
Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). J. Ethnopharmacol., 2001, 77(2-3), 175-182.
[http://dx.doi.org/10.1016/S0378-8741(01)00289-6] [PMID: 11535361]
[4]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[5]
Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol., 2007, 110(1), 105-117.
[http://dx.doi.org/10.1016/j.jep.2006.09.011] [PMID: 17052873]
[6]
Asif, M.M.A.; Lisa, S.R.; Qais, N. Exploring the anti-hypertensive properties of medicinal plants and their bioactive metabolites: An extensive review. Am. J. Plant Sci., 2021, 12(11), 1705-1740.
[http://dx.doi.org/10.4236/ajps.2021.1211119]
[7]
Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General overview of medicinal plants: A review. J. Phytopharm., 2017, 6(6), 349-351.
[http://dx.doi.org/10.31254/phyto.2017.6608]
[8]
Petrovska, B. Historical review of medicinal plants′ usage. Pharmacogn. Rev., 2012, 6(11), 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[9]
Sultana, S.; Asif, H.M. Review: Medicinal plants combating against hypertension: A green antihypertensive approach. Pak. J. Pharm. Sci., 2017, 30(6), 2311-2319.
[PMID: 29175804]
[10]
Rana, R.; Singh, S.B. Automotive steels: design, metallurgy, processing and applications; Woodhead Publishing, 2016.
[11]
Baharvand-Ahmadi, B.; Asadi-Samani, M. A mini-review on the most important effective medicinal plants to treat hypertension in ethnobotanical evidence of Iran. J. Nephropharmacol., 2016, 6(1), 3-8.
[PMID: 28197520]
[12]
Niazi, M.; Yari, F.; Shakarami, A. A review of medicinal herbs in the lamiaceae family used to treat arterial hypertension. Entomol Appl Sci Lett, 2019, 6(1), 22-27.
[13]
Orch, H.; Douira, A.; Zidane, L. Étude ethnobotanique des plantes médicinales utilisées dans le traitement du diabète, et des maladies cardiaques dans la région d’Izarène (Nord du Maroc). J. Appl. Biosci., 2015, 86(1), 7940-7956.
[http://dx.doi.org/10.4314/jab.v86i1.3]
[14]
Zachariah, T. J.; Parthasarathy, V.A. Black pepper. Chemistry of spices, 2008, 196, 21.
[15]
Ross, I.A. Laurus nobilis. In: Medicinal Plants of the World;; , 2001; pp. 261-270.
[http://dx.doi.org/10.1007/978-1-59259-237-1_13]
[16]
Sharma, M.M.; Sharma, R.K. Coriander. Handbook of herbs and spices; Woodhead Publishing, 2012, pp. 216-249.
[http://dx.doi.org/10.1533/9780857095671.216]
[17]
Bauer, K.; Garbe, D.; Surburg, H. Common fragrance and flavor materials: preparation, properties and uses; John Wiley & Sons, 2008.
[18]
Bianchi, A. The Mediterranean aromatic plants and their culinary use. Nat. Prod. Res., 2015, 29(3), 201-206.
[http://dx.doi.org/10.1080/14786419.2014.953495] [PMID: 25209991]
[19]
El-Shazly, A.; Wink, M. Tetrahydroisoquinoline and β-carboline alkaloids from Haloxylon articulatum (Cav.) Bunge (Chenopodiaceae). Z. Naturforsch. C J. Biosci., 2003, 58(7-8), 477-480.
[http://dx.doi.org/10.1515/znc-2003-7-805] [PMID: 12939030]
[20]
Kharchoufa, L.; Bouhrim, M.; Bencheikh, N.; El Assri, S.; Amirou, A.; Yamani, A.; Elachouri, M. Acute and subacute toxicity studies of the aqueous extract from haloxylon scoparium pomel (Hammada scoparia (Pomel)) by oral administration in rodents. BioMed Res. Int., 2020, 4020647.
[21]
Abouri, M.; El Mousadik, A.; Msanda, F.; Boubaker, H.; Saadi, B.; Cherifi, K. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int. J. Med. Plants Res., 2012, 1(7), 99-123.
[22]
Jamila, F.; Mostafa, E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol., 2014, 154(1), 76-87.
[http://dx.doi.org/10.1016/j.jep.2014.03.016] [PMID: 24685583]
[23]
Kabbaj, F.; Meddah, B.; Cherrah, Y.; Faouzi, E. Ethnopharmacological profile of traditional plants used in Morocco by cancer patients as herbal therapeutics. Phytopharmacology, 2012, 2(2), 243-256.
[24]
Ghourri, M.; Zidane, L.; Rochdi, A.; Fadli, M.; Douira, A. Etude floristique et ethnobotanique des plantes médicinales de la ville d’El Ouatia (Maroc Saharien). Kastamonu University Journal of Forestry Faculty, 2012, 12(2), 218-235.
[25]
Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: a historical perspective. Plant Sci., 2001, 161(5), 839-851.
[http://dx.doi.org/10.1016/S0168-9452(01)00490-3]
[26]
Haddouchi, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical composition and antimicrobial activity of the essential oils from four Ruta species growing in Algeria. Food Chem., 2013, 141(1), 253-258.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.007] [PMID: 23768355]
[27]
Hammiche, V.; Azzouz, M. Les rues: Ethnobotanique, phytopharmacologie et toxicité. Phytotherapie, 2013, 11(1), 22-30.
[http://dx.doi.org/10.1007/s10298-013-0751-9]
[28]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[29]
Bellakhdar, J. Tissint, une oasis du Maroc présaharien: monographie d’une palmeraie du Moyen Dra; Al Biruniya, 1992.
[30]
Ozenda, P. Flore et végétation du Sahara (3ème édition mise à jour et augmentée); Centre National de la Recherche Scientifique: Paris, 1991, pp. 250-278.
[31]
Lebrun, J.P. Eléments pour un atlas des plantes vasculaires de l'Afrique sèche. Maisons-Alfort : GERDAT-IEMVT, 1979.
[32]
Benabid, A.; Fennane, M. Connaissances sur la végétation du Maroc: Phytogéographie, phytosociologie et séries de végétation. Lazaroa, 1994, 14, 21.
[33]
Benabid, A.; Cuzin, F. Dragon tree (Dracaena draco subsp. ajgal Benabid et Cuzin) populations in Morocco: Taxonomical, biogeographical and phytosociological values. C. R. Acad. Sci. III, 1997, 3(320), 267-277.
[http://dx.doi.org/10.1016/S0764-4469(97)86935-1]
[34]
Médail, F.; Quézel, P. The phytogeographical significance of SW Morocco compared to the Canary Islands. Plant Ecol., 1999, 140(2), 221-244.
[http://dx.doi.org/10.1023/A:1009775327616]
[35]
Konopa, J.; Jereczek, E.; Matuszkiewicz, A.; Nazarewicz, T. Screening of antitumor substances from plants. Arch. Immunol. Ther. Exp. , 1967, 15(1), 129-132.
[PMID: 6048223]
[36]
Williams, C.; Harborne, J.B.; Geiger, H.; Hoult, J.R.S. The flavonoids of Tanacetum parthenium and T. vulgare and their anti-inflammatory properties. Phytochemistry, 1999, 51(3), 417-423.
[http://dx.doi.org/10.1016/S0031-9422(99)00021-7] [PMID: 10382317]
[37]
Mantle, D.; Eddeb, F.; Pickering, A.T. Comparison of relative antioxidant activities of British medicinal plant species in vitro. J. Ethnopharmacol., 2000, 72(1-2), 47-51.
[http://dx.doi.org/10.1016/S0378-8741(00)00199-9] [PMID: 10967453]
[38]
Bandonien, D.; Pukalskas, A.; Venskutonis, P.R.; Gruzdien, D. Preliminary screening of antioxidant activity of some plant extracts in rapeseed oil. Food Res. Int., 2000, 33(9), 785-791.
[http://dx.doi.org/10.1016/S0963-9969(00)00084-3]
[39]
Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.G.; Nakamura, C.V.; Dias Filho, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz, 2002, 97(7), 1027-1031.
[http://dx.doi.org/10.1590/S0074-02762002000700017] [PMID: 12471432]
[40]
Tournier, H.; Schinella, G.; De Balsa, E.M.; Buschiazzo, H.; Mañez, S.; De Buschiazzo, P.M. Effect of the chloroform extract of Tanacetum vulgare and one of its active principles, parthenolide, on experimental gastric ulcer in rats. J. Pharm. Pharmacol., 2010, 51(2), 215-219.
[http://dx.doi.org/10.1211/0022357991772169] [PMID: 10217322]
[41]
Lahlou, S.; Tangi, K.C.; Lyoussi, B.; Morel, N. Vascular effects of Tanacetum vulgare L. leaf extract: in vitro pharmacological study. J. Ethnopharmacol., 2008, 120(1), 98-102.
[http://dx.doi.org/10.1016/j.jep.2008.07.041] [PMID: 18760343]
[42]
Mighri, H.; Akrout, A.; El-jeni, H.; Zaidi, S.; Tomi, F.; Casanova, J.; Neffati, M. Composition and intraspecific chemical variability of the essential oil from Artemisia herba-alba growing wild in a Tunisian arid zone. Chem. Biodivers., 2010, 7(11), 2709-2717.
[http://dx.doi.org/10.1002/cbdv.201000054] [PMID: 21072770]
[43]
Mohsen, H.; Ali, F. Essential oil composition of Artemisia herba-alba from southern Tunisia. Molecules, 2009, 14(4), 1585-1594.
[http://dx.doi.org/10.3390/molecules14041585] [PMID: 19384287]
[44]
Salido, S.; Valenzuela, L.R.; Altarejos, J.; Nogueras, M.; Sánchez, A.; Cano, E. Composition and infraspecific variability of Artemisia herba-alba from southern Spain. Biochem. Syst. Ecol., 2004, 32(3), 265-277.
[http://dx.doi.org/10.1016/j.bse.2003.09.002]
[45]
Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Efferth, T.; Salgueiro, L. Artemisia herba-alba essential oil from Buseirah (South Jordan): Chemical characterization and assessment of safe antifungal and anti-inflammatory doses. J. Ethnopharmacol., 2015, 174, 153-160.
[http://dx.doi.org/10.1016/j.jep.2015.08.005] [PMID: 26277492]
[46]
Darwish, R.M.; Aburjai, T.A. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complement. Altern. Med., 2010, 10(1), 9.
[http://dx.doi.org/10.1186/1472-6882-10-9] [PMID: 20187978]
[47]
Aburjai, T.; Darwish, R.M.; Al-Khalil, S.; Mahafzah, A.; Al-Abbadi, A. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Pseudomonas aeruginosa. J. Ethnopharmacol., 2001, 76(1), 39-44.
[http://dx.doi.org/10.1016/S0378-8741(01)00206-9] [PMID: 11378279]
[48]
Pereira, C.G.; Barreira, L.; Bijttebier, S.; Pieters, L.; Marques, C.; Santos, T.F.; Rodrigues, M.J.; Varela, J.; Custódio, L. Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp. maritima: from traditional remedies to prospective products. Sci. Rep., 2018, 8(1), 4689.
[http://dx.doi.org/10.1038/s41598-018-23038-6] [PMID: 29549352]
[49]
Dib, I.; Angenot, L.; Mihamou, A.; Ziyyat, A.; Tits, M. Artemisia campestris L.: Ethnomedicinal, phytochemical and pharmacological review. J. Herb. Med., 2017, 7, 1-10.
[http://dx.doi.org/10.1016/j.hermed.2016.10.005]
[50]
Greuter, W. Save Asteriscus, sink Nauplius (Compositae). Fl. Medit, 1997, 7, 41-48.
[51]
Ramdane, F.; Essid, R.; Mkadmini, K.; Hammami, M.; Fares, N.; Mahammed, M.H.; El Ouassis, D.; Tabbene, O.; Limam, F.; Ould Hadj, M.D. Phytochemical composition and biological activities of Asteriscus graveolens (Forssk) extracts. Process Biochem., 2017, 56, 186-192.
[http://dx.doi.org/10.1016/j.procbio.2017.03.004]
[52]
Haddouchi, F.; Chaouche, T.M.; Halla, N. Screening phytochimique, activités antioxydantes et pouvoir hémolytique de quatre plantes sahariennes d’Algérie. Phytotherapie, 2016, 1-9.
[http://dx.doi.org/10.1007/s10298-016-1086-8]
[53]
Hammoud, L.; León, F.; Brouard, I.; Gonzalez-Platas, J.; Benayache, S.; Mosset, P.; Benayache, F. Humulene derivatives from Saharian Asteriscus graveolens. Tetrahedron Lett., 2018, 59(27), 2668-2670.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.079]
[54]
Quezel, P.; Santa, S. New flora of Algeria and the southern desert regions. In: No. 581.965 Q8;; , 1963.
[55]
Maiza, K. Pharmacopee traditionnelle Saharienne Sahara Algérien; Doctoral dissertation, Alger, 2008.
[56]
Davis, P.H.; Mill, R.R.; Tan, K. Flora of Tukey and the Aegean Islands, Edinburgh Üniv; Press: Edinburgh, 1988.
[57]
Zeggwagh, N.A.; Ouahidi, M.L.; Lemhadri, A.; Eddouks, M. Study of hypoglycaemic and hypolipidemic effects of Inula viscosa L. aqueous extract in normal and diabetic rats. J. Ethnopharmacol., 2006, 108(2), 223-227.
[http://dx.doi.org/10.1016/j.jep.2006.05.005] [PMID: 16787724]
[58]
Ozkan, E.; Karakas, F.P.; Yildirim, A.B.B.; Tas, I.; Eker, I.; Yavuz, M.Z.; Turker, A.U. Promising medicinal plant Inula viscosa L.: Antiproliferative, antioxidant, antibacterial and phenolic profiles. Prog. Nutr., 2019, 21, 652-661.
[59]
Telli, A.; Esnault, M.A.; Ould El, H.K.A. An ethnopharmacological survey of plants used in traditional diabetes treatment in south-eastern Algeria (Ouargla province). J. Arid Environ., 2016, 127, 82-92.
[http://dx.doi.org/10.1016/j.jaridenv.2015.11.005]
[60]
Hebi, M.; Eddouks, M. Glucose lowering activity of anvillea radiata coss & durieu in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(1), 71-80.
[61]
Kandouli, C.; Cassien, M.; Mercier, A.; Delehedde, C.; Ricquebourg, E.; Stocker, P.; Mekaouche, M.; Leulmi, Z.; Mechakra, A.; Thétiot-Laurent, S.; Culcasi, M.; Pietri, S. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from Saharian Anvillea radiata in high-fat-diet fed mice. J. Ethnopharmacol., 2017, 207, 251-267.
[http://dx.doi.org/10.1016/j.jep.2017.06.042] [PMID: 28669771]
[62]
Lakhdar, M.; Meriem, K.H.; Larbi, B.; Amina, R.; Aicha, S. Phytochemical analysis and antifungal activity of Anvillea radiata. World Appl. Sci. J., 2013, 26(2), 165-171.
[63]
Shah, G.; Kaur, M.; Singh, P.S.; Rahar, S.; Dhabliya, F.; Arya, Y.; Shri, R. Pharmacognostic parameters of Eucalyptus globulus leaves. Pharmacogn. J., 2012, 4(34), 38-43.
[http://dx.doi.org/10.5530/pj.2012.34.7]
[64]
Natarajan, B.; Paulsen, B.S. An ethnopharmacological study from thane district, maharashtra, India: traditional knowledge compared with modern biological science. Pharm. Biol., 2000, 38(2), 139-151.
[http://dx.doi.org/10.1076/1388-0209(200004)38:2;1-1;FT139] [PMID: 21214452]
[65]
Cruz, J.M.; Domínguez, J.M.; Domínguez, H.; Parajó, J.C. Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. J. Agric. Food Chem., 2001, 49(5), 2459-2464.
[http://dx.doi.org/10.1021/jf001237h] [PMID: 11368620]
[66]
Gray, A.M.; Flatt, P.R. Antihyperglycemic actions of Eucalyptus globulus (Eucalyptus) are associated with pancreatic and extra-pancreatic effects in mice. J. Nutr., 1998, 128(12), 2319-2323.
[http://dx.doi.org/10.1093/jn/128.12.2319] [PMID: 9868176]
[67]
Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.L.; Matos, F.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol., 2003, 89(2-3), 277-283.
[http://dx.doi.org/10.1016/j.jep.2003.09.007] [PMID: 14611892]
[68]
Sato, S.; Yoshinuma, N.; Ito, K.; Tokumoto, T.; Takiguchi, T.; Suzuki, Y.; Murai, S. The inhibitory effect of funoran and eucalyptus extract-containing chewing gum on plaque formation. J. Oral Sci., 1998, 40(3), 115-117.
[http://dx.doi.org/10.2334/josnusd.40.115] [PMID: 9838746]
[69]
Takasaki, M.; Konoshima, T.; Fujitani, K.; Yoshida, S.; Nishimura, H.; Tokuda, H.; Nishino, H.; Iwashima, A.; Kozuka, M. Inhibitors of skin-tumor promotion. VIII. Inhibitory effects of euglobals and their related compounds on Epstein-Barr virus activation. (1). Chem. Pharm. Bull. (Tokyo), 1990, 38(10), 2737-2739.
[http://dx.doi.org/10.1248/cpb.38.2737] [PMID: 1963812]
[70]
Morsy, T.A.; Morsy, G.H.; Sanad, E.M. Eucalyptus globulus (camphor oil) in the treatment of human demodicidosis. J. Egypt. Soc. Parasitol., 2002, 32(3), 797-803.
[PMID: 12512812]
[71]
Nostro, A.; Cannatelli, M.A.; Morelli, I.; Cioni, P.L.; Bader, A.; Marino, A.; Alonzo, V. Preservative properties of Calamintha officinalis essential oil with and without EDTA. Lett. Appl. Microbiol., 2002, 35(5), 385-389.
[http://dx.doi.org/10.1046/j.1472-765X.2002.01216.x] [PMID: 12390486]
[72]
Panizzi, L.; Flamini, G.; Cioni, P.L.; Morelli, I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J. Ethnopharmacol., 1993, 39(3), 167-170.
[http://dx.doi.org/10.1016/0378-8741(93)90032-Z] [PMID: 8258973]
[73]
Monforte, M.T.; Lanuzza, F.; Pergolizzi, S.; Mondello, F.; Tzakou, O.; Galati, E.M. Protective effect of Calamintha officinalis Moench leaves against alcohol-induced gastric mucosa injury in rats. Macroscopic, histologic and phytochemical analysis. Phytother. Res., 2012, 26(6), 839-844.
[http://dx.doi.org/10.1002/ptr.3647] [PMID: 22076933]
[74]
Lemhadri, A.; Zeggwagh, N-A.; Maghrani, M.; Jouad, H.; Michel, J.B.; Eddouks, M. Hypoglycaemic effect of Calamintha officinalis Moench. in normal and streptozotocin-induced diabetic rats. J. Pharm. Pharmacol., 2010, 56(6), 795-799.
[http://dx.doi.org/10.1211/0022357023510] [PMID: 15231045]
[75]
Gunby, P. Plant known for centuries still causes problems today. JAMA, 1979, 241(21), 2246-2247.
[http://dx.doi.org/10.1001/jama.1979.03290470006003] [PMID: 439284]
[76]
Ash, M.; Ash, I. Industrial chemical thesaurus; VCH Publishers, 1992.
[77]
Chalchat, J.C.; Gorunovic, M.S.; Maksimovic, Z.A.; Petrovic, S.D. Essential oil of wild growing Mentha pulegium L. from Yugoslavia. J. Essent. Oil Res., 2000, 12(5), 598-600.
[http://dx.doi.org/10.1080/10412905.2000.9712166]
[78]
Mikaili, P.; Mojaverrostami, S.; Moloudizargari, M.; Aghajanshakeri, S. Pharmacological and therapeutic effects of Mentha Longifolia L. and its main constituent, menthol. Anc. Sci. Life, 2013, 33(2), 131-138.
[PMID: 25284948]
[79]
Harley, R.M.; Atkins, S.; Budantsev, A.L.; Cantino, P.D.; Conn, B.J.; Grayer, R.; Upson, T. Labiatae Flowering Plants• Dicotyledons; Springer: Berlin, Heidelberg, 2004, pp. 167-275.
[http://dx.doi.org/10.1007/978-3-642-18617-2_11]
[80]
Hadi, M.Y.; Hameed, I.H.; Ibraheam, I.A. Mentha pulegium: medicinal uses, anti-hepatic, antibacterial, antioxidant effect and analysis of bioactive natural compounds: A review. Research Journal of Pharmacy and Technology, 2017, 10(10), 3580-3584.
[http://dx.doi.org/10.5958/0974-360X.2017.00648.5]
[81]
Tiwari, P.N.; Kulmi, G.S. Performance of Chandrasur (Lepidium sativum) under different levels of nitrogen and phosphorus. Curr. Res. Med. Aromat. Plants, 2004, 26(3), 479-481.
[82]
Nadkarni, A.K. Indian Materia Medica; Dhootapapeshwar; Prakashan Ltd. Panvel, Vol. One, 1954, pp. 338-349.
[83]
Chopra, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian medicinal plants (including the supplement); Council Sci. Ind. Res: New Delhi, India, 1986.
[84]
Mostafa, H.A.M.; Elbakry, A.A.; Eman, A.A. Evaluation of antibacterial and antioxidant activities of different plant parts of Rumex vesicarius L.(Polygonaceae). Int. J. Pharm. Pharm. Sci., 2011, 3(2), 109-118.
[85]
Sharma, K.; Shukla, S.; Chauhan, E.S. Evaluation of Aegle marmelos (Bael) as Hyperglycemic and Hyperlipidemic Diminuting agent in type ii diabetes mellitus Subjects. Pharma Innov., 2016, 5, 43.
[86]
Pekamwar, S.S.; Kalyankar, T.M.; Jadhav, A.C. Hibiscus rosa-sinensis: A review on ornamental plant. World J. Pharm. Pharm. Sci., 2013, 2(6), 4719-4727.
[87]
Upadhyay, S.M.; Upadhyay, P.; Ghosh, A.K.; Singh, V.; Dixit, V.K. Effect of ethanolic extract of Hibiscus rosa sinensis L., flowers on hair growth in female wistar rats. Pharm. Lett., 2011, 3(4), 258-263.
[88]
Amtaghri, S.; Amssayef, A.; Slaoui, M.; Eddouks, M. Antihypertensive and vasorelaxant effects of hibiscus rosa-sinensis through angiotensin-converting enzyme-2 (ACE-2), and Ca2+ channels pathways. Cardiovasc. Hematol. Disord. Drug Targets, 2022, 22(1), 27-37.
[89]
Ferraz, C.A.; Sousa, A.C.A.; Caramelo, D.; Delgado, F.; de Oliveira, A.P.; Pastorinho, M.R. Chemical profile and eco-safety evaluation of essential oils and hydrolates from Cistus ladanifer, Helichrysum italicum, Ocimum basilicum and Thymbra capitata. Ind. Crops Prod., 2022, 175, 114232.
[http://dx.doi.org/10.1016/j.indcrop.2021.114232]
[90]
Raimundo, J.R.; Frazão, D.F.; Domingues, J.L.; Quintela-Sabarís, C.; Dentinho, T.P.; Anjos, O.; Alves, M.; Delgado, F. Neglected Mediterranean plant species are valuable resources: the example of Cistus ladanifer. Planta, 2018, 248(6), 1351-1364.
[http://dx.doi.org/10.1007/s00425-018-2997-4] [PMID: 30232598]
[91]
Mechergui, K.; Mahmoudi, H.; Khouja, M.L.; Jaouadi, W. Factors influencing seed germination of the pastoral plant Retama raetam subsp. bovei (Fabaceae): interactive effects of fruit morphology, salinity, and osmotic stress. Biologija , 2017, 63(2)
[http://dx.doi.org/10.6001/biologija.v63i2.3525]
[92]
León-González, A.J.; Navarro, I.; Acero, N.; Muñoz Mingarro, D.; Martín-Cordero, C. Genus Retama: a review on traditional uses, phytochemistry, and pharmacological activities. Phytochem. Rev., 2018, 17(4), 701-731.
[http://dx.doi.org/10.1007/s11101-018-9555-3]
[93]
Maghrani, M.; Zeggwagh, N.A.; Haloui, M.; Eddouks, M. Acute diuretic effect of aqueous extract of Retama raetam in normal rats. J. Ethnopharmacol., 2005, 99(1), 31-35.
[http://dx.doi.org/10.1016/j.jep.2005.01.045] [PMID: 15848016]
[94]
Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med., 2013, 33(6), 815-826.
[http://dx.doi.org/10.1016/S0254-6272(14)60018-2] [PMID: 24660617]
[95]
Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Pérez de Paz, P.L.; Palá-Paúl, J.; Sanz, J. Analysis by gas chromatography–mass spectrometry of the volatiles from the fruits of Ammodaucus leucotrichus subsp. leucotrichus and subsp. nanocarpus grown in North Africa and the Canary Islands, respectively. J. Chromatogr. A, 2006, 1108(2), 273-275.
[http://dx.doi.org/10.1016/j.chroma.2006.01.031] [PMID: 16472529]
[96]
Amtaghri, S.; Slaoui, M.; Eddouks, M. Ammodaucus leucotrichus acts as an antihypertensive and vasorelaxant agent through sGC and prostaglandin synthesis pathways. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(3), 177-192.
[PMID: 36503395]
[97]
El-Ouady, F.; Eddouks, M. Glucose lowering activity of aqueous ammodaucus leucotrichus extract in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2020, 20(2), 152-159.
[http://dx.doi.org/10.2174/1871529X19666190222182312] [PMID: 30806327]
[98]
Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Calarco, A.; Boukhira, S.; Noman, O.M.; Mothana, R.A.; Nasr, F.A.; Bekkari, H.; Bousta, D. Defatted hydroethanolic extract of ammodaucus leucotrichus cosson and durieu seeds: antidiabetic and anti-inflammatory activities. Appl. Sci. , 2020, 10(24), 9147.
[http://dx.doi.org/10.3390/app10249147]
[99]
Louail, Z.; Kameli, A.; Benabdelkader, T.; Bouti, K.; Hamza, K.; Krimat, S. Antimicrobial and antioxidant activity of essential oil of Ammodaucus leucotrichus Coss. & Dur. seeds. J. Mater. Environ. Sci., 2016, 7(7), 2328-2334.
[100]
Doukkali, Z.; Bouidida, H.; Srifi, A.; Taghzouti, K.; Cherrah, Y.; Alaoui, K. Anxiolytic plants in Morocco. Ethnobotanical and ethno-pharmacological study. Phytothérapie, 2015, 13, 306-313.
[101]
Miara, M.D.; Hammou, M.A.; Aoul, S.H. Phytotherapy and taxonomy of spontaneous medicinal plants in the Tiaret region (Algeria). Phytotherapie, 2013, 11(4), 206-218.
[http://dx.doi.org/10.1007/s10298-013-0789-3]
[102]
Kosanić, M.; Manojlović, N.; Janković, S.; Stanojković, T.; Ranković, B. Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem. Toxicol., 2013, 53, 112-118.
[http://dx.doi.org/10.1016/j.fct.2012.11.034] [PMID: 23220145]
[103]
Palop, J.J.; Mucke, L.; Roberson, E.D. Quantifying biomarkers of cognitive dysfunction and neuronal network hyperexcitability in mouse models of Alzheimer’s disease: depletion of calcium-dependent proteins and inhibitory hippocampal remodeling. Alzheimer’s Disease and Frontotemporal Dementia; Humana Press: Totowa, NJ, 2010, pp. 245-262.
[104]
Roussos, P.A.; Denaxa, N.K.; Tsafouros, A.; Efstathios, N.; Intidhar, B. Apricot (Prunus armeniaca L.). Nutritional composition of fruit cultivars; Academic press, 2016, pp. 19-48.
[105]
Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S.G.; Sharma, R.R.; Kaushik, R.; Verma, M.K.; Tomar, M.; Kumar, M.; Mekhemar, M. Nutritional and phytochemical traits of apricots (Prunus armeniaca L.) for application in nutraceutical and health industry. Foods, 2021, 10(6), 1344.
[http://dx.doi.org/10.3390/foods10061344] [PMID: 34200904]
[106]
Sadiki, F.Z.; Idrissi, M.E.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L.; Postu, P.A. Tetraclinis articulata essential oil mitigates cognitive deficits and brain oxidative stress in an Alzheimer’s disease amyloidosis model. Phytomedicine, 2019, 56, 57-63.
[http://dx.doi.org/10.1016/j.phymed.2018.10.032] [PMID: 30668354]
[107]
Saber, M.; Menyiy, N.E.; Charfi, S.; Mrabti, H.N.; Belmehdi, O.; El Moudden, H.; Bouyahya, A. Comprehensive Overview On Nutritional, Phytochemistry And Pharmacological Properties Of Tetraclinis Articulata Masters. Food Rev. Int., 2022, 39(7), 3691-3752.
[108]
El Ouariachi, E.M.; Tomi, P.; Bouyanzer, A.; Hammouti, B.; Desjobert, J.M.; Costa, J.; Paolini, J. Chemical composition and antioxidant activity of essential oils and solvent extracts of Ptychotis verticillata from Morocco. Food Chem. Toxicol., 2011, 49(2), 533-536.
[http://dx.doi.org/10.1016/j.fct.2010.11.019] [PMID: 21093522]
[109]
Abdelouahid, D.E.; Bekhechi, C. Antimicrobial power of Ammoides verticillata essential oil. Nûnkha). Biol et Santé, 2004, 4(2), 1-10.
[110]
Al-Sereiti, M.R.; Abu-Amer, K.M.; Sena, P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J. Exp. Biol., 1999, 37(2), 124-130.
[111]
Abu-Al-Basal, M.A. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J. Ethnopharmacol., 2010, 131(2), 443-450.
[http://dx.doi.org/10.1016/j.jep.2010.07.007] [PMID: 20633625]
[112]
Morales, D. Use of Strawberry Tree (Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods, 2022, 11(23), 3838.
[http://dx.doi.org/10.3390/foods11233838] [PMID: 36496646]
[113]
El Haouari, M.; Assem, N.; Changan, S.; Kumar, M.; Daştan, S.D.; Rajkovic, J.; Sharifi-Rad, J. An insight into phytochemical, pharmacological, and nutritional properties of arbutus unedo l. from Morocco. J. Evid. Based Complementary Altern. Med., 2021.
[114]
Bouyahya, A.; Zengin, G.; Belmehdi, O.; Bourais, I.; Chamkhi, I.; Taha, D.; Benali, T.; Dakka, N.; Bakri, Y. Origanum compactum Benth., from traditional use to biotechnological applications. J. Food Biochem., 2020, 44(8), e13251.
[http://dx.doi.org/10.1111/jfbc.13251] [PMID: 32495412]
[115]
Bouhdid, S.; Skali, S.N.; Idaomar, M.; Zhiri, A.; Baudoux, D.; Amensour, M.; Abrini, J. Antibacterial and antioxidant activities of Origanum compactum essential oil. Afr. J. Biotechnol., 2008, 7(10)
[116]
Al-Musayeib, N.M.; Mothana, R.A.; Matheeussen, A.; Cos, P.; Maes, L. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complement. Altern. Med., 2012, 12(1), 49.
[http://dx.doi.org/10.1186/1472-6882-12-49] [PMID: 22520595]
[117]
Lim, T.K. Lavandula dentata. Edible Medicinal and Non Medicinal Plants; Springer: Dordrecht, 2014, pp. 186-191.
[http://dx.doi.org/10.1007/978-94-017-8748-2_9]
[118]
Snehlata, H.S.; Payal, D.R. Fenugreek (Trigonella foenum-graecum L.): an overview. Int. J. Curr. Pharm. Rev. Res., 2012, 2(4), 169-187.
[119]
Yadav, U.C.S.; Baquer, N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol., 2014, 52(2), 243-254.
[http://dx.doi.org/10.3109/13880209.2013.826247] [PMID: 24102093]
[120]
Mikail, H.G. Phytochemical screening, elemental analysis and acute toxicity of aqueous extract of Allium sativum L. bulbs in experimental rabbits. J. Med. Plants Res., 2010, 4(4), 322-326.
[121]
Malik, Z.A.; Siddiqui, S. Hypotensive effect of freeze-dried garlic (Allium Sativum) sap in dog. J. Pak. Med. Assoc., 1981, 31(1), 12-13.
[PMID: 6782270]
[122]
Mittal, M.; Gupta, N.; Parashar, P.; Mehra, V.; Khatri, M. Phytochemical evaluation and pharmacological activity of Syzygium aromaticum: a comprehensive review. Int. J. Pharm. Pharm. Sci., 2014, 6(8), 67-72.
[123]
Kim, H.M.; Lee, E.H.; Hong, S.H.; Song, H.J.; Shin, M.K.; Kim, S.H.; Shin, T.Y. Effect of Syzygium aromaticum extract on immediate hypersensitivity in rats. J. Ethnopharmacol., 1998, 60(2), 125-131.
[http://dx.doi.org/10.1016/S0378-8741(97)00143-8] [PMID: 9582002]
[124]
Khan, Y.; Panchal, S.; Vyas, N.; Butani, A.; Kumar, V. Olea europaea: A phyto-pharmacological review. Pharmacogn. Rev., 2007, 1(1), 114-118.
[125]
la Lastra, C.; Barranco, M.; Motilva, V.; Herrerías, J. Mediterranean diet and health: Biological importance of olive oil. Curr. Pharm. Des., 2001, 7(10), 933-950.
[http://dx.doi.org/10.2174/1381612013397654] [PMID: 11472248]
[126]
Krystofova, O.; Adam, V.; Babula, P.; Zehnalek, J.; Beklova, M.; Havel, L.; Kizek, R. Effects of various doses of selenite on stinging nettle (Urtica dioica L.). Int. J. Environ. Res. Public Health, 2010, 7(10), 3804-3815.
[http://dx.doi.org/10.3390/ijerph7103804] [PMID: 21139861]
[127]
Joshi, B.C.; Mukhija, M.; Kalia, A.N. Pharmacognostical review of Urtica dioica L. Int. J. Green Pharm., 2014, 8(4)
[128]
Dar, S.A.; Ganai, F.A.; Yousuf, A.R.; Balkhi, M.H.; Bhat, T.M.; Sharma, P. Pharmacological and toxicological evaluation of Urtica dioica. Pharm. Biol., 2013, 51(2), 170-180.
[http://dx.doi.org/10.3109/13880209.2012.715172] [PMID: 23036051]
[129]
Qnais, E.; Abu-Safieh, K.; Abu-Dieyeh, M.H.; Abdulla, F.A. Antinociceptive effect of two flavonoids from Aloysia triphylla L. Jordan J. Biol. Sci., 2009, 2(4), 167-170.
[130]
Valentão, P.; Fernandes, E.; Carvalho, F.; Andrade, P.B.; Seabra, R.M.; de Lourdes Basto, M. Studies on the antioxidant activity of Lippia citriodora infusion: scavenging effect on superoxide radical, hydroxyl radical and hypochlorous acid. Biol. Pharm. Bull., 2002, 25(10), 1324-1327.
[http://dx.doi.org/10.1248/bpb.25.1320] [PMID: 12392088]
[131]
Moloudizargari, M.; Mikaili, P.; Aghajanshakeri, S.; Asghari, M.; Shayegh, J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn. Rev., 2013, 7(14), 199-212.
[http://dx.doi.org/10.4103/0973-7847.120524] [PMID: 24347928]
[132]
Ahmed, I.A.; Abdul-Aziz, A.; Sidik, N.J.; Allaq, A.A. Antioxidant, antibacterial, and phytochemical screening of ethanolic crude extracts of Libyan Peganum harmala seeds. J. Pharm. Res. Int., 2021, 33(13), 74-82.
[133]
Bouadid, I.; Amssayef, A.; Eddouks, M. Study of the antihypertensive effect of laurus nobilis in rats. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 42-54.
[PMID: 35549860]
[134]
Patrakar, R.; Mansuriya, M.; Patil, P. Phytochemical and pharmacological review on Laurus nobilis. Int. J. Pharm. Chem. Sci., 2012, 1(2), 595-602.
[135]
Amtaghri, S.; Eddouks, M. Study of the antihypertensive and vasorelaxant activities of haloxylon scoparium in rats. Cardiovasc. Hematol. Agents Med. Chem., 2022, 21(2), 139-153.
[PMID: 36017835]
[136]
El-Ouady, F.; Eddouks, M. Ruta montana evokes antihypertensive activity through an increase of prostaglandins release in l-name-induced hypertensive rats. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(2), 305-314.
[137]
Masri, W.; Belwaer, I.; Khlifi, F.; Nouioui, A.; Amira, D.; Hedhili, A. About a case of acute intoxication by Ruta montana. Phytothérapie, 2015, 13, 36-38.
[138]
Seak, C.J.; Lin, C.C. Ruta Graveolens intoxication. Clin. Toxicol. , 2007, 45(2), 173-175.
[http://dx.doi.org/10.1080/15563650600956667] [PMID: 17364636]
[139]
El-Ouady, F.; Eddouks, M. Warionia saharae induces antihypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. J. Complement. Integr. Med., 2019, 17, 1.
[http://dx.doi.org/10.1515/jcim-2019-0024]
[140]
Moufid, A.; Eddouks, M. Artemisia herba alba: A popular plant with potential medicinal properties. Pak. J. Biol. Sci., 2012, 15(24), 1152-1159.
[http://dx.doi.org/10.3923/pjbs.2012.1152.1159] [PMID: 23755405]
[141]
El-Ouady, F.; Eddouks, M. Asteriscus graveolens exhibits Antihypertensive Activity through Activation of Vascular KATP Channels Activation in Rats. Endocr. Metab. Immune. Disord. Drug, 2020, 20(5), 736-744.
[142]
Amssayef, A.; Eddouks, M. Aqueous extract of Matricaria pubescens exhibits antihypertensive activity in L-NAME-induced hypertensive rats through its vasorelaxant effect. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(2), 135-143.
[143]
Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; Shaheen, U.; Patel, S.; Fischmeister, R.; Legssyer, A. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother., 2017, 93, 62-69.
[http://dx.doi.org/10.1016/j.biopha.2017.06.015] [PMID: 28623784]
[144]
Ayalew, M.; Atnafie, S.A.; Bekele, A. Antimalarial activity of solvent fractions of a leaf of Eucalyptus globulus labill against Plasmodium berghei infected mice. BMC Complementary Medicine and Therapies, 2022, 22(1), 221.
[http://dx.doi.org/10.1186/s12906-022-03702-1] [PMID: 35974350]
[145]
Bokaeian, M.; Nakhaee, A.; Moodi, B.; Ali Khazaei, H. Eucalyptus globulus (eucalyptus) treatment of candidiasis in normal and diabetic rats. Iran. Biomed. J., 2010, 14(3), 121-126.
[PMID: 21079663]
[146]
Ajebli, M.; Eddouks, M. Eucalyptus globulus possesses antihypertensive activity in L-NAME-induced hypertensive rats and relaxes isolated rat thoracic aorta through nitric oxide pathway. Nat. Prod. Res., 2021, 35(5), 819-821.
[http://dx.doi.org/10.1080/14786419.2019.1598992] [PMID: 30966776]
[147]
Azzane, A.; Azzaoui, B.; Akdad, M.; Bouadid, I.; Eddouks, M. Effect of calamintha officinalis on vascular contractility and angiotensinconverting enzyme-2. Cardiovasc. Hematol. Agents Med. Chem., 2022, 20(3), 219-236.
[148]
Ajebli, M.; Eddouks, M. Vasorelaxant and antihypertensive effects of mentha pulegium l. in rats: An in vitro and in vivo approach. Endocr. Metab. Immune. Disord. Drug, 2021, 21(7), 1289-1299.
[149]
Akdad, M.; Eddouks, M. Cardiovascular effects of micromeria graeca (L.) Benth. ex Rchb in normotensive and hypertensive rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1253-1261.
[150]
Maghrani, M.; Zeggwagh, N.A.; Michel, J.B.; Eddouks, M. Antihypertensive effect of Lepidium sativum L. in spontaneously hypertensive rats. J. Ethnopharmacol., 2005, 100(1-2), 193-197.
[http://dx.doi.org/10.1016/j.jep.2005.02.024] [PMID: 15955648]
[151]
Patel, U.; Kulkarni, M.; Undale, V.; Bhosale, A. Evaluation of diuretic activity of aqueous and methanol extracts of Lepidium sativum garden cress (Cruciferae) in rats. Trop. J. Pharm. Res., 2009, 8(3)
[http://dx.doi.org/10.4314/tjpr.v8i3.44536]
[152]
Amssayef, A.; Bouadid, I.; El-Haidani, A.; Eddouks, M. Antihypertensive and vasorelaxant effects of rumex vesicarius (L.) through receptor-operated calcium channels in hypertensive rats. Cardiovasc. Hematol. Disord., 2022, 22(1), 67-82.
[153]
Belmokhtar, M.; Bouanani, N.E.; Ziyyat, A.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Matéo, P.; Fischmeister, R.; Legssyer, A. Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus. Biochem. Biophys. Res. Commun., 2009, 389(1), 145-149.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.113] [PMID: 19715668]
[154]
Eddouks, M.; Maghrani, M.; Louedec, L.; Haloui, M.; Michel, J.B. Antihypertensive activity of the aqueous extract of Retama raetam Forssk. leaves in spontaneously hypertensive rats. J. Herb. Pharmacother., 2008, 7(2), 65-77.
[http://dx.doi.org/10.1080/J157v07n02_05] [PMID: 18285308]
[155]
Maghrani, M.; Lemhadri, A.; Jouad, H.; Michel, J.B.; Eddouks, M. Effect of the desert plant Retama raetam on glycaemia in normal and streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2003, 87(1), 21-25.
[http://dx.doi.org/10.1016/S0378-8741(03)00104-1] [PMID: 12787950]
[156]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[157]
Amssayef, A.; Ajebli, M.; Eddouks, M. Aqueous extract of oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin. Exp. Hypertens., 2021, 43(1), 49-55.
[http://dx.doi.org/10.1080/10641963.2020.1797087] [PMID: 32706597]
[158]
Bouadid, I.; Akdad, M.; Eddouks, M. Antihypertensive Activity of Prunus armeniaca in Hypertensive Rats. Cardiovasc. Hematol. Agents Med. Chem., 2022.
[PMID: 35702770]
[159]
Bellakhdar, J.; Claisse, R.; Fleurentin, J.; Younos, C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. J. Ethnopharmacol., 1991, 35(2), 123-143.
[http://dx.doi.org/10.1016/0378-8741(91)90064-K] [PMID: 1809818]
[160]
Al-Shamma, A.; Drake, S.; Flynn, D.L.; Mitscher, L.A.; Park, Y.H.; Rao, G.S.R.; Simpson, A.; Swayze, J.K.; Veysoglu, T.; Wu, S.T.S. Antimicrobial agents from higher plants. Antimicrobial agents from Peganum harmala seeds. J. Nat. Prod., 1981, 44(6), 745-747.
[http://dx.doi.org/10.1021/np50018a025] [PMID: 7334386]
[161]
Raghuram, T.C.; Sharma, R.D.; Sivakumar, B.; Sahay, B.K. Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. Phytother. Res., 1994, 8(2), 83-86.
[http://dx.doi.org/10.1002/ptr.2650080206]
[162]
Pantoja, C.V.; Chiang, L.C.; Norris, B.C.; Concha, J.B. Diuretic, natriuretic and hypotensive effects produced by Allium sativum (garlic) in anaesthetized dogs. J. Ethnopharmacol., 1991, 31(3), 325-331.
[http://dx.doi.org/10.1016/0378-8741(91)90018-9] [PMID: 2056760]
[163]
Goodman, S.M.; Hobbs, J.J. The ethnobotany of the egyptian eastern desert: a comparison of common plant usage between two culturally distinct bedouin groups. J. Ethnopharmacol., 1988, 23(1), 73-89.
[http://dx.doi.org/10.1016/0378-8741(88)90116-X] [PMID: 3419205]
[164]
Cecchini, T.; Breffort, C.; Ticli, B. Encyclopédie des plantes médicinales; De Vecchi, 1993.
[165]
Somova, L.I.; Shode, F.O.; Ramnanan, P.; Nadar, A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol., 2003, 84(2-3), 299-305.
[http://dx.doi.org/10.1016/S0378-8741(02)00332-X] [PMID: 12648829]
[166]
Somova, L.O.; Nadar, A.; Rammanan, P.; Shode, F.O. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine, 2003, 10(2-3), 115-121.
[http://dx.doi.org/10.1078/094471103321659807] [PMID: 12725563]
[167]
Osim, E.E.; Mbajiorgu, E.F.; Mukarati, G.; Vaz, R.F.; Makufa, B.; Munjeri, O.; Musabayane, C.T. Hypotensive effect of crude extract Olea. africana (Oleaceae) in normo and hypertensive rats. Cent. Afr. J. Med., 1999, 45(10), 269-274.
[PMID: 10823231]
[168]
Baharvand-Ahmadi, B.; Bahmani, M.; Tajeddini, P.; Rafieian-Kopaei, M.; Naghdi, N. An ethnobotanical study of medicinal plants administered for the treatment of hypertension. J. Renal Inj. Prev., 2016, 5(3), 123-128.
[http://dx.doi.org/10.15171/jrip.2016.26] [PMID: 27689107]
[169]
Dobroslavić, E.; Repajić, M.; Dragović-Uzelac, V.; Elez Garofulić, I. Isolation of Laurus nobilis leaf polyphenols: A Review on current techniques and future perspectives. Foods, 2022, 11(2), 235.
[http://dx.doi.org/10.3390/foods11020235] [PMID: 35053967]
[170]
Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and biological activities of laurel tree (Laurus nobilis). Nat. Prod. Commun., 2017, 12(5), 1934578X1701200519.
[171]
Zerriouh, M. Contribution to the phytochemical study and antidiabetic activity of Hammada scoparia (Pomel), ‘Remth’.; PhD Thesis, Abou Bekr Belkaid University, 2015.
[172]
Haida, S.; Kribii, A.; Kribii, A. Chemical composition, phenolic content and antioxidant capacity of Haloxylon scoparium extracts. S. Afr. J. Bot., 2020, 131, 151-160.
[http://dx.doi.org/10.1016/j.sajb.2020.01.037]
[173]
Vasudevan, T.N.; Luckner, M. Alkaloids from Ruta angustifolia pers., Ruta chalepensis L., Ruta graveolens L. and Ruta montana mill. Pharmazie, 1968, 23(9), 520-521.
[PMID: 5717194]
[174]
Touati, D.; Atta-ur-Rahman, ; Ulubelen, A. Alkaloids from Ruta montana. Phytochemistry, 2000, 53(2), 277-279.
[http://dx.doi.org/10.1016/S0031-9422(99)00486-0] [PMID: 10680183]
[175]
Kabouche, Z.; Benkiki, N.; Seguin, E.; Bruneau, C. A new dicoumarinyl ether and two rare furocoumarins from Ruta montana. Fitoterapia, 2003, 74(1-2), 194-196.
[http://dx.doi.org/10.1016/S0367-326X(02)00313-1] [PMID: 12628424]
[176]
Benkiki, N.; Benkhaled, M.; Kabouche, Z.; Bruneau, C. Heraclenol and isopimpinellin: two rare furocoumarins from Ruta montana. Biodiversity; Springer: Boston, MA, 2002, pp. 303-307.
[177]
Hammami, I.; Smaoui, S.; Hsouna, A.B.; Hamdi, N.; Triki, M.A. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease. EXCLI J., 2015, 14, 83-94.
[PMID: 26417353]
[178]
Boutoumi, H.; Moulay, S.; Khodja, M. Essential oil from Ruta montana L.(Rutaceae) chemical composition, insecticidal and larvicidal activities. J. Essent. Oil-Bear. Plants, 2009, 12(6), 714-721.
[http://dx.doi.org/10.1080/0972060X.2009.10643780]
[179]
Khadhri, A.; Bouali, I.; Belkhir, S.; Mokni, R.E.; Smiti, S.; Almeida, C.; Nogueira, J.M.F.; Araújo, M.E.M. Chemical variability of two essential oils of Tunisian Rue: Ruta montana and Ruta chalepensis. J. Essent. Oil-Bear. Plants, 2014, 17(3), 445-451.
[http://dx.doi.org/10.1080/0972060X.2014.914001]
[180]
Abdelwahab, B.; Amar, Z.; Noureddine, G.; Mesbah, L.; Salah, R. Essential oil composition of Algerian Ruta Montana (clus.) L. and its antibacterial effects on microorganisms responsible for respiratory infections. Adv. Natural Appl. Sci., 2011, 5(3), 264-269.
[181]
Mohammedi, H.; Mecherara-Idjeri, S.; Hassani, A. Variability in essential oil composition, antioxidant and antimicrobial activities of Ruta montana L. collected from different geographical regions in Algeria. J. Essent. Oil Res., 2020, 32(1), 88-101.
[http://dx.doi.org/10.1080/10412905.2019.1660238]
[182]
Amezouar, F.; Badri, W.; Hsaine, M.; Bourhim, N.; Fougrach, H. Chemical composition, antioxidant and antibacterial activities of leaves essential oil and ethanolic extract of Moroccan Warionia saharae Benth. & Coss. J. Appl. Pharm. Sci., 2012, 2(5)
[183]
Znini, M.; Majidi, L.; Laghchimi, A.; Paolini, J.; Hammouti, B.; Costa, J.; Bouyanzer, A.; Al-Deyab, S.S. Chemical composition and anticorrosive activity of Warionia saharea essential oil against the corrosion of mild steel in 0.5 M H2SO4. Int. J. Electrochem. Sci., 2011, 6(11), 5940-5955.
[http://dx.doi.org/10.1016/S1452-3981(23)18450-1]
[184]
Essaqui, A.; Elamrani, A.; Cayuela, J.A.; Benaissa, M. Chemical composition of the essential oil of Warionia saharae from Morocco. J. Essent. Oil-Bear. Plants, 2007, 10(3), 241-246.
[http://dx.doi.org/10.1080/0972060X.2007.10643548]
[185]
Ramaut, J.L.; Hofinger, M.; Dimbi, R.; Corvisier, M.; Lewalle, J. Main constituents of the essential oil of Warionia saharae Benth and Coss. Chromatographia, 1985, 20(3), 193-194.
[http://dx.doi.org/10.1007/BF02262710]
[186]
Arruda, D.C.; D’Alexandri, F.L.; Katzin, A.M.; Uliana, S.R.B. Antileishmanial activity of the terpene nerolidol. Antimicrob. Agents Chemother., 2005, 49(5), 1679-1687.
[http://dx.doi.org/10.1128/AAC.49.5.1679-1687.2005] [PMID: 15855481]
[187]
Wattenberg, L.W. Inhibition of azoxymethane-induced neoplasia of the large bowel by 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene (nerolidol). Carcinogenesis, 1991, 12(1), 151-152.
[http://dx.doi.org/10.1093/carcin/12.1.151] [PMID: 1988176]
[188]
Seo, M.J.; Kim, S.J.; Kang, T.H.; Rim, H.K.; Jeong, H.J.; Um, J.Y.; Hong, S.H.; Kim, H.M. The regulatory mechanism of β-eudesmol is through the suppression of caspase-1 activation in mast cell–mediated inflammatory response. Immunopharmacol. Immunotoxicol., 2011, 33(1), 178-185.
[http://dx.doi.org/10.3109/08923973.2010.491082] [PMID: 20604677]
[189]
Ambrosio, S.R.; Tirapelli, C.R.; Bonaventura, D.; De Oliveira, A.M.; Da Costa, F.B. Pimarane diterpene from Viguiera arenaria (Asteraceae) inhibit rat carotid contraction. Fitoterapia, 2002, 73(6), 484-489.
[http://dx.doi.org/10.1016/S0367-326X(02)00170-3] [PMID: 12385871]
[190]
Ulubelen, A. Cardioactive and antibacterial terpenoids from some Salvia species. Phytochemistry, 2003, 64(2), 395-399.
[http://dx.doi.org/10.1016/S0031-9422(03)00225-5] [PMID: 12943755]
[191]
Nishida, S.; Satoh, H. Comparative vasodilating actions among terpenoids and flavonoids contained in Ginkgo biloba extract. Clin. Chim. Acta, 2004, 339(1-2), 129-133.
[http://dx.doi.org/10.1016/j.cccn.2003.10.004] [PMID: 14687903]
[192]
Calixto, J.; Nicolau, M.; Rae, G. Pharmacological actions of tannic acid. I. Effects on isolated smooth and cardiac muscles and on blood pressure. Planta Med., 1986, 52(1), 32-35.
[http://dx.doi.org/10.1055/s-2007-969061] [PMID: 3703988]
[193]
Legssyer, A.; Ziyyat, A.; Mekh, H.; Bnouham, M.; Herrenknecht, C.; Roumy, V.; Fourneau, C.; Laurens, A.; Hoerter, J.; Fischmeister, R. Tannins and catechin gallate mediate the vasorelaxant effect of Arbutus unedo on the rat isolated aorta. Phytother. Res., 2004, 18(11), 889-894.
[http://dx.doi.org/10.1002/ptr.1513] [PMID: 15597331]
[194]
Skiker, M.; Mekhfi, H.; Aziz, M.; Haloui, B.; Lahlou, S.; Legssyer, A.; Bnouham, M.; Ziyyat, A. Artemisia herba-alba Asso relaxes the rat aorta through activation of NO/cGMP pathway and KATP channels. J. Smooth Muscle Res., 2010, 46(3), 165-174.
[http://dx.doi.org/10.1540/jsmr.46.165] [PMID: 20647693]
[195]
Belhattab, R.; Amor, L.; Barroso, J.G.; Pedro, L.G.; Cristina Figueiredo, A. Essential oil from Artemisia herba-alba Asso grown wild in Algeria: Variability assessment and comparison with an updated literature survey. Arab. J. Chem., 2014, 7(2), 243-251.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.042]
[196]
Mohamed, A.E.H.H.; El-Sayed, M.; Hegazy, M.E.; Helaly, S.E.; Esmail, A.M.; Mohamed, N.S. Chemical constituents and biological activities of Artemisia herba-alba. Rec. Nat. Prod., 2010, 4(1)
[197]
Rauter, A.P.; Branco, I.; Tosrão, Z.; Pais, M.S.; Gonzalez, A.G.; Bermejo, J.B. Flavonoids from artemisia campestris subsp. marítima. Phytochemistry, 1989, 28(8), 2173-2175.
[http://dx.doi.org/10.1016/S0031-9422(00)97938-X]
[198]
Sanz, J.F.; García-Lliso, V.; Marco, J.A.; Vallés-Xirau, J. A cadinane derivative from Artemisia crithmifolia. Phytochemistry, 1991, 30(12), 4167-4168.
[http://dx.doi.org/10.1016/0031-9422(91)83491-3]
[199]
Vasconcelos, J.M.J.; Silva, A.M.S.; Cavaleiro, J.A.S. Chromones and flavanones from artemisia campestris subsp. maritima. Phytochemistry, 1998, 49(5), 1421-1424.
[http://dx.doi.org/10.1016/S0031-9422(98)00180-0]
[200]
Megdiche-Ksouri, W.; Trabelsi, N.; Mkadmini, K.; Bourgou, S.; Noumi, A.; Snoussi, M.; Barbria, R.; Tebourbi, O.; Ksouri, R. Artemisia campestris phenolic compounds have antioxidant and antimicrobial activity. Ind. Crops Prod., 2015, 63, 104-113.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.029]
[201]
Dib, I.; Fauconnier, M.L.; Sindic, M.; Belmekki, F.; Assaidi, A.; Berrabah, M.; Mekhfi, H.; Aziz, M.; Legssyer, A.; Bnouham, M.; Ziyyat, A. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC Complement. Altern. Med., 2017, 17(1), 82.
[http://dx.doi.org/10.1186/s12906-017-1598-2] [PMID: 28143473]
[202]
Chaib, F.; Allali, H.; Bennaceur, M.; Flamini, G. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two Asteraceae herbs growing wild in the Hoggar. Chem. Biodivers., 2017, 14(8), e1700092.
[http://dx.doi.org/10.1002/cbdv.201700092] [PMID: 28467692]
[203]
Eddine, L.S.; Djamila, B.; Redha, O.M. Solvent pH extraction effect on phytochemical composition and antioxidant properties of Algerian Matricaria Pubescens. J. Pharm. Res., 2016, 10(2), 106-112.
[204]
Qneibi, M.; Hanania, M.; Jaradat, N.; Emwas, N.; Radwan, S. Inula viscosa (L.) Greuter, phytochemical composition, antioxidant, total phenolic content, total flavonoids content and neuroprotective effects. Eur. J. Integr. Med., 2021, 42, 101291.
[http://dx.doi.org/10.1016/j.eujim.2021.101291]
[205]
Akdad, M.; Ajebli, M.; Breuer, A.; Khallouki, F.; Owen, R.W.; Eddouks, M. Study of antihypertensive activity of anvillea radiata in l-name-induced hypertensive rats and HPLC-ESI-MS analysis. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1059-1072.
[http://dx.doi.org/10.2174/1871530319666191115114023] [PMID: 31729295]
[206]
Hayat, U.; Jilani, M.I.; Rehman, R.; Nadeem, F. A review on Eucalyptus globulus: A new perspective in therapeutics. Int. J. Chem. Biochem. Sci., 2015, 8, 85-91.
[207]
Singh, P.P.; Jha, S.; Irchhaiya, R.; Fatima, A.; Agarwal, P. A review on phytochemical and pharmacological potential of Calamintha officinalis Moench. Int. J. Pharm. Sci. Res., 2012, 3(4), 1001-1004.
[208]
Kogiannou, D.A.A.; Kalogeropoulos, N.; Kefalas, P.; Polissiou, M.G.; Kaliora, A.C. Herbal infusions; their phenolic profile, antioxidant and anti-inflammatory effects in HT29 and PC3 cells. Food Chem. Toxicol., 2013, 61, 152-159.
[http://dx.doi.org/10.1016/j.fct.2013.05.027] [PMID: 23712099]
[209]
Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog., 2017, 111, 41-49.
[http://dx.doi.org/10.1016/j.micpath.2017.08.015] [PMID: 28821401]
[210]
Vuko, E.; Dunkić, V.; Bezić, N.; Ruščić, M.; Kremer, D. Chemical composition and antiphytoviral activity of essential oil of Micromeria graeca. Nat. Prod. Commun., 2012, 7(9), 1934578X1200700933.
[http://dx.doi.org/10.1177/1934578X1200700933]
[211]
Sharma, P.C.; Yelne, M.B.; Dennis, T.J.; Joshi, A.; Billore, K.V. Database on medicinal plants used in Ayurveda; Central Council for Research in Ayurveda: New Delhi, India, 2000.
[212]
Agarwal, J.; Verma, D.L. Antioxidant activity-guided fractionation of aqueous extracts from Lepidium sativum and identification of active flavonol glycosides. Acad. Arena, 2011, 3(12), 14-17.
[213]
Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv., 2014, 32(6), 1145-1156.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.006] [PMID: 24780153]
[214]
Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules, 2010, 16(1), 251-280.
[http://dx.doi.org/10.3390/molecules16010251] [PMID: 21193847]
[215]
Rao, K.N.V.; Sunitha, C.; Banji, D.; Shwetha, S.; Krishna, D. Diuretic activity on different extracts and formulation on aerial parts of Rumex vesicarius L. J. Chem. Pharm. Res., 2011, 3(6), 400-408.
[216]
Matkowski, A. Plant in vitro culture for the production of antioxidants - A review. Biotechnol. Adv., 2008, 26(6), 548-560.
[http://dx.doi.org/10.1016/j.biotechadv.2008.07.001] [PMID: 18682287]
[217]
Prakash Mishra, A.; Sharifi-Rad, M.; Shariati, M.A.; Mabkhot, Y.N.; Al-Showiman, S.S.; Rauf, A.; Salehi, B.; Župunski, M.; Sharifi-Rad, M.; Gusain, P.; Sharifi-Rad, J.; Suleria, H.A.R.; Iriti, M. Bioactive compounds and health benefits of edible Rumex species-A review. Cell. Mol. Biol., 2018, 64(8), 27-34.
[http://dx.doi.org/10.14715/cmb/2018.64.8.5] [PMID: 29981688]
[218]
Khalid, L.; Rizwani, G.H.; Sultana, V.; Zahid, H.; Khursheed, R.; Shareef, H. Antidepressant activity of ethanolic extract of Hibiscus rosa sinenesis Linn. Pak. J. Pharm. Sci., 2014, 27(5), 1327-1331.
[PMID: 25176367]
[219]
Bhaskar, A.; Nithya, V.; Vidhya, V.G. Phytochemical screening and in vitro antioxidant activities of the ethanolic extract of Hibiscus rosa sinensis L. J. Biol. Sci., 2021, 2(5), 653-661.
[220]
El Karkouri, J.; Bouhrim, M.; Al Kamaly, O.M.; Mechchate, H.; Kchibale, A.; Adadi, I.; Amine, S.; Alaoui Ismaili, S.; Zair, T. Chemical Composition, Antibacterial and Antifungal Activity of the Essential Oil from Cistus ladanifer L. Plants, 2021, 10(10), 2068.
[http://dx.doi.org/10.3390/plants10102068] [PMID: 34685879]
[221]
Zidane, H.; Elmiz, M.; Aouinti, F.; Tahani, A.; Wathelet, J.; Sindic, M.; Elbachiri, A. Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Afr. J. Biotechnol., 2013, 12(34)
[222]
Kassem, M.; Mosharrafa, S.A.; Saleh, N.A.M.; Abdel-Wahab, S.M. Two new flavonoids from Retama raetam. Fitoterapia, 2000, 71(6), 649-654.
[http://dx.doi.org/10.1016/S0367-326X(00)00224-0] [PMID: 11077171]
[223]
Abdel Halim, O.B.; Abdel Fattah, H.; Halim, A.F.; Murakoshi, I. Comparative chemical and biological studies of the alkaloidal content of Lygos species and varieties growing in Egypt. Acta Pharm. Hung., 1997, 67(6), 241-247.
[PMID: 9423296]
[224]
Nawwar, M.A.M.; El Sherbeiny, A.E.A.; El Ansari, M.A. Plant constitutents of Tamarix aphylla flowers (Tamaricaceae). Experientia, 1975, 31(10), 1118-1118.
[http://dx.doi.org/10.1007/BF02326742]
[225]
Xu, W.H.; Al-Rehaily, A.J.; Yousaf, M.; Ahmad, M.S.; Khan, S.I.; Khan, I.A. Two new flavonoids from Retama raetam. Helv. Chim. Acta, 2015, 98(4), 561-568.
[http://dx.doi.org/10.1002/hlca.201400315]
[226]
Farouk, A.; Ali, H.; Al-Khalifa, A.R.; Mohsen, M.; Fikry, R. Aroma volatile compounds of parsley cultivated in the Kingdom of Saudi Arabia and Egypt extracted by hydrodistillation and headspace solid-phase microextraction. Int. J. Food Prop., 2017, 20(S3), S2868-S2877.
[http://dx.doi.org/10.1080/10942912.2017.1381707]
[227]
Craft, J.D.; Setzer, W.N. The volatile components of parsley, Petroselinum crispum (Mill.). Fuss. Am. J. Essent. Oil. Natu. Prod., 2017, 5(1), 27-32.
[228]
Stefano, V.; Pitonzo, R.; Schillaci, D. Antimicrobial and antiproliferative activity of Athamanta sicula L. (Apiaceae). Pharmacogn. Mag., 2011, 7(25), 31-34.
[http://dx.doi.org/10.4103/0973-1296.75893] [PMID: 21472076]
[229]
Lee, J.Y.; Park, W. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules, 2011, 16(8), 7132-7142.
[http://dx.doi.org/10.3390/molecules16087132] [PMID: 21991618]
[230]
Foudah, A.I.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Ross, S.A.; Yusufoglu, H.S. Phytochemical Screening, in vitro and in silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia. Molecules, 2022, 27(3), 934.
[http://dx.doi.org/10.3390/molecules27030934] [PMID: 35164196]
[231]
Idm’hand, E.; Msanda, F.; Cherifi, K. Medicinal uses, phytochemistry and pharmacology of Ammodaucus leucotrichus. Clinical Phytoscience, 2020, 6(1), 6.
[http://dx.doi.org/10.1186/s40816-020-0154-7]
[232]
Aoussar, N.; Achmit, M.; Es-sadeqy, Y.; Vasiljević, P.; Rhallabi, N.; Ait Mhand, R.; Zerouali, K.; Manojlović, N.; Mellouki, F. Phytochemical constituents, antioxidant and antistaphylococcal activities of Evernia prunastri (L.) Ach., Pseudevernia furfuracea (L.) Zopf. and Ramalina farinacea (L.) Ach. from Morocco. Arch. Microbiol., 2021, 203(6), 2887-2894.
[http://dx.doi.org/10.1007/s00203-021-02288-5] [PMID: 33754163]
[233]
Kitic, D.; Miladinovic, B.; Randjelovic, M.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Seidel, V. Anticancer potential and other pharmacological properties of Prunus armeniaca L.: an updated overview. Plants, 2022, 11(14), 1885.
[http://dx.doi.org/10.3390/plants11141885] [PMID: 35890519]
[234]
Erdogan-Orhan, I.; Kartal, M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int., 2011, 44(5), 1238-1243.
[http://dx.doi.org/10.1016/j.foodres.2010.11.014]
[235]
Schinella, G.R.; Giner, R.M.; Recio, M.D.C.; de Buschiazzo, P.M.; Ríos, J.; Máñez, S. Anti-inflammatory effects of South American Tanacetum vulgare. J. Pharm. Pharmacol., 2011, 50(9), 1069-1074.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06924.x] [PMID: 9811170]
[236]
Naoufel, Z.; Hebi, M.; Ajebli, M. B; Michel, J.; Eddouks, M. in vitro vasorelaxant effect of Artemisia herba alba Asso. in spontaneously hypertensive rats. Cardiovasc. Hematol. Agents Med. Chem., 2016, 14(3), 190-196.
[237]
Aziz, M.; Karim, A.; El Ouariachi, M.; Bouyanzer, A.; Amrani, S.; Mekhfi, H.; Ziyyat, A.; Melhaoui, A.; Bnouham, M.; Legssyer, A. Relaxant effect of essential oil of Artemisia herba-alba Asso. on rodent jejunum contractions. Sci. Pharm., 2012, 80(2), 457-467.
[http://dx.doi.org/10.3797/scipharm.1106-13] [PMID: 22896830]
[238]
Baregama, C.; Goyal, A. Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum Linn.: A review. Asian J. Pharm. Clin. Res., 2019, 12(4), 45-50.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i4.31292]
[239]
Lind, L. Lipids and endothelium‐dependent vasodilation—A review. Lipids, 2002, 37(1), 1-15.
[http://dx.doi.org/10.1007/s11745-002-0858-6] [PMID: 11876256]
[240]
Ramanlal, R.; Gupta, V. Physiology; Vasodilation, 2020.
[241]
Møller, S.; Bendtsen, F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int., 2018, 38(4), 570-580.
[http://dx.doi.org/10.1111/liv.13589] [PMID: 28921803]
[242]
Mogensen, C.E. ACE inhibitors and antihypertensive treatment in diabetes: focus on microalbuminuria and macrovascular disease. J. Renin Angiotensin Aldosterone Syst., 2000, 1(3), 234-239.
[http://dx.doi.org/10.3317/jraas.2000.035] [PMID: 11881030]
[243]
Koya, D.; Jirousek, M.R.; Lin, Y.W.; Ishii, H.; Kuboki, K.; King, G.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest., 1997, 100(1), 115-126.
[http://dx.doi.org/10.1172/JCI119503] [PMID: 9202063]
[244]
Cohn, J.N.; Archibald, D.G.; Ziesche, S.; Franciosa, J.A.; Harston, W.E.; Tristani, F.E.; Dunkman, W.B.; Jacobs, W.; Francis, G.S.; Flohr, K.H.; Goldman, S.; Cobb, F.R.; Shah, P.M.; Saunders, R.; Fletcher, R.D.; Loeb, H.S.; Hughes, V.C.; Baker, B. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N. Engl. J. Med., 1986, 314(24), 1547-1552.
[http://dx.doi.org/10.1056/NEJM198606123142404] [PMID: 3520315]
[245]
Pettinger, W.A.; Mitchell, H.C. Side effects of vasodilator therapy. Hypertension, 1988, 11(3 Pt 2), II34-II36.
[PMID: 3280489]
[246]
Lee, S.Y.; Hur, S.J. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem., 2017, 228, 506-517.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.039] [PMID: 28317757]
[247]
Zeggwagh, N.A.; Farid, O.; Michel, J.B.; Eddouks, M. Cardiovascular effect of Artemisia herba alba aqueous extract in spontaneously hypertensive rats. Methods Find. Exp. Clin. Pharmacol., 2008, 30(5), 375-381.
[http://dx.doi.org/10.1358/mf.2008.30.5.1186081] [PMID: 18806897]
[248]
Zeggwagh, N.A.; Michel, J.B.; Eddouks, M. Acute hypotensive and diuretic activities of Artemisia herba alba aqueous extract in normal rats. Asian Pac. J. Trop. Biomed., 2014, 4, S644-S648.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0136]
[249]
Radwan, H.M.; El-Missiry, M.M.; Al-Said, W.M.; Ismail, A.S.; Abdel Shafeek, K.A.; Seif-El-Nasr, M.M. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res. J. Med. Sci., 2007, 2(2), 127-132.
[250]
Murray, E.C.; Nosalski, R.; MacRitchie, N.; Tomaszewski, M.; Maffia, P.; Harrison, D.G.; Guzik, T.J. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc. Res., 2021, 117(13), cvab330.
[http://dx.doi.org/10.1093/cvr/cvab330] [PMID: 34698811]
[251]
Aktas, G.; Khalid, A.; Kurtkulagi, O.; Duman, T.T.; Bilgin, S.; Kahveci, G.; Atak Tel, B.M.; Sincer, I.; Gunes, Y. Poorly controlled hypertension is associated with elevated serum uric acid to HDL-cholesterol ratio: a cross-sectional cohort study. Postgrad. Med., 2022, 134(3), 297-302.
[http://dx.doi.org/10.1080/00325481.2022.2039007] [PMID: 35142235]
[252]
Lee, E.H.; Shin, J.H.; Kim, S.S.; Lee, H.; Yang, S.R.; Seo, S.R. Laurus nobilis leaf extract controls inflammation by suppressing NLRP3 inflammasome activation. J. Cell. Physiol., 2019, 234(5), 6854-6864.
[http://dx.doi.org/10.1002/jcp.27434] [PMID: 30387132]
[253]
Coté, H.; Boucher, M.A.; Pichette, A.; Legault, J. Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of tanacetum vulgare l. essential oil and its constituents. Medicines , 2017, 4(2), 34.
[http://dx.doi.org/10.3390/medicines4020034] [PMID: 28930249]
[254]
El Ouahdani, K.; Es-Safi, I.; Mechchate, H.; Al-Zahrani, M.; Qurtam, A.A.; Aleissa, M.; Bari, A.; Bousta, D. Thymus algeriensis and artemisia herba-alba essential oils: Chemical analysis, antioxidant potential and in vivo anti-inflammatory, analgesic activities, and acute toxicity. Molecules, 2021, 26(22), 6780.
[255]
Hernández, V.; Recio, M.C.; Máñez, S.; Giner, R.M.; Ríos, J.L. Effects of naturally occurring dihydroflavonols from Inula viscosa on inflammation and enzymes involved in the arachidonic acid metabolism. Life Sci., 2007, 81(6), 480-488.
[http://dx.doi.org/10.1016/j.lfs.2007.06.006] [PMID: 17658557]
[256]
Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol., 2020, 177(9), 2042-2057.
[http://dx.doi.org/10.1111/bph.14967] [PMID: 31883118]
[257]
Rocha, J.; Direito, R.; Lima, A.; Mota, J.; Gonçalves, M.; Duarte, M.P.; Solas, J.; Peniche, B.F.; Fernandes, A.; Pinto, R.; Ferreira, R.B.; Sepodes, B.; Figueira, M.E. Reduction of inflammation and colon injury by a Pennyroyal phenolic extract in experimental inflammatory bowel disease in mice. Biomed. Pharmacother., 2019, 118, 109351.
[http://dx.doi.org/10.1016/j.biopha.2019.109351] [PMID: 31545244]
[258]
Alsuliam, S.M.; Albadr, N.A.; Alshammari, G.M.; Almaiman, S.A.; ElGasim Ahmed Yagoub, A.; Saleh, A.; Abdo Yahya, M. Lepidium sativum alleviates diabetic nephropathy in a rat model by attenuating glucose levels, oxidative stress, and inflammation with concomitant suppression of TGF-β1. Saudi J. Biol. Sci., 2023, 30(8), 103720.
[http://dx.doi.org/10.1016/j.sjbs.2023.103720] [PMID: 37576066]
[259]
Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol., 2019, 229(229), 29-45.
[http://dx.doi.org/10.1016/j.jep.2018.09.038] [PMID: 30287195]
[260]
Al-Mijalli, S.H.; Mrabti, N.N.; Ouassou, H.; Sheikh, R.A.; Assaggaf, H.; Bakrim, S.; Abdallah, E.M.; Alshahrani, M.M.; Al Awadh, A.A.; Lee, L.H.; AlDhaheri, Y.; Sahebkar, A.; Zengin, G.; Attar, A.A.; Bouyahya, A.; Mrabti, H.N. Chemical composition and antioxidant, antimicrobial, and anti-inflammatory properties of origanum compactum benth essential oils from two regions: in vitro and in vivo evidence and in silico molecular investigations. Molecules, 2022, 27(21), 7329.
[261]
Asif, M.; Yousaf, H.M.; Saleem, M.; Saadullah, M.; Chohan, T.A.; Shamas, M.U.; Yaseen, H.S.; Mahrukh; Yousaf, M.U.; Yaseen, M. Trigonella foenum-graecum Seeds Oil Attenuated Inflammation and Angiogenesis in vivo through Down-Regulation of TNF-α. Anticancer. Agents Med. Chem., 2021, 21(11), 1460-1471.
[http://dx.doi.org/10.2174/1871520620666201005100132] [PMID: 33019940]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy