Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Improving Photocleavage Efficiency of Photocleavable Protein for Antimicrobial Peptide Histatin 1 Expression

Author(s): Nana Zhou, Tai An, Yuan Zhang, Guomiao Zhao, Chao Wei, Xuemei Shen, Fan Li and Xiaoyan Wang*

Volume 31, Issue 2, 2024

Published on: 12 January, 2024

Page: [141 - 152] Pages: 12

DOI: 10.2174/0109298665276722231212053009

Price: $65

conference banner
Abstract

Background: Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue.

Objectives: To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3

Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in Escherichia coli expression system.

Results: Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of β -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system.

Conclusion: Antimicrobial peptides Histatin 1, β -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the Escherichia coli expression system.

Graphical Abstract

[1]
Chatterjee, A.; Modarai, M.; Naylor, N.R.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J.V. Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Infect. Dis., 2018, 18(12), e368-e378.
[http://dx.doi.org/10.1016/S1473-3099(18)30296-2] [PMID: 30172580]
[2]
Barton, M.D.; Hart, W.S. Public health risks: Antibiotic resistance - review -. Asian-Australas. J. Anim. Sci., 2001, 14(3), 414-422.
[http://dx.doi.org/10.5713/ajas.2001.414]
[3]
Ventola, C L The antibiotic resistance crisis: Part 1: Causes and threats P & T: A Peer Reviewed Journal for Formulary Management, 2015, 40(4), 277-283.
[4]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[5]
Carmeli, Y. Strategies for managing today’s infections. Clin. Microbiol. Infect., 2008, 14(s3)(Suppl. 3), 22-31.
[http://dx.doi.org/10.1111/j.1469-0691.2008.01957.x] [PMID: 18318876]
[6]
Randhawa, G.; Sharma, R. Chemotherapeutic potential of cow urine: A review. J. Intercult. Ethnopharmacol., 2015, 4(2), 180-186.
[http://dx.doi.org/10.5455/jice.20150222100320] [PMID: 26401404]
[7]
Pacheco, T.; Bustos, R.H.; González, D.; Garzón, V.; García, J.C.; Ramírez, D. An approach to measuring colistin plasma levels regarding the treatment of multidrug-resistant bacterial infection. Antibiotics, 2019, 8(3), 100.
[http://dx.doi.org/10.3390/antibiotics8030100] [PMID: 31344885]
[8]
Eltai, N.O.; Al Thani, A.A.; Al Hadidi, S.H.; Al Ansari, K.; Yassine, H.M. Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol., 2020, 20(1), 54.
[http://dx.doi.org/10.1186/s12866-020-01732-8] [PMID: 32143566]
[9]
Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics, 2021, 10(9), 1095.
[http://dx.doi.org/10.3390/antibiotics10091095] [PMID: 34572678]
[10]
Zhang, R.; Xu, L.; Dong, C. Antimicrobial peptides: An overview of their structure, function and mechanism of action. Protein Pept. Lett., 2022, 29(8), 641-650.
[http://dx.doi.org/10.2174/0929866529666220613102145] [PMID: 35702771]
[11]
Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol., 2022, 132(3), 1573-1596.
[http://dx.doi.org/10.1111/jam.15314] [PMID: 34606679]
[12]
Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv. Drug Deliv. Rev., 2021, 175, 113818.
[http://dx.doi.org/10.1016/j.addr.2021.05.028] [PMID: 34090965]
[13]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol., 2017, 55(1), 1-12.
[http://dx.doi.org/10.1007/s12275-017-6452-1] [PMID: 28035594]
[14]
Annunziato, G.; Costantino, G. Antimicrobial peptides (AMPs): A patent review (2015–2020). Expert Opin. Ther. Pat., 2020, 30(12), 931-947.
[http://dx.doi.org/10.1080/13543776.2020.1851679] [PMID: 33187458]
[15]
Divyashree, M.; Mani, M.K.; Reddy, D.; Kumavath, R.; Ghosh, P.; Azevedo, V.; Barh, D. Clinical applications of antimicrobial peptides (AMPs): Where do we stand now? Protein Pept. Lett., 2020, 27(2), 120-134.
[http://dx.doi.org/10.2174/0929866526666190925152957] [PMID: 31553285]
[16]
Powell, W.A.; Maynard, C.A. Antimicrobial peptides. In: Food Preservation and Safety of Natural Products; , 2022; pp. 175-189.
[17]
Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[18]
Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[19]
Lee, J.; Lee, D.G. Antimicrobial peptides (AMPs) with dual mechanisms: Membrane disruption and apoptosis. J. Microbiol. Biotechnol., 2015, 25(6), 759-764.
[http://dx.doi.org/10.4014/jmb.1411.11058] [PMID: 25537721]
[20]
Park, Y.; Hahm, K.S. Antimicrobial peptides (AMPs): Peptide structure and mode of action. J. Biochem. Mol. Biol., 2005, 38(5), 507-516.
[PMID: 16202228]
[21]
Bechinger, B.; Gorr, S.U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[22]
Thankappan, B.; Jeyarajan, S.; Hiroaki, S.; Anbarasu, K.; Natarajaseenivasan, K.; Fujii, N. Antimicrobial and antibiofilm activity of designed and synthesized antimicrobial peptide, KABT-AMP. Appl. Biochem. Biotechnol., 2013, 170(5), 1184-1193.
[http://dx.doi.org/10.1007/s12010-013-0258-3] [PMID: 23649308]
[23]
Chou, H.T.; Kuo, T.Y.; Chiang, J.C.; Pei, M.J.; Yang, W.T.; Yu, H.C.; Lin, S.B.; Chen, W.J. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int. J. Antimicrob. Agents, 2008, 32(2), 130-138.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.04.003] [PMID: 18586467]
[24]
Lianbin, L.I.; Chen, X. Research progress of antimicrobial peptides expression in Bacillus subtilis. China Feed, 2015, 20, 11-17.
[25]
Ajingi, Y.S.; Rukying, N.; Aroonsri, A.; Jongruja, N. Recombinant active peptides and their therapeutic functions. Curr. Pharm. Biotechnol., 2022, 23(5), 645-663.
[http://dx.doi.org/10.2174/1389201022666210702123934] [PMID: 34225618]
[26]
Li, M.; Lu, W.; Sun, Y.; Dong, C. Antimicrobial peptides: Sources, expression systems, and applications. Curr. Protein Pept. Sci., 2023, 24(8), 640-654.
[http://dx.doi.org/10.2174/1389203724666230727101636] [PMID: 37497701]
[27]
Feng, X.; Liu, C.; Guo, J.; Song, X.; Li, J.; Xu, W.; Li, Z. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Appl. Microbiol. Biotechnol., 2012, 95(5), 1191-1198.
[http://dx.doi.org/10.1007/s00253-011-3816-z] [PMID: 22189867]
[28]
Sampaio de Oliveira, K.B.; Leite, M.L.; Rodrigues, G.R.; Duque, H.M.; da Costa, R.A.; Cunha, V.A.; de Loiola Costa, L.S.; da Cunha, N.B.; Franco, O.L.; Dias, S.C. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev. Clin. Pharmacol., 2020, 13(4), 367-390.
[http://dx.doi.org/10.1080/17512433.2020.1764347] [PMID: 32357080]
[29]
Sakhel; Jayanthi, Beatrice; Muhoza, Srinivas Simplification of the purification of heat stable recombinant low molecular weight proteins and peptides from GST-fusion products. J Chromatogr B., 2021, 1172(1), 122627.
[30]
Malesevic, M.; Gardijan, L.; Miljkovic, M.; O’Connor, P.M.; Mirkovic, N.; Jovcic, B.; Cotter, P.D.; Jovanovic, G.; Kojic, M. Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. Lett. Appl. Microbiol., 2023, 76(2), ovad004.
[http://dx.doi.org/10.1093/lambio/ovad004] [PMID: 36695436]
[31]
Ingham, A.B.; Moore, R.J. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem., 2007, 47(1), 1-9.
[http://dx.doi.org/10.1042/BA20060207] [PMID: 17432953]
[32]
Simon, M.D.; Pentelute, B.L.; Adamo, A. Solid phase peptide synthesis processes and associated systems. US2021188899A1, 2021.
[33]
Erdem Büyükkiraz, M.; Kesmen, Z. Recombinant expression and coexpression of oyster defensin and proline-rich peptide in Komagataella phaffii. Biotechnol. Appl. Biochem., 2022, 69(5), 1998-2007.
[http://dx.doi.org/10.1002/bab.2262] [PMID: 34586650]
[34]
Arias, M.; Hoffarth, E.R.; Ishida, H.; Aramini, J.M.; Vogel, H.J. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Biochim. Biophys. Acta Biomembr., 2016, 1858(5), 1012-1023.
[http://dx.doi.org/10.1016/j.bbamem.2015.12.023] [PMID: 26724205]
[35]
Lamer, T.; van Belkum, M.J.; Vederas, J.C. Methods for recombinant production and purification of peptides as sumo-peptide-intein fusion proteins to protect from degradation. Curr. Protoc., 2022, 2(10), e571.
[http://dx.doi.org/10.1002/cpz1.571] [PMID: 36222539]
[36]
Luan, C.; Xie, Y.G.; Pu, Y.T.; Zhang, H.W.; Han, F.F.; Feng, J.; Wang, Y.Z. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can. J. Microbiol., 2014, 60(3), 113-120.
[http://dx.doi.org/10.1139/cjm-2013-0652] [PMID: 24588384]
[37]
Li, Y. Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin–SUMO dual fusion system. Protein Expr. Purif., 2013, 87(2), 72-78.
[http://dx.doi.org/10.1016/j.pep.2012.10.008] [PMID: 23142587]
[38]
Chen, X.; Shi, J.; Chen, R.; Wen, Y.; Shi, Y.; Zhu, Z.; Guo, S.; Li, L. Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol. Appl. Biochem., 2015, 62(5), 606-614.
[http://dx.doi.org/10.1002/bab.1303] [PMID: 25311837]
[39]
Satei, P.; Ghaznavi-Rad, E.; Fahimirad, S.; Abtahi, H. Recombinant production of Trx-Ib-AMP4 and Trx-E50-52 antimicrobial peptides and antimicrobial synergistic assessment on the treatment of methicillin-resistant Staphylococcus aureus under in vitro and in vivo situations. Protein Expr. Purif., 2021, 188, 105949.
[http://dx.doi.org/10.1016/j.pep.2021.105949] [PMID: 34324967]
[40]
Cheng, X.; Lu, W.; Zhang, S.; Cao, P. Expression and purification of antimicrobial peptide CM4 by Npro fusion technology in E. coli. Amino Acids, 2010, 39(5), 1545-1552.
[http://dx.doi.org/10.1007/s00726-010-0625-0] [PMID: 20512388]
[41]
Lee, J.H.; Kim, J.H.; Hwang, S.W.; Lee, W.J.; Yoon, H.K.; Lee, H.S.; Hong, S.S. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem. Biophys. Res. Commun., 2000, 277(3), 575-580.
[http://dx.doi.org/10.1006/bbrc.2000.3712] [PMID: 11061996]
[42]
Gardijan, L.; Miljkovic, M.; Obradovic, M.; Borovic, B.; Vukotic, G.; Jovanovic, G.; Kojic, M. Redesigned pMAL expression vector for easy and fast purification of active native antimicrobial peptides. J. Appl. Microbiol., 2022, 133(2), 1001-1013.
[http://dx.doi.org/10.1111/jam.15623] [PMID: 35578999]
[43]
Walther, C.; Mayer, S.; Jungbauer, A.; Dürauer, A. Getting ready for PAT: Scale up and inline monitoring of protein refolding of Npro fusion proteins. Process Biochem., 2014, 49(7), 1113-1121.
[http://dx.doi.org/10.1016/j.procbio.2014.03.022]
[44]
Williams, S.C.P.; Deisseroth, K. Optogenetics. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16287-16287.
[http://dx.doi.org/10.1073/pnas.1317033110] [PMID: 24106299]
[45]
Shirai, F.; Hayashi-Takagi, A. Optogenetics: Applications in psychiatric research. Psychiatry Clin. Neurosci., 2017, 71(6), 363-372.
[http://dx.doi.org/10.1111/pcn.12516] [PMID: 28233379]
[46]
Lu, X.; Shen, Y.; Campbell, R.E. Engineering photosensory modules of non-opsin-based optogenetic actuators. Int. J. Mol. Sci., 2020, 21(18), 6522.
[http://dx.doi.org/10.3390/ijms21186522] [PMID: 32906617]
[47]
Shadish, J.A.; Strange, A.C.; DeForest, C.A. Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J. Am. Chem. Soc., 2019, 141(39), 15619-15625.
[http://dx.doi.org/10.1021/jacs.9b07239] [PMID: 31525979]
[48]
Xing, Y.; Zeng, B.; Yang, W. Light responsive hydrogels for controlled drug delivery. Front. Bioeng. Biotechnol., 2022, 10, 1075670.
[http://dx.doi.org/10.3389/fbioe.2022.1075670] [PMID: 36588951]
[49]
Weissenberger, S.; Schultheis, C.; Liewald, J.F.; Erbguth, K.; Nagel, G.; Gottschalk, A. PACα- an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J. Neurochem., 2011, 116(4), 616-625.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07148.x] [PMID: 21166803]
[50]
Wu, Y.I.; Frey, D.; Lungu, O.I.; Jaehrig, A.; Schlichting, I.; Kuhlman, B.; Hahn, K.M. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature, 2009, 461(7260), 104-108.
[http://dx.doi.org/10.1038/nature08241] [PMID: 19693014]
[51]
Friedman, J.M. How the discovery of microbial opsins led to the development of optogenetics. Cell, 2021, 184(22), 5687-5689.
[http://dx.doi.org/10.1016/j.cell.2021.10.008] [PMID: 34715024]
[52]
Strickland, D.; Lin, Y.; Wagner, E.; Hope, C.M.; Zayner, J.; Antoniou, C.; Sosnick, T.R.; Weiss, E.L.; Glotzer, M. TULIPs: Ttunable, light-controlled interacting protein tags for cell biology. Nat. Methods, 2012, 9(4), 379-384.
[http://dx.doi.org/10.1038/nmeth.1904] [PMID: 22388287]
[53]
Fan, L.; Zhou, X.X.; Chavarha, M.; Lin, M.Z. Improving optical control of protein activity by light-induced fluorescent protein dissociation. Biophys. J., 2014, 106(2), 382a.
[http://dx.doi.org/10.1016/j.bpj.2013.11.2162]
[54]
Zhang, W.; Lohman, A.W.; Zhuravlova, Y.; Lu, X.; Wiens, M.D.; Hoi, H.; Yaganoglu, S.; Mohr, M.A.; Kitova, E.N.; Klassen, J.S.; Pantazis, P.; Thompson, R.J.; Campbell, R.E. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods, 2017, 14(4), 391-394.
[http://dx.doi.org/10.1038/nmeth.4222] [PMID: 28288123]
[55]
Floyd, N.; Oldham, N.J.; Eyles, C.J.; Taylor, S.; Filatov, D.A.; Brouard, M.; Davis, B.G. Photoinduced, family-specific, site-selective cleavage of TIM-barrel proteins. J. Am. Chem. Soc., 2009, 131(35), 12518-12519.
[http://dx.doi.org/10.1021/ja9026105] [PMID: 19722713]
[56]
Mizuno, H.; Mal, T.K.; Tong, K.I.; Ando, R.; Furuta, T.; Ikura, M.; Miyawaki, A. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell, 2003, 12(4), 1051-1058.
[http://dx.doi.org/10.1016/S1097-2765(03)00393-9] [PMID: 14580354]
[57]
Kumar, C.V.; Buranaprapuk, A.; Opiteck, G.J.; Moyer, M.B.; Jockusch, S.; Turro, N.J. Photochemical protease: Site-specific photocleavage of hen egg lysozyme and bovine serum albumin. Proc. Natl. Acad. Sci. USA, 1998, 95(18), 10361-10366.
[http://dx.doi.org/10.1073/pnas.95.18.10361] [PMID: 9724708]
[58]
Xiang, D.; Wu, X.; Cao, W.; Xue, B.; Qin, M.; Cao, Y.; Wang, W. Hydrogels with tunable mechanical properties based on photocleavable proteins. Front Chem., 2020, 8, 7.
[http://dx.doi.org/10.3389/fchem.2020.00007] [PMID: 32047736]
[59]
Mohr, M.A.; Argast, P.; Pantazis, P. Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins. Nat. Protoc., 2016, 11(12), 2419-2431.
[http://dx.doi.org/10.1038/nprot.2016.134] [PMID: 27809312]
[60]
Zhang, B.; Wang, Y.; Huang, S.; Sun, J.; Wang, M.; Ma, W.; You, Y.; Wu, L.; Hu, J.; Song, W.; Liu, X.; Li, S.; Chen, H.; Zhang, G.; Zhang, L.; Zhou, D.; Li, L.; Zhang, X. Photoswitchable CAR-T cell function in vitro and in vivo via a cleavable mediator. Cell Chem. Biol., 2021, 28(1), 60-69.e7.
[http://dx.doi.org/10.1016/j.chembiol.2020.10.004] [PMID: 33113407]
[61]
Brown, W.; Albright, S.; Tsang, M.; Deiters, A. Optogenetic protein cleavage in zebrafish embryos**. ChemBioChem, 2022, 23(23), e202200297.
[http://dx.doi.org/10.1002/cbic.202200297] [PMID: 36196665]
[62]
Wongpanuwich, W.; Yodsanga, S.; Chaisuparat, R.; Amornphimoltham, P. Association between PD-L1 and Histatin1, 3 expression in advanced head and neck squamous cell carcinoma. Anticancer Res., 2022, 42(5), 2689-2699.
[http://dx.doi.org/10.21873/anticanres.15747] [PMID: 35489730]
[63]
Wu, A.; Pathak, J.L.; Li, X.; Cao, W.; Zhong, W.; Zhu, M.; Wu, Q.; Chen, W.; Han, Q.; Jiang, S.; Hei, Y.; Zhang, Z.; Wu, G.; Zhang, Q. Human salivary Histatin-1 attenuates osteoarthritis through promoting M1/M2 macrophage transition. Pharmaceutics, 2023, 15(4), 1272.
[http://dx.doi.org/10.3390/pharmaceutics15041272] [PMID: 37111757]
[64]
Wu, C.L.; Chih, Y.H.; Hsieh, H.Y.; Peng, K.L.; Lee, Y.Z.; Yip, B.S.; Sue, S.C.; Cheng, J.W. High level expression and purification of cecropin-like antimicrobial peptides in Escherichia coli. Biomedicines, 2022, 10(6), 1351.
[http://dx.doi.org/10.3390/biomedicines10061351] [PMID: 35740373]
[65]
Bobek, L.A.; Tsai, H.; Levine, M.J. Expression of human salivary histatin and cystatin/histatin chimeric cDNAs in Escherichia coli. Crit. Rev. Oral Biol. Med., 1993, 4(3), 581-590.
[http://dx.doi.org/10.1177/10454411930040034501] [PMID: 8374011]
[66]
Pritchard, L.; Corne, D.; Kell, D.; Rowland, J.; Winson, M. A general model of error-prone PCR. J. Theor. Biol., 2005, 234(4), 497-509.
[http://dx.doi.org/10.1016/j.jtbi.2004.12.005] [PMID: 15808871]
[67]
Hu, D.; Tateno, H.; Hirabayashi, J. Directed evolution of lectins by an improved error-prone PCR and ribosome display method. Methods Mol. Biol., 2014, 1200, 527-538.
[http://dx.doi.org/10.1007/978-1-4939-1292-6_43] [PMID: 25117262]
[68]
Guzman, L.M.; Belin, D.; Carson, M.J.; Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol., 1995, 177(14), 4121-4130.
[http://dx.doi.org/10.1128/jb.177.14.4121-4130.1995] [PMID: 7608087]
[69]
Celińska, E.; Ledesma-Amaro, R.; Larroude, M.; Rossignol, T.; Pauthenier, C.; Nicaud, J.M. Golden gate assembly system dedicated to complex pathway manipulation in yarrowia lipolytica. Microb. Biotechnol., 2017, 10(2), 450-455.
[http://dx.doi.org/10.1111/1751-7915.12605] [PMID: 28217858]
[70]
Baker, C M; Atzori, A . AlphaFold: Deep learning, drug discovery and the protein structure revolution Chimia: Chemie report, 2022, 76(4), 364-366.
[71]
Rajalakshmi, S.; Velvizhi, S.; Maharajan, A. Ligand docking and binding site analysis with pymol and autodock in elimination of lymphatic filariasis. IJCR, 2013, 5(11), 3393-3399.
[72]
Eckert, K.A.; Kunkel, T.A. DNA polymerase fidelity and the polymerase chain reaction. Genome Res., 1991, 1(1), 17-24.
[http://dx.doi.org/10.1101/gr.1.1.17] [PMID: 1842916]
[73]
Kowalczykowski, S.C.; Dixon, D.A.; Eggleston, A.K.; Lauder, S.D.; Rehrauer, W.M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev., 1994, 58(3), 401-465.
[http://dx.doi.org/10.1128/mr.58.3.401-465.1994] [PMID: 7968921]
[74]
Froger, A.; Hall, J.E. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp., 2007, (6), 253.
[PMID: 18997900]
[75]
Winters, D.; Tran, M.; Yoo, D.; Walker, K.W. Development of BioRad NGC and GE ÄKTA pure systems for highly automated three column protein purification employing tandem affinity, buffer exchange and size exclusion chromatography. Protein Expr. Purif., 2020, 165, 105497.
[http://dx.doi.org/10.1016/j.pep.2019.105497] [PMID: 31499166]
[76]
Laemmli, U.K.; Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[77]
Matsumoto, H.; Haniu, H.; Komori, N. Determination of protein molecular weights on SDS-PAGE. Methods Mol. Biol., 2019, 1855, 101-105.
[http://dx.doi.org/10.1007/978-1-4939-8793-1_10] [PMID: 30426411]
[78]
Brunelle, J.L.; Green, R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol., 2014, 541, 151-159.
[http://dx.doi.org/10.1016/B978-0-12-420119-4.00012-4] [PMID: 24674069]
[79]
Du, N.; Laing, M. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of crude extracted insecticidal crystal proteins of Bacillus thuringiensis and Brevibacillus laterosporus. Afr. J. Biotechnol., 2011, 10(66), 15094-15099.
[80]
Josic, D.; Kovac, S. Reversed-phase high performance liquid chromatography of proteins. Curr Protoc Protein Sci.,, 2010.
[http://dx.doi.org/10.1002/0471140864.ps0807s61]
[81]
EUCAST Version 11.0. 2021. Available from: https://eucast.org/
[82]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[83]
Sharma, M.; Bassi, H.; Chauhan, P.; Thakur, P.; Chauhan, A.; Kumar, R.; Kollarigowda, R.H.; Thakur, N.K. Inhibition of the bacterial growth as a consequence of synergism of Ag and ZnO: Calendula officinalis mediated green approach for nanoparticles and impact of altitude. Inorg. Chem. Commun., 2022, 136, 109131.
[http://dx.doi.org/10.1016/j.inoche.2021.109131]
[84]
Hong, E.; Lee, H.M.; Ko, H.; Kim, D.U.; Jeon, B.Y.; Jung, J.; Shin, J.; Lee, S.A.; Kim, Y.; Jeon, Y.H.; Cheong, C.; Cho, H.S.; Lee, W. Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J. Biol. Chem., 2007, 282(28), 20667-20675.
[http://dx.doi.org/10.1074/jbc.M609104200] [PMID: 17491010]
[85]
Pollock, J.J.; Denepitiya, L.; MacKay, B.J. Iacono: Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides. Infect. Immun., 1984, 44, 702-707.
[http://dx.doi.org/10.1128/iai.44.3.702-707.1984] [PMID: 6373615]
[86]
Oppenheim, F.G.; Xu, T.; McMillian, F.M.; Levitz, S.M.; Diamond, R.D.; Offner, G.D.; Troxler, R.F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem., 1988, 263(16), 7472-7477.
[http://dx.doi.org/10.1016/S0021-9258(18)68522-9] [PMID: 3286634]
[87]
Meiyalaghan, S.; Latimer, J.M.; Kralicek, A.V.; Shaw, M.L.; Lewis, J.G.; Conner, A.J.; Barrell, P.J. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res. Notes, 2014, 7(1), 777.
[http://dx.doi.org/10.1186/1756-0500-7-777] [PMID: 25367168]
[88]
Driscoll, J.; Zuo, Y.; Xu, T.; Choi, J.R.; Troxler, R.F.; Oppenheim, E.G. Functional comparison of native and recombinant human salivary histatin 1. J. Dent. Res., 1995, 74(12), 1837-1844.
[http://dx.doi.org/10.1177/00220345950740120601] [PMID: 8600179]
[89]
Arora, S.; Saxena, V.; Ayyar, B.V. Affinity chromatography: A versatile technique for antibody purification. Methods, 2017, 116, 84-94.
[http://dx.doi.org/10.1016/j.ymeth.2016.12.010] [PMID: 28012937]
[90]
Cui, T.; Gao, Y.; Ang, C.; Puah, C.; Gutte, B.; Lam, Y. Hydrogen peroxide enhances enterokinase-catalysed proteolytic cleavage of fusion protein. Recent Pat. Biotechnol., 2008, 2(3), 188-190.
[http://dx.doi.org/10.2174/187220808786240971] [PMID: 19075866]
[91]
Lin, Z.; Zhao, Q.; Zhou, B.; Xing, L.; Xu, W. Cleavable self-aggregating tags (cSAT) for protein expression and purification. Methods Mol. Biol., 2015, 1258, 65-78.
[http://dx.doi.org/10.1007/978-1-4939-2205-5_4] [PMID: 25447859]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy