Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Letter Article

Can Glycerol Carbonate be Synthesized Without a Catalyst?

Author(s): Sanjib Kumar Karmee*

Volume 21, Issue 7, 2024

Published on: 11 January, 2024

Page: [563 - 567] Pages: 5

DOI: 10.2174/0115701786280075231211094705

Price: $65

conference banner
Abstract

Biodiesel and oleo-chemical industries have been producing huge quantities of glycerol as a by-product. Value-added products can be synthesized from glycerol through different chemical and enzymatic reactions, such as oxidation, carbonylation, reforming, acetalyzation, etherification, dehydration, hydrogenolysis, hydrolysis, esterification, and transesterification. Glycerol is a low-cost polyol that can be converted into glycerol carbonate, which has potential applications in polymer and biobased non-isocyanate polyurethanes industries (Bio-NIPUs). The present contribution is the first of its kind to report on the synthesis of glycerol carbonate via catalyst and solvent-free transesterification of glycerol with dimethyl carbonate under conventional as well as microwave heating. Additionally, a comparative study of conventional and microwave-assisted transesterification was performed. Under conventional heating, 78% glycerol carbonate is obtained at 120oC in 36 hours, whereas, using microwaves, 92% of glycerol carbonate can be achieved in 30 minutes. Presently, biomass-based heterogeneous materials are used in catalysis due to their importance within the context of sustainability. In line with this, in this work, a series of green catalysts, namely, molecular sieves (MS, 4Å), Hβ- Zeolite, Montmorillonite K-10 clay, activated carbon prepared from the shell of groundnut (Arachis hypogaea), and biochar from sawdust pyrolysis were successfully employed. Glycerol carbonate was thoroughly characterized by 1H and 13C NMR, FT-IR and MS. The method described here is facile and green since the utilization of bioresource (glycerol) for the production of glycerol carbonate is performed under microwave.

Next »
Graphical Abstract

[1]
Gade, S.M.; Saptal, V.B.; Bhanage, B.M. Catal. Commun., 2022, 172, 106542.
[http://dx.doi.org/10.1016/j.catcom.2022.106542]
[2]
Sahani, S.; Upadhyay, S.N.; Sharma, Y.C. Ind. Eng. Chem. Res., 2021, 60(1), 67-88.
[http://dx.doi.org/10.1021/acs.iecr.0c05011]
[3]
Yang, F.; Hanna, M.A.; Sun, R. Biotechnol. Biofuels, 2012, 5(1), 13.
[http://dx.doi.org/10.1186/1754-6834-5-13] [PMID: 22413907]
[4]
Kerr, B.J.; Dozier, W.A.; Bregendahl, K. Proceedings of the 23rd Annual Carolina Swine Nutrition Conference; Raleigh, NC2007, pp. 6-18.
[5]
Karmee, S.K. Biocatal. Biotransform., 2023, 1-22.
[http://dx.doi.org/10.1080/10242422.2023.2232914]
[6]
Kaur, J.; Sarma, A.K.; Jha, M.K.; Gera, P. Biotechnol. Rep., 2020, 27, e00487.
[http://dx.doi.org/10.1016/j.btre.2020.e00487]
[7]
Lukato, S.; Kasozi, G.N.; Naziriwo, B.; Tebandeke, E. Curr. Res. Green Sustain. Chem., 2021, 4, 100199.
[http://dx.doi.org/10.1016/j.crgsc.2021.100199]
[8]
Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Ramírez-López, C.; Belsué, M. Org. Process Res. Dev., 2012, 16(3), 389-399.
[http://dx.doi.org/10.1021/op200369v]
[9]
Zhou, C.H.C.; Beltramini, J.N.; Fan, Y.X.; Lu, G.Q.M. Chem. Soc. Rev., 2008, 37(3), 527-549.
[http://dx.doi.org/10.1039/B707343G] [PMID: 18224262]
[10]
Sonnati, M.O.; Amigoni, S.; Taffin de Givenchy, E.P.; Darmanin, T.; Choulet, O.; Guittard, F. Green Chem., 2013, 15(2), 283-306.
[http://dx.doi.org/10.1039/C2GC36525A]
[11]
Annunziata, L.; Diallo, A.K.; Fouquay, S.; Michaud, G.; Simon, F.; Brusson, J.M.; Carpentier, J.F.; Guillaume, S.M. Green Chem., 2014, 16(4), 1947-1956.
[http://dx.doi.org/10.1039/C3GC41821A]
[12]
Procopio, D.; Di Gioia, M.L. Catalysts, 2022, 12(1), 50.
[http://dx.doi.org/10.3390/catal12010050]
[13]
Ji, Y. Catalysts, 2019, 9(7), 581.
[http://dx.doi.org/10.3390/catal9070581]
[14]
de Caro, P.; Bandres, M.; Urrutigoïty, M.; Cecutti, C.; Thiebaud-Roux, S. Front Chem., 2019, 7, 308.
[http://dx.doi.org/10.3389/fchem.2019.00308] [PMID: 31179264]
[15]
Indran, V.P.; Syuhada Zuhaimi, N.A.; Deraman, M.A.; Maniam, G.P.; Yusoff, M.M.; Yun Hin, T.Y.; Mohd, M.H. RSC Advances, 2014, 4, 25257-25267.
[http://dx.doi.org/10.1039/C4RA02910K]
[16]
Shikhaliyev, K.; Okoye, P.U.; Hameed, B.H. Energy Convers. Manage., 2018, 165, 794-800.
[http://dx.doi.org/10.1016/j.enconman.2018.04.001]
[17]
Prakruthi, H.R.; Jai Prakash, B.S.; Bhat, Y.S. 2015, 408, 215-220.
[http://dx.doi.org/10.1016/j.molcata.2015.07.036]
[18]
Granados-Reyes, J.; Salagre, P.; Cesteros, Y. Appl. Clay Sci., 2018, 156, 110-115.
[http://dx.doi.org/10.1016/j.clay.2018.01.025]
[19]
Teng, W.K.; Ngoh, G.C.; Yusoff, R.; Aroua, M.K. Chem. Eng. J., 2016, 284, 469-477.
[http://dx.doi.org/10.1016/j.cej.2015.08.108]
[20]
Li, S.; Okoye, P.U.; Wang, S.; Tian, C.; Xu, L. Energy Convers. Manage., 2018, 164, 543-551.
[http://dx.doi.org/10.1016/j.enconman.2018.03.021]
[21]
Changmai, B.; Laskar, I.B.; Rokhum, S.L. J. Taiwan Inst. Chem. Eng., 2019, 102, 276-282.
[http://dx.doi.org/10.1016/j.jtice.2019.06.014]
[22]
Das, A.; Shi, D.; Halder, G.; Lalthazuala Rokhum, S. Fuel, 2022, 330, 125511.
[http://dx.doi.org/10.1016/j.fuel.2022.125511]
[23]
Pyo, S.H.; Hatti-Kaul, R. Adv. Synth. Catal., 2016, 358(5), 834-839.
[http://dx.doi.org/10.1002/adsc.201500654]
[24]
Kumari, G.; Soni, B.; Karmee, S.K.J. Inst. Eng. India Ser. E., 2022, 103(1), 15-22.
[http://dx.doi.org/10.1007/s40034-020-00176-z]
[25]
Soni, B.; Karmee, S.K. Fuel, 2020, 271, 117570.
[http://dx.doi.org/10.1016/j.fuel.2020.117570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy