Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Novel Aspects and Directions in Pest Control and Management - Proteins with Insecticidal Properties

Author(s): Haiyan Zhang, Mohamad Hesam Shahrajabian*, Haoran Cui, Yue Kuang and Wenli Sun*

Volume 11, Issue 3, 2024

Published on: 12 January, 2024

Page: [272 - 285] Pages: 14

DOI: 10.2174/0122133461275040231026045521

Price: $65

Abstract

In addition to the economic losses because of insect pests, a significant part of insect pests can instantly lead to the deterioration and mildew of agricultural products, which all have great hidden hazards to human health. In view of insect pests, the principle means of control and prevention in China is spraying chemical agents. Nevertheless, spraying a large number of chemical factors to control insect pests for a long time will not only have a consequential impact on the ecological environment, but also make insect pests boost resistance, and because a large number of chemical residues on the surface of crops will also have an unfavourable impact on the human body. The detection and application of insecticidal proteins are of great significance for the progress of modern insecticidal science. This article studies the research progress of insecticidal proteins and considering their target pests, lists their common insecticidal utilization scenarios, and anticipates the development direction of insecticidal proteins in the future.

Graphical Abstract

[1]
Hadj Saadoun, J.; Sogari, G.; Bernini, V.; Camorali, C.; Rossi, F.; Neviani, E.; Lazzi, C. A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends Food Sci. Technol., 2022, 122, 40-48.
[http://dx.doi.org/10.1016/j.tifs.2022.02.018]
[2]
Ochiai, M.; Komiya, Y. Detection of edible insect derived phospholipids with polyunsaturated fatty acids by thin-layer chromatography, gas chromatography, and enzymatic methods. J. Food Compos. Anal., 2021, 99, 103869.
[http://dx.doi.org/10.1016/j.jfca.2021.103869]
[3]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in pot-COVID-19 era. Appl. Sci. (Basel), 2021, 11(17), 7889.
[http://dx.doi.org/10.3390/app11177889]
[4]
Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol., 2020, 59, 102272.
[http://dx.doi.org/10.1016/j.ifset.2019.102272]
[5]
Shahrajabian, M.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr. Org. Chem., 2021, 25(23), 2885-2901.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[6]
Moar, W.J.; Giddings, K.S.; Narva, K.E.; Nelson, M.E. Enhancing global food security by using bacterial proteins with improved safety profiles to control insect pests. J. Invertebr. Pathol., 2022, 187, 107704.
[http://dx.doi.org/10.1016/j.jip.2021.107704] [PMID: 34896129]
[7]
Frigerio, J.; Agostinetto, G.; Galimberti, A.; De Mattia, F.; Labra, M.; Bruno, A. Tasting the differences: Microbiota analysis of different insect-based novel food. Food Res. Int., 2020, 137, 109426.
[http://dx.doi.org/10.1016/j.foodres.2020.109426] [PMID: 33233108]
[8]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2022, 19(3), 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[9]
Veenstra, J.A.; Rombauts, S.; Grbić, M. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite. Insect Biochem. Mol. Biol., 2012, 42(4), 277-295.
[http://dx.doi.org/10.1016/j.ibmb.2011.12.009] [PMID: 22214827]
[10]
Ons, S.; Lavore, A.; Sterkel, M.; Wulff, J.P.; Sierra, I.; Martínez-Barnetche, J.; Rodriguez, M.H.; Rivera-Pomar, R. Identification of G protein coupled receptors for opsines and neurohormones in Rhodnius prolixus. Genomic and transcriptomic analysis. Insect Biochem. Mol. Biol., 2016, 69, 34-50.
[http://dx.doi.org/10.1016/j.ibmb.2015.05.003] [PMID: 25976540]
[11]
Cinel, S.D.; Hahn, D.A.; Kawahara, A.Y. Predator-induced stress responses in insects: A review. J. Insect Physiol., 2020, 122, 104039.
[http://dx.doi.org/10.1016/j.jinsphys.2020.104039] [PMID: 32113954]
[12]
Riglietti, A.; Ruggiero, P.; Crecchio, C. Investigating the influence of transgenic tobacco plants codifying a protease inhibitor on soil microbial community. Soil Biol. Biochem., 2008, 40(12), 2928-2936.
[http://dx.doi.org/10.1016/j.soilbio.2008.07.027]
[13]
Malefo, M.B.; Mathibela, E.O.; Crampton, B.G.; Makgopa, M.E. Investigating the role of Bowman-Birk serine protease inhibitor in Arabidopsis plants under drought stress. Plant Physiol. Biochem., 2020, 149, 286-293.
[http://dx.doi.org/10.1016/j.plaphy.2020.02.007] [PMID: 32097847]
[14]
Qiu, Y.; Lee, K.S.; Choo, Y.M.; Kong, D.; Yoon, H.J.; Jin, B.R. Molecular cloning and antifibrinolytic activity of a serine protease inhibitor from bumblebee (Bombus terrestris) venom. Toxicon, 2013, 63, 1-6.
[http://dx.doi.org/10.1016/j.toxicon.2012.11.004] [PMID: 23164714]
[15]
Pilon, A.M.; Campos, W.G.; Silva, C.R.; Cordeiro, G.; Silva, C.R.; Oliveira, M.G.A. Protease inhibitory, insecticidal and deterrent effects of the trypsin-inhibitor benzamidine on the velvetbean caterpillar in soybean. An. Acad. Bras. Cienc., 2018, 90(4), 3475-3482.
[http://dx.doi.org/10.1590/0001-3765201820180159] [PMID: 30365718]
[16]
Sharma, H.C.; Kumar, G.S.; Regode, V.; Jaba, J.; Akbar, S.M.D. Plant protease inhibitors and their interactions with insect gut proteinases. The Biology of Plant-Insect Interactions; CRC Press: Boca Raton, 2018, pp. 1-47.
[17]
Singh, S.; Singh, A.; Kumar, S.; Mittal, P.; Singh, I.K. Protease inhibitors: Recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect Sci., 2020, 27(2), 186-201.
[http://dx.doi.org/10.1111/1744-7917.12641] [PMID: 30230264]
[18]
Silva, E.M.; Valencia, A.; Grossi-de-Sá, M.F.; Rocha, T.L.; Freire, É.; de Paula, J.E.; Espindola, L.S. Inhibitory action of Cerrado plants against mammalian and insect α-amylases. Pestic. Biochem. Physiol., 2009, 95(3), 141-146.
[http://dx.doi.org/10.1016/j.pestbp.2009.08.003]
[19]
Svensson, B.; Fukuda, K.; Nielsen, P.K.; Bønsager, B.C. Proteinaceous α-amylase inhibitors. Biochim. Biophys. Acta. Proteins Proteomics, 2004, 1696(2), 145-156.
[http://dx.doi.org/10.1016/j.bbapap.2003.07.004]
[20]
Zibaee, A.; Bandani, A.R.; Kafil, M.; Ramzi, S. Characterization of α-amylase in the midgut and the salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). J. Asia Pac. Entomol., 2008, 11(4), 201-205.
[http://dx.doi.org/10.1016/j.aspen.2008.09.003]
[21]
Pandey, B.; Saini, M.; Sharma, P. Molecular phylogenetic and sequence variation analysis of dimeric α-amylase inhibitor genes in wheat and its wild relative species. Plant Gene, 2016, 6, 48-58.
[http://dx.doi.org/10.1016/j.plgene.2016.03.004]
[22]
Yamada, T.; Hattori, K.; Ishimoto, M. Purification and characterization of two α-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray). Phytochemistry, 2001, 58(1), 59-66.
[http://dx.doi.org/10.1016/S0031-9422(01)00178-9] [PMID: 11524114]
[23]
Lopes, K.V.G.; Silva, L.B.; Reis, A.P.; Oliveira, M.G.A.; Guedes, R.N.C. Modified α-amylase activity among insecticide-resistant and -susceptible strains of the maize weevil, Sitophilus zeamais. J. Insect Physiol., 2010, 56(9), 1050-1057.
[http://dx.doi.org/10.1016/j.jinsphys.2010.02.020] [PMID: 20223242]
[24]
Li, H.; Zhou, H.; Zhang, J.; Fu, X.; Ying, Z.; Liu, X. Proteinaceous α-amylase inhibitors: Purification, detection methods, types and mechanisms. Int. J. Food Prop., 2021, 24(1), 277-290.
[http://dx.doi.org/10.1080/10942912.2021.1876087]
[25]
Karray, A.; Alonazi, M.; Jallouli, R.; Alanazi, H.; Ben Bacha, A. A proteinaceous Alpha-Amylase inhibitor from Moringa Oleifera leaf extract: Purification, characterization, and insecticide effects against C. maculates insect larvae. Molecules, 2022, 27(13), 4222.
[http://dx.doi.org/10.3390/molecules27134222] [PMID: 35807466]
[26]
Shen, Z.; Corbin, D.R.; Greenplate, J.T.; Grebenok, R.J.; Galbraith, D.W.; Purcell, J.P. Studies on the mode of action of cholesterol oxidase on insect midgut membranes. Arch. Insect Biochem. Physiol., 1997, 34(4), 429-442.
[http://dx.doi.org/10.1002/(SICI)1520-6327(1997)34:4<429::AID-ARCH3>3.0.CO;2-N]
[27]
Hejazi, M.S.; Kazemi Tabar, K.; Azarbaijani, R.; Zereshki Nobar, L. Cloning and sequencing of partial segment of cholesterol oxidase encoding gene from Streptomyces luridus. Ann. Microbiol., 2007, 57(2), 259-263.
[http://dx.doi.org/10.1007/BF03175216]
[28]
Kumar, R.; Singh, C.K.; Kamle, S.; Sinha, R.P.; Bhatnagar, R.K.; Kachru, D.N. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops. Food Chem., 2010, 122(4), 1298-1303.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.086]
[29]
Arora, N.; Selvapandiyan, A.; Agrawal, N.; Bhatnagar, R.K. Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. Biochem. Biophys. Res. Commun., 2003, 310(1), 158-162.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.137] [PMID: 14511664]
[30]
Mesrati, L.A.; Tounsi, S.; Kamoun, F.; Jaoua, S. Identification of a promoter for the vegetative insecticidal protein-encoding gene vip3LB from Bacillus thuringiensis. FEMS Microbiol. Lett., 2005, 247(1), 101-104.
[http://dx.doi.org/10.1016/j.femsle.2005.04.032] [PMID: 15927753]
[31]
Komano, T.; Takabe, S.; Sakai, H. Transcription of the insecticidal crystal protein genes of Bacillus thuringiensis. Biotechnol. Annu. Rev. (Amst), 2000, 5, 131-154.
[http://dx.doi.org/10.1016/S1387-2656(00)05034-1] [PMID: 10874999]
[32]
Ge, A.Z.; Rivers, D.; Milne, R.; Dean, D.H. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). J. Biol. Chem., 1991, 266(27), 17954-17958.
[http://dx.doi.org/10.1016/S0021-9258(18)55221-2] [PMID: 1917934]
[33]
Ferre, J.; Escriche, B.; Bel, Y.; Rie, J.V. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol. Lett., 1995, 132(1-2), 1-7.
[http://dx.doi.org/10.1016/0378-1097(95)00271-6] [PMID: 7737469]
[34]
Tan, Y.; Donovan, W.P. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from Bacillus thuringiensis: effect on insecticidal crystal proteins. J. Biotechnol., 2000, 84(1), 67-72.
[http://dx.doi.org/10.1016/S0168-1656(00)00328-X] [PMID: 11035189]
[35]
Vachon, V.; Laprade, R.; Schwartz, J.L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol., 2012, 111(1), 1-12.
[http://dx.doi.org/10.1016/j.jip.2012.05.001] [PMID: 22617276]
[36]
Lin, Y.; Cai, F.; Zhang, G. A prediction model for the activity of insecticidal crystal proteins from Bacillus thuringiensis based on support vector machine. Chin. J. Biotechnol., 2007, 23(1), 127-133.
[http://dx.doi.org/10.1016/S1872-2075(07)60011-9] [PMID: 17366901]
[37]
Choi, J.Y.; Jung, M.P.; Park, H.H.; Tao, X.Y.; Jin, B.R.; Je, Y.H. Insecticidal activity of recombinant baculovirus co-expressing Bacillus thuringiensis crystal protein and Kunitz-type toxin isolated from the venom of bumblebee Bombus ignitus. J. Asia Pac. Entomol., 2013, 16(1), 75-80.
[http://dx.doi.org/10.1016/j.aspen.2012.11.002]
[38]
Höss, S.; Menzel, R.; Gessler, F.; Nguyen, H.T.; Jehle, J.A.; Traunspurger, W. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans. Environ. Pollut., 2013, 178, 147-151.
[http://dx.doi.org/10.1016/j.envpol.2013.03.002] [PMID: 23570782]
[39]
Yuji, S.; Akemi, Y.; Norihisa, N.; Toshihiko, I.; Hiroyuki, S.; Mituru, T. Nucleotide sequence coding for the insecticidal fragment of the Bacillus thuringiensis crystal protein. Gene, 1985, 34(2-3), 243-251.
[http://dx.doi.org/10.1016/0378-1119(85)90133-7] [PMID: 2989108]
[40]
Jurat-Fuentes, J.L.; Crickmore, N. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J. Invertebr. Pathol., 2017, 142, 5-10.
[http://dx.doi.org/10.1016/j.jip.2016.07.018] [PMID: 27480404]
[41]
Naimov, S.; Valkova, R.; Dukiandjiev, S.; Minkov, I.; de Maagd, R.A. Carboxy-terminal extension effects on crystal formation and insecticidal properties of Cry15Aa. J. Invertebr. Pathol., 2011, 108(1), 56-58.
[http://dx.doi.org/10.1016/j.jip.2011.05.019] [PMID: 21723871]
[42]
Baum, J.A.; Malvar, T. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol., 1995, 18(1), 1-12.
[http://dx.doi.org/10.1111/j.1365-2958.1995.mmi_18010001.x] [PMID: 8596449]
[43]
Baranek, J.; Kaznowski, A.; Konecka, E.; Naimov, S. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. J. Invertebr. Pathol., 2015, 130, 72-81.
[http://dx.doi.org/10.1016/j.jip.2015.06.006] [PMID: 26146224]
[44]
Doss, V.A.; Anup Kumar, K.; Jayakumar, R.; Sekar, V. Cloning and expression of the vegetative insecticidal protein (vip3V) gene of Bacillus thuringiensis in Escherichia coli. Protein Expr. Purif., 2002, 26(1), 82-88.
[http://dx.doi.org/10.1016/S1046-5928(02)00515-6] [PMID: 12356474]
[45]
Liao, C.; Heckel, D.G.; Akhurst, R. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. J. Invertebr. Pathol., 2002, 80(1), 55-63.
[http://dx.doi.org/10.1016/S0022-2011(02)00035-6] [PMID: 12234543]
[46]
Sellami, S.; Jemli, S.; Abdelmalek, N.; Dabbéche, E.; Jamoussi, K. Localization and in silico study of the vegetative insecticidal proteins Vip2S-Vip1S of Bacillus thuringiensis. Int. J. Biol. Macromol., 2016, 91, 510-517.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.003] [PMID: 27264647]
[47]
Pagel-Wieder, S.; Niemeyer, J.; Fischer, W.R.; Gessler, F. Effects of physical and chemical properties of soils on adsorption of the insecticidal protein (Cry1Ab) from Bacillus thuringiensis at Cry1Ab protein concentrations relevant for experimental field sites. Soil Biol. Biochem., 2007, 39(12), 3034-3042.
[http://dx.doi.org/10.1016/j.soilbio.2007.06.015]
[48]
Bhalla, R.; Dalal, M.; Panguluri, S.K.; Jagadish, B.; Mandaokar, A.D.; Singh, A.K.; Kumar, P.A. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol. Lett., 2005, 243(2), 467-472.
[http://dx.doi.org/10.1016/j.femsle.2005.01.011] [PMID: 15686851]
[49]
Thamthiankul Chankhamhaengdecha, S.; Tantichodok, A.; Panbangred, W. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. J. Biotechnol., 2008, 136(3-4), 122-128.
[http://dx.doi.org/10.1016/j.jbiotec.2008.05.013] [PMID: 18602953]
[50]
Singh, C.K.; Kumar, R.; Sinha, R.P.; Misra, P.C. RETRACTED: Immunodiagnostic analysis of transgenic vegetative insecticidal protein in genetically modified crops/produce. Food Chem., 2011, 126(2), 786-792.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.077]
[51]
Straub, L.; Strobl, V.; Bruckner, S.; Camenzind, D.W.; Van Oystaeyen, A.; Wäckers, F.; Williams, G.R.; Neumann, P. Buffered fitness components: Antagonism between malnutrition and an insecticide in bumble bees. Sci. Total Environ., 2022, 833, 155098.
[http://dx.doi.org/10.1016/j.scitotenv.2022.155098] [PMID: 35398139]
[52]
Hammoud, Z.; Ben Abada, M.; Greige-Gerges, H.; Elaissari, A.; Mediouni Ben Jemâa, J. Insecticidal effects of natural products in free and encapsulated forms: An overview. J. Nat. Pest. Res., 2022, 1, 100007.
[http://dx.doi.org/10.1016/j.napere.2022.100007]
[53]
Ben Hamadou-Charfi, D.; Boukedi, H.; Abdelkefi-Mesrati, L.; Tounsi, S.; Jaoua, S. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. J. Invertebr. Pathol., 2013, 114(2), 139-143.
[http://dx.doi.org/10.1016/j.jip.2013.07.003] [PMID: 23876657]
[54]
Boukedi, H.; Ben Khedher, S.; Hadhri, R.; Jaoua, S.; Tounsi, S.; Abdelkefi-Mesrati, L. Vegetative insecticidal protein of Bacillus thuringiensis BLB459 and its efficiency against Lepidoptera. Toxicon, 2017, 129, 89-94.
[http://dx.doi.org/10.1016/j.toxicon.2017.02.018] [PMID: 28223048]
[55]
Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin. Toxins (Basel), 2014, 6(5), 1490-1504.
[http://dx.doi.org/10.3390/toxins6051490] [PMID: 24784323]
[56]
Chattopadhyay, P.; Banerjee, G. Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech, 2018, 8, 201.
[57]
Quesada-Moraga, E.; Carrasco-Díaz, J.A.; Santiago-Álvarez, C. Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J. Appl. Entomol., 2006, 130(8), 442-452.
[http://dx.doi.org/10.1111/j.1439-0418.2006.01079.x]
[58]
Wang, S.; Liu, J.; Dong, Y.; Li, Y.; Huang, Y.; Ren, M.; Yang, M.; Wang, J. Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities. For. Ecol. Manage., 2022, 505, 119921.
[http://dx.doi.org/10.1016/j.foreco.2021.119921]
[59]
Sha, J.; Zhang, J.; Chi, B.; Liu, R.; Li, H.; Gao, J. Sip1Ab gene from a native Bacillus thuringiensis strain QZL38 and its insecticidal activity against Colaphellus bowringi Baly. Biocontrol Sci. Technol., 2018, 28(5), 459-467.
[http://dx.doi.org/10.1080/09583157.2018.1460313]
[60]
Shen, X.; Yu, Q.; Liu, H.; Wang, J.; Zhang, R.; Peng, Q.; Song, F. Transition phase regulator AbrB positively regulates the sip1Ab1 gene expression in Bacillus thuringiensis. Microbiol. Spectr., 2021, 9(1), e00075-21.
[http://dx.doi.org/10.1128/Spectrum.00075-21] [PMID: 34319140]
[61]
Murooka, Y.; Yamashita, M. Genetic and protein engineering of diagnostic enzymes, cholesterol oxidase and xylitol oxidase. J. Biosci. Bioeng., 2001, 91(5), 433-441.
[http://dx.doi.org/10.1016/S1389-1723(01)80270-X] [PMID: 16233019]
[62]
Varma, R.; Nene, S. Biosynthesis of cholesterol oxidase by Streptomyces lavendulae NCIM 2421. Enzyme Microb. Technol., 2003, 33(2-3), 286-291.
[http://dx.doi.org/10.1016/S0141-0229(03)00126-1]
[63]
Yapar, E.; Kayahan, S.K.; Bozkurt, A.; Toppare, L. Immobilizing cholesterol oxidase in chitosan–alginic acid network. Carbohydr. Polym., 2009, 76(3), 430-436.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.001]
[64]
Jing, X.; Grebenok, R.J.; Behmer, S.T. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects. J. Insect Physiol., 2014, 67, 85-96.
[http://dx.doi.org/10.1016/j.jinsphys.2014.06.004] [PMID: 24953330]
[65]
Corbin, D.R.; Grebenok, R.J.; Ohnmeiss, T.E.; Greenplate, J.T.; Purcell, J.P. Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol., 2001, 126(3), 1116-1128.
[http://dx.doi.org/10.1104/pp.126.3.1116] [PMID: 11457962]
[66]
Entringer, P.F.; Majerowicz, D.; Gondim, K.C. The fate of dietary cholesterol in the kissing bug Rhodnius prolixus. Front. Physiol., 2021, 12, 654565.
[http://dx.doi.org/10.3389/fphys.2021.654565] [PMID: 33868022]
[67]
Kumari, L.; Kanwar, S.S. Cholesterol oxidase and its applications. Adv. Microbiol., 2012, 2, 49-65.
[http://dx.doi.org/10.4236/aim.2012.22007]
[68]
Purcell, J.P.; Greenplate, J.T.; Jennings, M.G.; Ryerse, J.S.; Pershing, J.C.; Sims, S.R.; Prinsen, M.J.; Corbin, D.R.; Tran, M.; Sammons, R.D.; Stonard, R.J. Cholesterol oxidase: A potent insecticidal protein active against boll weevil larvae. Biochem. Biophys. Res. Commun., 1993, 196(3), 1406-1413.
[http://dx.doi.org/10.1006/bbrc.1993.2409] [PMID: 8250897]
[69]
Smith, A.G.; Brooks, C.J.W. Cholesterol oxidases: Properties and applications. J. Steroid Biochem., 1976, 7(9), 705-713.
[http://dx.doi.org/10.1016/0022-4731(76)90071-6] [PMID: 790024]
[70]
Yao, K.; Wang, F.Q.; Zhang, H.C.; Wei, D.Z. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab. Eng., 2013, 15, 75-87.
[http://dx.doi.org/10.1016/j.ymben.2012.10.005] [PMID: 23164577]
[71]
Abell, A.D.; Ratcliffe, M.J.; Gerrard, J. Ascorbic acid-based inhibitors of α-amylases. Bioorg. Med. Chem. Lett., 1998, 8(13), 1703-1706.
[http://dx.doi.org/10.1016/S0960-894X(98)00298-4] [PMID: 9873419]
[72]
Matsushita, H.; Takenaka, M.; Ogawa, H. Porcine pancreatic α-amylase shows binding activity toward N-linked oligosaccharides of glycoproteins. J. Biol. Chem., 2002, 277(7), 4680-4686.
[http://dx.doi.org/10.1074/jbc.M105877200] [PMID: 11741899]
[73]
Robert, X.; Haser, R.; Gottschalk, T.E.; Ratajczak, F.; Driguez, H.; Svensson, B.; Aghajari, N. The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: A pair of sugar tongs. Structure, 2003, 11(8), 973-984.
[http://dx.doi.org/10.1016/S0969-2126(03)00151-5] [PMID: 12906828]
[74]
Gutierrez, C.; Sanchez-Monge, R.; Gomez, L.; Ruiz-Tapiador, M.; Castañera, P.; Salcedo, G. α-amylase activities of agricultural insect pests are specifically affected by different inhibitor preparations from wheat and barley endosperms. Plant Sci., 1990, 72(1), 37-44.
[http://dx.doi.org/10.1016/0168-9452(90)90184-P]
[75]
Ashouri, S.; Farshbaf, P.A.R.; Zihnioglu, F.; Kocadag, E. Extraction and purification of protease inhibitor(s) from seeds of Helianthus annuus with effects on Leptinotarsa decemlineata digestive cysteine protease. Biocatal. Agric. Biotechnol., 2017, 9, 113-119.
[http://dx.doi.org/10.1016/j.bcab.2016.12.005]
[76]
Strobl, S.; Maskos, K.; Betz, M.; Wiegand, G.; Huber, R.; Gomis-Rüth, F.X.; Glockshuber, R. Crystal structure of yellow meal worm α-amylase at 1.64 Å resolution. J. Mol. Biol., 1998, 278(3), 617-628.
[http://dx.doi.org/10.1006/jmbi.1998.1667] [PMID: 9600843]
[77]
Rane, A.S.; Venkatesh, V.; Joshi, R.S.; Giri, A.P. Molecular investigation of Coleopteran specific α-Amylase inhibitors from Amaranthaceae members. Int. J. Biol. Macromol., 2020, 163, 1444-1450.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.219] [PMID: 32735926]
[78]
Kaur, R.; Kaur, N.; Gupta, A.K. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. Pestic. Biochem. Physiol., 2014, 116, 83-93.
[http://dx.doi.org/10.1016/j.pestbp.2014.09.005] [PMID: 25454524]
[79]
Rane, A.S.; Joshi, R.S.; Giri, A.P. Molecular determinant for specificity: Differential interaction of α-amylases with their proteinaceous inhibitors. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(12), 129703.
[http://dx.doi.org/10.1016/j.bbagen.2020.129703] [PMID: 32805319]
[80]
Sivakumar, S.; Mohan, M.; Franco, O.L.; Thayumanavan, B. Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pestic. Biochem. Physiol., 2006, 85(3), 155-160.
[http://dx.doi.org/10.1016/j.pestbp.2005.11.008]
[81]
Rekha, M.R.; Sasikiran, K.; Padmaja, G. Inhibitor potential of protease and α-amylase inhibitors of sweet potato and taro on the digestive enzymes of root crop storage pests. J. Stored Prod. Res., 2004, 40(4), 461-470.
[http://dx.doi.org/10.1016/j.jspr.2003.07.001]
[82]
Rahimi, V.; Bandani, A.R. Comparison of the effects of cereal and Legume proteinaceous seed extracts on α-amylase activity and development of the Sunn pest. J. Asia Pac. Entomol., 2014, 17(1), 7-11.
[http://dx.doi.org/10.1016/j.aspen.2013.09.003]
[83]
Mehrabadi, M.; Bandani, A.R.; Mehrabadi, R.; Alizadeh, H. Inhibitory activity of proteinaceous α-amylase inhibitors from Triticale seeds against Eurygaster integriceps salivary α-amylases: Interaction of the inhibitors and the insect digestive enzymes. Pestic. Biochem. Physiol., 2012, 102(3), 220-228.
[http://dx.doi.org/10.1016/j.pestbp.2012.01.008]
[84]
González-Ruiz, C.R.; Del Toro-Sánchez, C.L.; Cornejo-Ramírez, Y.I.; Rodríguez-Félix, F.; Wong-Corral, F.J.; Márquez-Ríos, E.; Cárdenas-López, J.L.; Cinco-Moroyoqui, F.J. Differential biochemical and kinetic properties of α-amylases from Rhyzopertha dominica (F.) progenies reared on wheat varieties differing in α-amylase inhibitory activity. J. Stored Prod. Res., 2021, 90, 101748.
[http://dx.doi.org/10.1016/j.jspr.2020.101748]
[85]
Dayler, C.S.A.; Mendes, P.A.M.; Prates, M.V.; Bloch, C., Jr; Franco, O.L.; Grossi-de-Sá, M.F. Identification of a novel bean α-amylase inhibitor with chitinolytic activity. FEBS Lett., 2005, 579(25), 5616-5620.
[http://dx.doi.org/10.1016/j.febslet.2005.09.030] [PMID: 16213488]
[86]
Hámori, C.; Remenyik, J.; Kandra, L.; Gyémánt, G. Colorado potato beetle alpha-amylase: Purification, action pattern and subsite mapping for exploration of active centre. Int. J. Biol. Macromol., 2021, 168, 350-355.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.071] [PMID: 33310101]
[87]
Silva, M.C.M.; Del Sarto, R.P.; Lucena, W.A.; Rigden, D.J.; Teixeira, F.R.; Bezerra, C.A.; Albuquerque, É.V.S.; Grossi-de-Sa, M.F. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme. J. Biotechnol., 2013, 167(4), 377-385.
[http://dx.doi.org/10.1016/j.jbiotec.2013.07.016] [PMID: 23892157]
[88]
Alves, D.T.; Vasconcelos, I.M.; Oliveira, J.T.A.; Farias, L.R.; Dias, S.C.; Chiarello, M.D.; Maria-Neto, S.; Franco, O.L. Identification of four novel members of Kunitz-like α-amylase inhibitors family from Delonix regia with activity toward Coleopteran insects. Pestic. Biochem. Physiol., 2009, 95(3), 166-172.
[http://dx.doi.org/10.1016/j.pestbp.2009.08.011]
[89]
Farias, L.R.; Costa, F.T.; Souza, L.A.; Pelegrini, P.B.; Grossi-de-Sá, M.F.; Neto, S.M.; Bloch, C., Jr; Laumann, R.A.; Noronha, E.F.; Franco, O.L. Isolation of a novel Carica papaya α-amylase inhibitor with deleterious activity toward Callosobruchus maculatus. Pestic. Biochem. Physiol., 2007, 87(3), 255-260.
[http://dx.doi.org/10.1016/j.pestbp.2006.08.004]
[90]
Kumar, P.N.; Swapna, T.H.; Khan, M.Y.; Daddam, J.R.; Hameeda, B. Molecular dynamics and protein interaction studies of lipopeptide (Iturin A) on α- amylase of Spodoptera litura. J. Theor. Biol., 2017, 415, 41-47.
[http://dx.doi.org/10.1016/j.jtbi.2016.12.003] [PMID: 27940096]
[91]
Pereira, P.J.B.; Lozanov, V.; Patthy, A.; Huber, R.; Bode, W.; Pongor, S.; Strobl, S. Specific inhibition of insect α-amylases: Yellow meal worm α-amylase in complex with the Amaranth α-amylase inhibitor at 2.0 Å resolution. Structure, 1999, 7(9), 1079-1088.
[http://dx.doi.org/10.1016/S0969-2126(99)80175-0] [PMID: 10508777]
[92]
Bezerra, C.A.; Macedo, L.L.P.; Amorim, T.M.L.; Santos, V.O.; Fragoso, R.R.; Lucena, W.A.; Meneguim, A.M.; Valencia-Jimenez, A.; Engler, G.; Silva, M.C.M.; Albuquerque, E.V.S.; Grossi-de-Sa, M.F. Molecular cloning and characterization of an α-amylase cDNA highly expressed in major feeding stages of the coffee berry borer, Hypothenemus hampei. Gene, 2014, 553(1), 7-16.
[http://dx.doi.org/10.1016/j.gene.2014.09.050] [PMID: 25264343]
[93]
Silva, C.P.; Terra, W.R.; Xavier-Filho, J.; Grossi de Sá, M.F.; Isejima, E.M.; DaMatta, R.A.; Miguens, F.C.; Bifano, T.D. Digestion of legume starch granules by larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) and the induction of α–amylases in response to different diets. Insect Biochem. Mol. Biol., 2001, 31(1), 41-50.
[http://dx.doi.org/10.1016/S0965-1748(00)00103-X] [PMID: 11102833]
[94]
Ishimoto, M.; Yamada, T.; Kaga, A. Insecticidal activity of an α-amylase inhibitor-like protein resembling a putative precursor of α-amylase inhibitor in the common bean, Phaseolus vulgaris L. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1999, 1432(1), 104-112.
[http://dx.doi.org/10.1016/S0167-4838(99)00093-X] [PMID: 10366733]
[95]
Valencia, A.; Bustillo, A.E.; Ossa, G.E.; Chrispeels, M.J. α-Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem. Mol. Biol., 2000, 30(3), 207-213.
[http://dx.doi.org/10.1016/S0965-1748(99)00115-0] [PMID: 10732988]
[96]
Wisessing, A.; Engkagul, A.; Wongpiyasatid, A.; Chuwongkomon, K. Proteomic and characterization of α-amylase inhibitor from Mungbean (Vigna radiate). Kasetsart J., 2008, 42, 245-250.
[97]
Barber, D.; Sánchez-Monge, R.; Gómez, L.; Carpizo, J.; Armentia, A.; López-Otín, C.; Juan, F.; Salcedo, G. A barley flour inhibitor of insect α‐amylase is a major allergen associated with baker’s asthma disease. FEBS Lett., 1989, 248(1-2), 119-122.
[http://dx.doi.org/10.1016/0014-5793(89)80444-2] [PMID: 2785932]
[98]
Ary, M.B.; Richardson, M.; Shewry, P.R. Purification and characterization of an insect α-amylase inhibitor/endochitinase from seeds of Job’s Tears (Coix lachryma-jobi). Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1989, 999(3), 260-266.
[http://dx.doi.org/10.1016/0167-4838(89)90007-1] [PMID: 2605263]
[99]
Strobl, S.; Gomis-Rüth, F.X.; Maskos, K.; Frank, G.; Huber, R.; Glockshuber, R. The α‐amylase from the yellow meal worm: Complete primary structure, crystallization and preliminary X‐ray analysis. FEBS Lett., 1997, 409(1), 109-114.
[http://dx.doi.org/10.1016/S0014-5793(97)00451-1] [PMID: 9199514]
[100]
Lomate, P.R.; Dewangan, V.; Mahajan, N.S.; Kumar, Y.; Kulkarni, A.; Wang, L.; Saxena, S.; Gupta, V.S.; Giri, A.P. Integrated transcriptomic and proteomic analyses suggest the participation of endogenous protease inhibitors in the regulation of protease gene expression in Helicoverpa armigera. Mol. Cell. Proteomics, 2018, 17(7), 1324-1336.
[http://dx.doi.org/10.1074/mcp.RA117.000533] [PMID: 29661852]
[101]
Gatehouse, J.A. Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr. Protein Pept. Sci., 2011, 12(5), 409-416.
[http://dx.doi.org/10.2174/138920311796391142] [PMID: 21418023]
[102]
Shamsi, T.N.; Parveen, R.; Fatima, S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int. J. Biol. Macromol., 2016, 91, 1120-1133.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.069] [PMID: 26955746]
[103]
Volpicella, M.; Cordewener, J.; Jongsma, M.A.; Gallerani, R.; Ceci, L.R.; Beekwilder, J. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 833(1), 26-32.
[http://dx.doi.org/10.1016/j.jchromb.2005.10.021] [PMID: 16269275]
[104]
Ferreira, R.S.; Brito, M.V.; Napoleão, T.H.; Silva, M.C.C.; Paiva, P.M.G.; Oliva, M.L.V. Effects of two protease inhibitors from Bauhinia bauhinoides with different specificity towards gut enzymes of Nasutitermes corniger and its survival. Chemosphere, 2019, 222, 364-370.
[http://dx.doi.org/10.1016/j.chemosphere.2019.01.108] [PMID: 30710762]
[105]
Roussel, A.; Mathieu, M.; Dobbs, A.; Luu, B.; Cambillau, C.; Kellenberger, C. Complexation of two proteic insect inhibitors to the active site of chymotrypsin suggests decoupled roles for binding and selectivity. J. Biol. Chem., 2001, 276(42), 38893-38898.
[http://dx.doi.org/10.1074/jbc.M105707200] [PMID: 11495915]
[106]
Ashouri, S.; Farshbaf, P.R. Regulation of gene expression encoding the digestive α-amylase in the larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) in response to plant protein extracts. Gene, 2021, 766, 145159.
[http://dx.doi.org/10.1016/j.gene.2020.145159] [PMID: 32971186]
[107]
Campos, I.T.N.; Tanaka-Azevedo, A.M.; Tanaka, A.S. Identification and characterization of a novel factor XIIa inhibitor in the hematophagous insect, Triatoma infestans (Hemiptera: Reduviidae). FEBS Lett., 2004, 577(3), 512-516.
[http://dx.doi.org/10.1016/j.febslet.2004.10.052] [PMID: 15556638]
[108]
Chougule, N.P.; Doyle, E.; Fitches, E.; Gatehouse, J.A. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. J. Insect Physiol., 2008, 54(3), 563-572.
[http://dx.doi.org/10.1016/j.jinsphys.2007.12.005] [PMID: 18241882]
[109]
Saikhedkar, N.S.; Joshi, R.S.; Bhoite, A.S.; Mohandasan, R.; Yadav, A.K.; Fernandes, M.; Kulkarni, K.A.; Giri, A.P. Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera. Insect Biochem. Mol. Biol., 2018, 95, 17-25.
[http://dx.doi.org/10.1016/j.ibmb.2018.02.001] [PMID: 29486250]
[110]
Khan, A.A.; Fazili, A.B.A.; Bhat, S.A.; Bhat, W.F.; Asghar, M.N.; Khan, M.S.; Bano, B. Purification, characterization and studies of a novel cysteine protease inhibitor from Juglans regia: Implications as a potential biopesticide. J. King Saud Univ. Sci., 2022, 34(3), 101829.
[http://dx.doi.org/10.1016/j.jksus.2022.101829]
[111]
Boigegrain, R.A.; Pugnière, M.; Paroutaud, P.; Bertrand, C.; Brehélin, M. Low molecular weight serine protease inhibitors from insects are proteins with highly conserved sequences. Insect Biochem. Mol. Biol., 2000, 30(2), 145-152.
[http://dx.doi.org/10.1016/S0965-1748(99)00109-5] [PMID: 10696590]
[112]
Lee, K.Y.; Kim, B.Y.; Lee, K.S.; Yoon, H.J.; Jin, B.R. A serine protease inhibitor from the hornfaced bee, Osmia cornifrons, exhibits antimicrobial activities. J. Asia Pac. Entomol., 2015, 18(3), 489-495.
[http://dx.doi.org/10.1016/j.aspen.2015.06.004]
[113]
Yang, Y.; Xu, H.; Wu, Z.; Lu, Z. Effects of inhibitors on the protease profiles and degradation of activated Cry toxins in larval midgut juices of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). J. Integr. Agric., 2021, 20(8), 2195-2203.
[http://dx.doi.org/10.1016/S2095-3119(20)63316-0]
[114]
Bown, D.P.; Wilkinson, H.S.; Gatehouse, J.A. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families. Insect Biochem. Mol. Biol., 1997, 27(7), 625-638.
[http://dx.doi.org/10.1016/S0965-1748(97)00043-X] [PMID: 9404008]
[115]
Burgess, E.P.J.; Philip, B.A.; Christeller, J.T.; Page, N.E.M.; Marshall, R.K.; Wohlers, M.W. Tri-trophic effects of transgenic insect-resistant tobacco expressing a protease inhibitor or a biotin-binding protein on adults of the predatory carabid beetle Ctenognathus novaezelandiae. J. Insect Physiol., 2008, 54(2), 518-528.
[http://dx.doi.org/10.1016/j.jinsphys.2007.12.002] [PMID: 18199450]
[116]
Gubb, D.; Sanz-Parra, A.; Barcena, L.; Troxler, L.; Fullaondo, A. Protease inhibitors and proteolytic signalling cascades in insects. Biochimie, 2010, 92(12), 1749-1759.
[http://dx.doi.org/10.1016/j.biochi.2010.09.004] [PMID: 20850496]
[117]
Kim, B.Y.; Kim, Y.H.; Park, M.J.; Yoon, H.J.; Lee, K.Y.; Kim, H.K.; Lee, K.S.; Jin, B.R. Dual function of a bumblebee (Bombus ignitus) serine protease inhibitor that acts as a microbicidal peptide and anti-fibrinolytic venom toxin. Dev. Comp. Immunol., 2022, 135, 104478.
[http://dx.doi.org/10.1016/j.dci.2022.104478] [PMID: 35716829]
[118]
Kanost, M.R.; Jiang, H. Clip-domain serine proteases as immune factors in insect hemolymph. Curr. Opin. Insect Sci., 2015, 11, 47-55.
[http://dx.doi.org/10.1016/j.cois.2015.09.003] [PMID: 26688791]
[119]
Li, Y.; Zhao, P.; Liu, S.; Dong, Z.; Chen, J.; Xiang, Z.; Xia, Q. A novel protease inhibitor in Bombyx mori is involved in defense against Beauveria bassiana. Insect Biochem. Mol. Biol., 2012, 42(10), 766-775.
[http://dx.doi.org/10.1016/j.ibmb.2012.07.004] [PMID: 22841512]
[120]
Sang, M.; Xu, C.; Wei, Z.; Wu, X.; Guo, Y.; Li, J.; Wang, Z.; Zhang, J. Cloning and high-level SUMO-mediated fusion expression of a serine protease inhibitor from Hyphantria cunea Drury that exhibits activity against papain. Protein Expr. Purif., 2019, 158, 36-43.
[http://dx.doi.org/10.1016/j.pep.2019.02.011] [PMID: 30807851]
[121]
Yang, J.; Lee, K.S.; Kim, B.Y.; Choi, Y.S.; Yoon, H.J.; Jia, J.; Jin, B.R. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2017, 201, 11-18.
[http://dx.doi.org/10.1016/j.cbpc.2017.09.001] [PMID: 28917645]
[122]
Kim, B.Y.; Lee, K.S.; Zou, F.M.; Wan, H.; Choi, Y.S.; Yoon, H.J.; Kwon, H.W.; Je, Y.H.; Jin, B.R. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor. Toxicon, 2013, 76, 110-117.
[http://dx.doi.org/10.1016/j.toxicon.2013.09.017] [PMID: 24076031]
[123]
Qian, C.; Liang, D.; Liu, Y.; Wang, P.; Kausar, S.; Wei, G.; Zhu, B.; Wang, L.; Liu, C. Identification of a small pacifastin protease inhibitor from Nasonia vitripennis venom that inhibits humoral immunity of host (Musca domestica). Toxicon, 2017, 131, 54-62.
[http://dx.doi.org/10.1016/j.toxicon.2017.03.005] [PMID: 28283430]
[124]
Zhang, X.; Guo, K.; Dong, Z.; Chen, Z.; Zhu, H.; Zhang, Y.; Xia, Q.; Zhao, P. Kunitz-type protease inhibitor BmSPI51 plays an antifungal role in the silkworm cocoon. Insect Biochem. Mol. Biol., 2020, 116, 103258.
[http://dx.doi.org/10.1016/j.ibmb.2019.103258] [PMID: 31678582]
[125]
Jamal, F.; Pandey, P.K.; Singh, D.; Ahmed, W. A Kunitz-type serine protease inhibitor from Butea monosperma seed and its influence on developmental physiology of Helicoverpa armigera. Process Biochem., 2015, 50(2), 311-316.
[http://dx.doi.org/10.1016/j.procbio.2014.12.003]
[126]
Wan, H.; Kim, B.Y.; Lee, K.S.; Yoon, H.J.; Lee, K.Y.; Jin, B.R. A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2014, 167, 59-64.
[http://dx.doi.org/10.1016/j.cbpb.2013.10.002] [PMID: 24158004]
[127]
Lomate, P.R.; Hivrale, V.K. Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases. Plant Physiol. Biochem., 2012, 57, 193-199.
[http://dx.doi.org/10.1016/j.plaphy.2012.05.023] [PMID: 22721949]
[128]
Mohanraj, S.S.; Tetali, S.D.; Mallikarjuna, N.; Dutta-Gupta, A.; Padmasree, K. Biochemical properties of a bacterially-expressed Bowman-Birk inhibitor from Rhynchosia sublobata (Schumach.) Meikle seeds and its activity against gut proteases of Achaea janata. Phytochemistry, 2018, 151, 78-90.
[http://dx.doi.org/10.1016/j.phytochem.2018.02.009] [PMID: 29674106]
[129]
de Almeida, W.A.; Nova, I.C.V.; Nascimento, J.S.; de Moura, M.C.; Agra-Neto, A.C.; da Costa, H.N.; Cruz, G.S.; Teixeira, Á.A.C.; Wanderley-Teixeira, V.; Ferreira, M.R.A.; Soares, L.A.L.; Coelho, L.C.B.B.; MariaNavarro, D.A.F.; Paiva, P.M.G.; Napoleão, T.H.; de Albuquerque, L.P.; Pontual, E.V. Effects of Plectranthus barbatus leaf extract on survival, digestive proteases, midgut morphophysiology and gut microbiota homeostasis of Aedes aegypti larvae. S. Afr. J. Bot., 2021, 141, 116-125.
[http://dx.doi.org/10.1016/j.sajb.2021.04.023]
[130]
Abd El-latif, A.O. In vivo and in vitro inhibition of Spodoptera littoralis gut-serine protease by protease inhibitors isolated from maize and sorghum seeds. Pestic. Biochem. Physiol., 2014, 116, 40-48.
[http://dx.doi.org/10.1016/j.pestbp.2014.09.009] [PMID: 25454519]
[131]
Jadhav, A.R.; War, A.R.; Nikam, A.N.; Adhav, A.S.; Gupta, V.S.; Sharma, H.C.; Giri, A.P.; Tamhane, V.A. Capsicum annuum proteinase inhibitor ingestion negatively impacts the growth of sorghum pest Chilo partellus and promotes differential protease expression. Biochem. Biophys. Rep., 2016, 8, 302-309.
[http://dx.doi.org/10.1016/j.bbrep.2016.09.016] [PMID: 28955969]
[132]
Liu, X.; McCarron, R.; Nordin, J.H. A cysteine protease that process insect vitellin: Purification and partial characterization of the enzyme and the proenzyme. J. Biol. Chem., 1996, 271(52), 3334-33351.
[http://dx.doi.org/10.1074/jbc.271.52.33344]
[133]
Soares, T.S.; Rodriguez Gonzalez, B.L.; Torquato, R.J.S.; Lemos, F.J.A.; Costa-da-Silva, A.L.; Capurro Guimarães, M.L.; Tanaka, A.S. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus. Biochimie, 2018, 144, 160-168.
[http://dx.doi.org/10.1016/j.biochi.2017.11.005] [PMID: 29133118]
[134]
Kim, B.Y.; Lee, K.S.; Lee, K.Y.; Yoon, H.J.; Jin, B.R. Anti-fibrinolytic activity of a metalloprotease inhibitor from bumblebee (Bombus ignitus) venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 245, 109042.
[http://dx.doi.org/10.1016/j.cbpc.2021.109042] [PMID: 33838314]
[135]
Du, W.; Gao, Z.; Wang, K.; Zhao, Y.; Zheng, P.; Yu, Z.; Liu, J.; Yang, X. Expression and function assessment of two serpin-type serine protease inhibitors from Haemaphysalis doenitzi. Res. Vet. Sci., 2020, 132, 1-9.
[http://dx.doi.org/10.1016/j.rvsc.2020.05.015] [PMID: 32464311]
[136]
Shamsi, T.N.; Parveen, R.; Ahmad, A.; Samal, R.R.; Kumar, S.; Fatima, S. Inhibition of gut proteases and development of dengue vector, Aedes aegypti by Allium sativum protease inhibitor. Acta Ecol. Sin., 2018, 38(5), 325-328.
[http://dx.doi.org/10.1016/j.chnaes.2018.01.002]
[137]
Wan, H.; Kang, T.; Kim, B.Y.; Lee, K.S.; Li, J.; Jin, B.R. AvCystatin, a novel cysteine protease inhibitor from spider (Araneus ventricosus) venom. J. Asia Pac. Entomol., 2015, 18(1), 13-18.
[http://dx.doi.org/10.1016/j.aspen.2014.10.009]
[138]
Melo, I.R.S.; Dias, L.P.; Araújo, N.M.S.; Vasconcelos, I.M.; Martins, T.F.; de Morais, G.A.; Gonçalves, J.F.C.; Nagano, C.S.; Carneiro, R.F.; Oliveira, J.T.A. ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface. Int. J. Biol. Macromol., 2019, 133, 1115-1124.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.174] [PMID: 31034905]
[139]
Schlüter, U.; Benchabane, M.; Munger, A.; Kiggundu, A.; Vorster, J.; Goulet, M.C.; Cloutier, C.; Michaud, D. Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective. J. Exp. Bot., 2010, 61(15), 4169-4183.
[http://dx.doi.org/10.1093/jxb/erq166] [PMID: 20581122]
[140]
Peric-Mataruga, V.; Nenadovic, V.; Ivanovic, J. Neurohormones in insect stress: A review. Arch. Biol. Sci., 2006, 58(1), 1-12.
[http://dx.doi.org/10.2298/ABS0601006P]
[141]
Zandawala, M. Calcitonin-like diuretic hormones in insects. Insect Biochem. Mol. Biol., 2012, 42(10), 816-825.
[http://dx.doi.org/10.1016/j.ibmb.2012.06.006] [PMID: 22820711]
[142]
Grimmelikhuijzen, C.J.P.; Cazzamali, G.; Williamson, M.; Schneider, M.; Hauser, F. Invertebrate Neurohormone GPCRS. In: Encyclopedia of Neuroscience; Springer: Berlin, Heidelberg, 2009; pp. 205-212.
[143]
Manière, G.; Vanhems, E.; Rondot, I.; Delbecque, J.P. Control of ovarian steroidogenesis in insects: A locust neurohormone is active in vitro on blowfly ovaries. Gen. Comp. Endocrinol., 2009, 163(3), 292-297.
[http://dx.doi.org/10.1016/j.ygcen.2009.04.034] [PMID: 19463823]
[144]
Veenstra, J.A. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen. Comp. Endocrinol., 2010, 167(1), 86-103.
[http://dx.doi.org/10.1016/j.ygcen.2010.02.010] [PMID: 20171220]
[145]
Veenstra, J.A. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen. Comp. Endocrinol., 2016, 229, 41-55.
[http://dx.doi.org/10.1016/j.ygcen.2015.11.019] [PMID: 26928473]
[146]
Picquot, M.; Proux, J. Biosynthesis and degradation of the arginine-vasopressin-like insect diuretic hormone, A neurohormone in the migratory locust. Regul. Pept., 1990, 31(3), 139-156.
[http://dx.doi.org/10.1016/0167-0115(90)90001-D] [PMID: 2091066]
[147]
Girardie, J.; Richard, O.; Girardie, A. Time-dependent variations in the activity of a novel ovary maturating neurohormone from the nervous corpora cardiaca during oögenesis in the locust, Locusta migratoria migratorioides. J. Insect Physiol., 1992, 38(3), 215-221.
[http://dx.doi.org/10.1016/0022-1910(92)90069-P]
[148]
Mendive, F.M.; Van Loy, T.; Claeysen, S.; Poels, J.; Williamson, M.; Hauser, F.; Grimmelikhuijzen, C.J.P.; Vassart, G.; Vanden Broeck, J. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett., 2005, 579(10), 2171-2176.
[http://dx.doi.org/10.1016/j.febslet.2005.03.006] [PMID: 15811337]
[149]
Grose, C.; Putman, Z.; Esposito, D. A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells. Protein Expr. Purif., 2021, 186, 105924.
[http://dx.doi.org/10.1016/j.pep.2021.105924] [PMID: 34087362]
[150]
Nakajima, Y.; Ogura, A. Genomics and effective trait candidates of edible insects. Food Biosci., 2022, 48, 101793.
[http://dx.doi.org/10.1016/j.fbio.2022.101793]
[151]
Fu, S.F.; Wang, D.H.; Xie, Z.; Zou, H.; Zheng, Y. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal. Sci. Total Environ., 2022, 830, 154654.
[http://dx.doi.org/10.1016/j.scitotenv.2022.154654] [PMID: 35307441]
[152]
Käßer, L.; Harnischfeger, J.; Salzig, D.; Czermak, P. The effect of different insect cell culture media on the efficiency of protein production by Spodoptera frugiperda cells. Electron. J. Biotechnol., 2022, 56, 54-64.
[http://dx.doi.org/10.1016/j.ejbt.2022.01.004]
[153]
Wang, L.; Ding, M.Y.; Wang, J.; Gao, J.G.; Liu, R.M.; Li, H.T. Effects of site-directed mutagenesis of Cysteine on the structure of Sip proteins. Front. Microbiol., 2022, 13, 805325.
[http://dx.doi.org/10.3389/fmicb.2022.805325] [PMID: 35572629]
[154]
Mabashi-Asazuma, H.; Jarvis, D.L. A new insect cell line engineered to produce recombinant glycoproteins with cleavable N-glycans. J. Biol. Chem., 2022, 298(1), 101454.
[http://dx.doi.org/10.1016/j.jbc.2021.101454] [PMID: 34838817]
[155]
Jerga, A.; Evdokimov, A.G.; Moshiri, F.; Haas, J.A.; Chen, M.; Clinton, W.; Fu, X.; Halls, C.; Jimenez-Juarez, N.; Kretzler, C.N.; Panosian, T.D.; Pleau, M.; Roberts, J.K.; Rydel, T.J.; Salvador, S.; Sequeira, R.; Wang, Y.; Zheng, M.; Baum, J.A. Disabled insecticidal proteins: A novel tool to understand differences in insect receptor utilization. Insect Biochem. Mol. Biol., 2019, 105, 79-88.
[http://dx.doi.org/10.1016/j.ibmb.2018.12.006] [PMID: 30605769]
[156]
Amezian, D.; Nauen, R.; Le Goff, G. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. Pestic. Biochem. Physiol., 2021, 174, 104822.
[http://dx.doi.org/10.1016/j.pestbp.2021.104822] [PMID: 33838715]
[157]
Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influence of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 2023, 9(2), 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[158]
Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 2023, 28(4), 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[159]
Shahrajabian, M.H.; Sun, W. Various techniques for molecular and rapid detection of infectious and epidemic diseases. Lett. Org. Chem., 2023, 20(9), 779-801.
[http://dx.doi.org/10.2174/1570178620666230331095720]
[160]
Shahrajabian, M.H.; Sun, W. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr. Pharm. Anal., 2023, 19(4), 267-281.
[http://dx.doi.org/10.2174/1573412919666230406100948]
[161]
Cui, H.; Shahrajabian, M.H.; Kuang, Y.; Zhang, H.Y.; Sun, W. Heterologous expression and function of cholesterol oxidase: A review. Protein Pept. Lett., 2023, 30(7), 531-540.
[http://dx.doi.org/10.2174/0929866530666230525162545] [PMID: 37231716]
[162]
Shahrajabian, M.H.; Sun, W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds, 2023, 2(3), 290-308.
[http://dx.doi.org/10.3390/seeds2030022]
[163]
Sun, W.; Shahrajabian, M.H.; Petropoulos, S.A.; Shahrajabian, N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 2023, 12(13), 2469.
[http://dx.doi.org/10.3390/plants12132469] [PMID: 37447031]
[164]
Shahrajabian, M.H.; Sun, W. Study of different types of fermentation in wine making process and considering aromatic substances and organic acid. Curr. Org. Synth., 2023, 20, 20.
[http://dx.doi.org/10.2174/1570179420666230803102253] [PMID: 37534487]
[165]
Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants, 2023, 12(17), 3101.
[http://dx.doi.org/10.3390/plants12173101] [PMID: 37687348]
[166]
Shahrajabian, M.H.; Sun, W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini Rev. Med. Chem., 2024, 24(4), 453-477.
[PMID: 37587815]
[167]
James, C. Global status of commercialized biotech? In: GM crops: 2010. ISAAA brief no.42 Ithaca; ISAAA: NY, 2010.
[168]
Cannon, R.J.C. Bacillus thuringiensis use in agriculture: A molecular perspective. Biol. Rev. Camb. Philos. Soc., 1996, 71(4), 561-636.
[http://dx.doi.org/10.1111/j.1469-185X.1996.tb01285.x]
[169]
Song, X.X.; Wang, S.M. Status and evaluation on the expression of cotton varieties in the production in China in the past 20 years. Mianhua Xuebao, 2000, 13, 315-320.
[170]
He, K.L.; Wang, Z.Y.; Zhang, Y.J. Monitoring Bt resistance in the field: China as a case study. Environmental impact of genetically modified crops; Ferry, N.; Gatehouse, A.M.R., Eds.; CAB International: Wallingford, UK, 2009, pp. 344-359.
[http://dx.doi.org/10.1079/9781845934095.0344]
[171]
Gatehouse, J.A. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol., 2002, 156(2), 145-169.
[http://dx.doi.org/10.1046/j.1469-8137.2002.00519.x] [PMID: 33873279]
[172]
Gatehouse, J.A. Biotechnological prospects for engineering insect-resistant plants. Plant Physiol., 2008, 146(3), 881-887.
[http://dx.doi.org/10.1104/pp.107.111096] [PMID: 18316644]
[173]
Christou, P.; Capell, T.; Kohli, A.; Gatehouse, J.A.; Gatehouse, A.M.R. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci., 2006, 11(6), 302-308.
[http://dx.doi.org/10.1016/j.tplants.2006.04.001] [PMID: 16690346]
[174]
Waltz, E. GM crops: Battlefield. Nature, 2009, 461(7260), 27-32.
[http://dx.doi.org/10.1038/461027a] [PMID: 19727179]
[175]
Mulligan, E.A.; Ferry, N.; Jouanin, L.; Walters, K.F.A.; Port, G.R.; Gatehouse, A.M.R. Comparing the impact of conventional pesticide and use of a transgenic pest‐resistant crop on the beneficial carabid beetle Pterostichus melanarius. Pest Manag. Sci., 2006, 62(10), 999-1012.
[http://dx.doi.org/10.1002/ps.1276] [PMID: 16906504]
[176]
Mulligan, E.A.; Ferry, N.; Jouanin, L.; Romeis, J.; Gatehouse, A.M.R. Characterization adult green lacewing (Chrysoperla carnea) digestive physiology: Comparison of the impact of genetically modified crops and conventional pest control. Pest Manag. Sci., 2010, 66, 325-336.
[http://dx.doi.org/10.1002/ps.1879] [PMID: 19924733]
[177]
Gatehouse, A.M.R.; Ferry, N.; Edwards, M.G.; Bell, H.A. Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1569), 1438-1452.
[http://dx.doi.org/10.1098/rstb.2010.0330] [PMID: 21444317]
[178]
Wang, G.; Dong, Y.; Liu, X.; Yao, G.; Yu, X.; Yang, M. The current status and development of insect-resistant genetically engineered poplar in China. Front. Plant Sci., 2018, 9, 1408.
[http://dx.doi.org/10.3389/fpls.2018.01408] [PMID: 30298085]
[179]
Wei, T.; Harris, L.; Newton, R.J. Plant biotechnology: A case study of Bacillus thuringiensis (Bt) and its application to the future of genetic engineered trees. J. For. Res., 2004, 15(1), 1-10.
[http://dx.doi.org/10.1007/BF02858002]
[180]
Tian, Y.C.; Han, Y.F.; Li, T.Y. Studies on insect-resistant transgenic (Populus nigra) plants. Chin. J. Biotechnol., 1993, 9, 291-297.
[181]
Tian, Y.C.; Zheng, J.B.; Yu, H.M.; Liang, H.Y.; Li, C.Q.; Wang, J.M. Studies of transgenic hybrid poplar 741 carrying two insect resistant genes. Acta Bot. Sin., 2000, 42, 263-268.
[182]
Quan, Y.; Wu, K. Managing practical resistance of lepidopteran pests to Bt cotton in China. Insects, 2023, 14(2), 179.
[http://dx.doi.org/10.3390/insects14020179] [PMID: 36835748]
[183]
Xiao, Z.; Yao, X.; Bai, S.; Wei, J.; An, S. Involvement of an enhanced immunity mechanism in the resistance to Bacillus thuringiensis in lepidopteran pests. Insects, 2023, 14(2), 151.
[http://dx.doi.org/10.3390/insects14020151] [PMID: 36835720]
[184]
Shahrajabian, M.H.; Sun, W. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett. Drug Des. Discov., 2024, 21(2), 209-225.
[http://dx.doi.org/10.2174/1570180819666220902115521]
[185]
Shahrajabian, M.H.; Kuang, Y.; Cui, H.; Fu, L.; Sun, W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr. Org. Chem., 2023, 27(9), 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]
[186]
Carrière, Y.; Tabashnik, B.E. Fitness costs and incomplete resistance associated with delayed evolution of practical resistance to Bt crops. Insects, 2023, 14(3), 214.
[http://dx.doi.org/10.3390/insects14030214] [PMID: 36975899]
[187]
Fabrick, J.A.; Li, X.; Carrière, Y.; Tabashnik, B.E. Molecular genetics basis of lab- and field-selected Bt resistance in pink bollworm. Insects, 2023, 14(2), 201.
[http://dx.doi.org/10.3390/insects14020201] [PMID: 36835770]
[188]
Yu, W.; Head, G.P.; Huang, F. Inheritance of Resistance to Cry1A.105 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae). Insects, 2022, 13(10), 875.
[http://dx.doi.org/10.3390/insects13100875] [PMID: 36292823]
[189]
Dively, G.P.; Kuhar, T.P.; Taylor, S.V.; Doughty, H.; Holmstrom, K.; Gilrein, D.O.; Nault, B.A.; Ingerson-Mahar, J.; Huseth, A.; Reisig, D.; Fleischer, S.; Owens, D.; Tilmon, K.; Reay-Jones, F.; Porter, P.; Smith, J.; Saguez, J.; Wells, J.; Congdon, C.; Byker, H.; Jensen, B.; DiFonzo, C.; Hutchison, W.D.; Burkness, E.; Wright, R.; Crossley, M.; Darby, H.; Bilbo, T.; Seiter, N.; Krupke, C.; Abel, C.; Coates, B.S.; McManus, B.; Fuller, B.; Bradshaw, J.; Peterson, J.A.; Buntin, D.; Paula-Moraes, S.; Kesheimer, K.; Crow, W.; Gore, J.; Huang, F.; Ludwick, D.C.; Raudenbush, A.; Jimenez, S.; Carrière, Y.; Elkner, T.; Hamby, K. Extended sentinel monitoring of Helicoverpa zea resistance to Cry and Vip3Aa toxins in Bt sweet corn: Assessing changes in phenotypic and allele frequencies of resistance. Insects, 2023, 14(7), 577.
[http://dx.doi.org/10.3390/insects14070577] [PMID: 37504584]
[190]
Huang, K.; He, H.; Wang, S.; Zhang, M.; Chen, X.; Deng, Z.; Ni, X.; Li, X. Sequential and simultaneous interactions of plant allelochemical flavone, Bt toxin Vip3A, and insecticide emamectin benzoate in Spodoptera frugiperda. Insects, 2023, 14(9), 736.
[http://dx.doi.org/10.3390/insects14090736] [PMID: 37754704]
[191]
Montezano, D.G.; Hunt, T.E.; Colombo da Luz, P.M.; Karnik, K.; Kachman, S.D.; Vélez, A.M.; Peterson, J.A. Movement of Striacosta albicosta (Smith) (lepidoptera: Noctuidae) larvae on transgenic Bt and non-Bt maize. Insects, 2023, 14(6), 524.
[http://dx.doi.org/10.3390/insects14060524] [PMID: 37367340]
[192]
Yates-Stewart, A.D.; Yorke, B.T.; Willse, A.; Fridley, J.; Head, G.P. Using sentinel plots to monitor for changes in thrips susceptibility to MON 88702 cotton containing the Cry51Aa2.834_16 Bt protein. Insects, 2023, 14(6), 497.
[http://dx.doi.org/10.3390/insects14060497] [PMID: 37367313]
[193]
Shahrajabian, M.H.; Sun, W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett. Drug Des. Discov., 2023, 20(2), 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[194]
Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 2023, 9(2), 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[195]
Shahrajabian, M.H.; Sun, W. Potential roles of longan as a natural remedy with tremendous nutraceutical values. Curr. Nutr. Food Sci., 2023, 19(9), 888-895.
[http://dx.doi.org/10.2174/1573401319666230221111242]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy