Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Valorization of Corn Steep Liquor for Improved Value-added Products: A Review

Author(s): Abiola Ezekiel Taiwo* and Paul Musonge

Volume 17, Issue 1, 2024

Published on: 11 January, 2024

Page: [26 - 43] Pages: 18

DOI: 10.2174/0124055204282376231219095404

Price: $65

conference banner
Abstract

Corn steep liquor (CSL) is a by-product of wet steeping corn and is a source of vitamins, minerals, and amino acids. Depending on how food processing firms dispose of waste, CSL might have a negative impact on the environment. However, when CSL is used properly, it can promote economic growth and sustainability and prevent adverse environmental effects. However, the nutritional content of CSL and the high concentration of its organic matter suggest it is a rich source of feedstock. It can be used as a nutrient supplement or precursor to other products with even more value. CSL has been studied as a feedstock and additive for the sustainable production of chemicals and industrial products. A variety of bioproducts, including ethanol, acetoin, vanillin, and a variety of other biofuels, can be made from CSL due to its low cost and availability of components (nitrogen and carbon). The study seeks to highlight and present comprehensive novel uses of corn steep liquor in the circular economy to produce higher-valued products with reduced carbon footprints.

Graphical Abstract

[1]
Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna BM. Global maize production, consumption and trade: Trends and R&D implications. Food Secur 2022; 14(5): 1295-319.
[http://dx.doi.org/10.1007/s12571-022-01288-7]
[2]
Navarro-Morillo I, Navarro-Perez V, Perez-Millan R, et al. Effects of root and foliar application of corn steep liquor on pepper plants: A physiological, nutritional, and morphological study. Horticulturae 2023; 9(2): 221.
[http://dx.doi.org/10.3390/horticulturae9020221]
[3]
Martínez-Arcos A, Moldes AB, Vecino X. Adding value to secondary streams of corn wet milling industry. CYTA J Food 2021; 19(1): 675-81.
[http://dx.doi.org/10.1080/19476337.2021.1965661]
[4]
Jiao Y, Chen HD, Han H, Chang Y. Development and utilization of corn processing by-products: A review. Foods 2022; 11(22): 3709.
[http://dx.doi.org/10.3390/foods11223709] [PMID: 36429301]
[5]
Lange L, Connor KO, Arason S, et al. Developing a sustainable and circular bio-based economy in EU: by partnering across sectors, upscaling and using new knowledge faster, and for the benefit of climate, environment & biodiversity, and people & business. Front Bioeng Biotechnol 2021; 8: 619066.
[http://dx.doi.org/10.3389/fbioe.2020.619066] [PMID: 33553123]
[6]
Zhou K, Yu J, Ma Y, et al. Corn steep liquor: Green biological resources for bioindustry. Appl Biochem Biotechnol 2022; 194(7): 3280-95.
[http://dx.doi.org/10.1007/s12010-022-03904-w] [PMID: 35349086]
[7]
Anderson B, Almeida H. Corn dry milling: Processes, products, and applications. Corn: Elsevier 2019; pp. 405-33.
[8]
Ndlovu V. Waste water treatment of effluents from corn processing plant. UKZN – University of KwaZulu-Natal 2013.
[9]
Yuan J, Flores RA. Laboratory dry-milling performance of white corn: Effect of physical and chemical corn characteristics. Cereal Chem 1996; 73(5): 574-8.
[10]
Govender D. The purification of corn steep liquor as a fermentation feedstock by ultrafiltration. Theses and dissertations (Engineering and Built Environment). Durban University of Technology 2010.
[11]
Hull SR, Yang BY, Venzke D, Kulhavy K, Montgomery R. Composition of corn steep water during steeping. J Agric Food Chem 1996; 44(7): 1857-63.
[http://dx.doi.org/10.1021/jf950353v]
[12]
Sathishkumar K, Narenkumar J, Selvi A, Murugan K, Babujanarthanam R, Rajasekar A. Treatment of soak liquor and bioelectricity generation in dual chamber microbial fuel cell. Environ Sci Pollut Res Int 2018; 25(12): 11424-30.
[http://dx.doi.org/10.1007/s11356-018-1371-1] [PMID: 29423696]
[13]
Biosynth M. Safety Data Sheet: Company and Chemical Product Identification. 2022.
[14]
Vecino X, Barbosa-Pereira L, Devesa-Rey R, Cruz JM, Moldes AB. Optimization of liquid-liquid extraction of biosurfactants from corn steep liquor. Bioprocess Biosyst Eng 2015; 38(9): 1629-37.
[http://dx.doi.org/10.1007/s00449-015-1404-9] [PMID: 25911424]
[15]
Rane KD, Cheryan M. Membrane filtration of corn steep water. Cereal Chem 2001; 78(4): 400-4.
[http://dx.doi.org/10.1094/CCHEM.2001.78.4.400]
[16]
Vecino X, Martínez-Arcos A, Reig M, Cruz JM, Cortina JL, Moldes AB. Integration of filtration and liquid-solid process with MN100 resin for corn steep water purification. Sci Talks 2023; 6: 100179.
[http://dx.doi.org/10.1016/j.sctalk.2023.100179]
[17]
Roeva O, Chorukova E. Metaheuristic algorithms to optimal parameters estimation of a model of two-stage anaerobic digestion of corn steep liquor. Appl Sci 2022; 13(1): 199.
[http://dx.doi.org/10.3390/app13010199]
[18]
Dapčević-Hadnađev T, Hadnađev M, Pojić M. The healthy components of cereal by-products and their functional properties. In: Sustainable recovery and reutilization of cereal processing by-products. Elsevier 2018; pp. 27-61.
[http://dx.doi.org/10.1016/B978-0-08-102162-0.00002-2]
[19]
Taiwo A, Madzimbamuto T, Ojumu T. Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies 2018; 11(7): 1740.
[http://dx.doi.org/10.3390/en11071740]
[20]
Xiao X, Hou Y, Liu Y, et al. Classification and analysis of corn steep liquor by UPLC/Q-TOF MS and HPLC. Talanta 2013; 107: 344-8.
[http://dx.doi.org/10.1016/j.talanta.2013.01.044] [PMID: 23598232]
[21]
Gao Y, Yuan YJ. Comprehensive quality evaluation of corn steep liquor in 2-keto-L-gulonic acid fermentation. J Agric Food Chem 2011; 59(18): 9845-53.
[http://dx.doi.org/10.1021/jf201792u] [PMID: 21793578]
[22]
Xiao X, Hou Y, Du J, et al. Determination of main categories of components in corn steep liquor by near-infrared spectroscopy and partial least-squares regression. J Agric Food Chem 2012; 60(32): 7830-5.
[http://dx.doi.org/10.1021/jf3012823] [PMID: 22838730]
[23]
Taiwo AE, Madzimbamuto TN, Ojumu TV. Optimization of process variables for acetoin production in a bioreactor using Taguchi orthogonal array design. Heliyon 2020; 6(10): e05103.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05103] [PMID: 33072908]
[24]
Loy D, Lundy E. Nutritional properties and feeding value of corn and its coproducts. Corn: Elsevier 2019; pp. 633-59.
[http://dx.doi.org/10.1016/B978-0-12-811971-6.00023-1]
[25]
Mahr-un-Nisa , Khan MA, Sarwar M, et al. Influence of corn steep liquor on feeding value of urea treated wheat straw in buffaloes fed at restricted diets. Asian-Australas J Anim Sci 2006; 19(11): 1610-6.
[http://dx.doi.org/10.5713/ajas.2006.1610]
[26]
Zhang R, Ma S, Li L, et al. Comprehensive utilization of corn starch processing by-products: A review. Grain Oil Sci Technol 2021; 4(3): 89-107.
[http://dx.doi.org/10.1016/j.gaost.2021.08.003]
[27]
Barros PDS, Silva PEC, Nascimento TP, Costa RMPB, Bezerra RP, Porto ALF. Fibrinolytic enzyme from Arthrospira platensis cultivated in medium culture supplemented with corn steep liquor. Int J Biol Macromol 2020; 164: 3446-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.217] [PMID: 32882274]
[28]
Al mwafy A, Behery H, Saba F, Gomaa A, Khalifa E, Tag Eldin N. Utilization of rice straw ensiling by either solution of corn steep liquor or urea to ameliorate productive performance of dairy Goats. J Animal Poultry Prod 2020; 11(2): 31-7.
[http://dx.doi.org/10.21608/jappmu.2020.78853]
[29]
Sharma RK, Kothari RM. Innovative application of corn steep liquor for the increased production of food grains. Technovation 1992; 12(4): 213-21.
[http://dx.doi.org/10.1016/0166-4972(92)90043-H]
[30]
Navarro-Morillo I, Pardo-Pina S, Garcia-Sánchez F, et al. Corn steep liquor application improves pepper (Capsicum annum L.) tolerance to salinity. Horticulturae 2023; 9(7): 785.
[http://dx.doi.org/10.3390/horticulturae9070785]
[31]
Salam L, Ishaq A. Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 2019; 9: 1-20.
[32]
Ullah Z, Yousaf M, Shami MM, Sharif M, Mahrose K. Effect of graded levels of dietary corn steep liquor on growth performance, nutrient digestibility, haematology and histopathology of broilers. J Anim Physiol Anim Nutr 2018; 102(1): e395-402.
[http://dx.doi.org/10.1111/jpn.12758] [PMID: 28612954]
[33]
Chinta YD, Kano K, Widiastuti A, et al. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures. J Sci Food Agric 2014; 94(11): 2317-23.
[http://dx.doi.org/10.1002/jsfa.6561] [PMID: 24403175]
[34]
Sun N, Fan B, Yang F, Zhao L, Wang M. Effects of adding corn steep liquor on bacterial community composition and carbon and nitrogen transformation during spent mushroom substrate composting. BMC Microbiol 2023; 23(1): 156.
[http://dx.doi.org/10.1186/s12866-023-02894-x] [PMID: 37237262]
[35]
Blagojević A. The influence of cracks on the durability and service life of reinforced concrete structures in relation to chloride-induced corrosion: A look from a different perspective. Delft Univeristy of Technology 2016.
[36]
Sidhu N, Goyal S, Reddy MS. Self-healing by biocomposite containing metakaolin immobilized bacterial spores in concrete using low-cost corn steep liquor media. J Sustain Cement-Based Mater 2023; 1-17.
[http://dx.doi.org/10.1080/21650373.2023.2224805]
[37]
Mamo G, Mattiasson B. Alkaliphiles: the emerging biological tools enhancing concrete durability. Adv Biochem Eng Biotechnol 2020; 172: 293-342.
[http://dx.doi.org/10.1007/978-3-030-49736-1]
[38]
Maleki-Kakelar M, Azarhoosh MJ, Golmohammadi Senji S, Aghaeinejad-Meybodi A. Urease production using corn steep liquor as a low-cost nutrient source by Sporosarcina pasteurii: Biocementation and process optimization via artificial intelligence approaches. Environ Sci Pollut Res Int 2022; 29(10): 13767-81.
[http://dx.doi.org/10.1007/s11356-021-16568-6] [PMID: 34599437]
[39]
Babakhani S, Fahmi A, Katebi H, et al. Non‐sterile corn steep liquor a novel, cost effective and powerful culture media for Sporosarcina pasteurii cultivation for sand improvement. J Appl Microbiol 2021; 130(4): 1232-44.
[http://dx.doi.org/10.1111/jam.14866] [PMID: 33025710]
[40]
Backer R, Rokem JS, Ilangumaran G, et al. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 2018; 9: 1473.
[http://dx.doi.org/10.3389/fpls.2018.01473] [PMID: 30405652]
[41]
Liu Y, Jiang D, Yan J, Wang K, Lin S, Zhang W. ABA-insensitivity of alfalfa (Medicago sativa L.) during seed germination associated with plant drought tolerance. Environ Exp Bot 2022; 203: 105069.
[http://dx.doi.org/10.1016/j.envexpbot.2022.105069]
[42]
Matsushima H, Arima K. Physiological activities of zeanic acid, a new plant-growth promotor from corn steep liquor. Agric Biol Chem 1973; 37(8): 1873-80.
[http://dx.doi.org/10.1080/00021369.1973.10860911]
[43]
Takemura H, Choi JH, Matsuzaki N, et al. A fairy chemical, imidazole-4-carboxamide, is produced on a novel purine metabolic pathway in rice. Sci Rep 2019; 9(1): 9899.
[http://dx.doi.org/10.1038/s41598-019-46312-7] [PMID: 31289299]
[44]
Kobori H, Wu J, Takemura H, Choi JH, Tada N, Kawagishi H. Utilization of corn steep liquor for the production of fairy chemicals by Lepista sordida mycelia. J Fungi 2022; 8(12): 1269.
[http://dx.doi.org/10.3390/jof8121269] [PMID: 36547602]
[45]
Oladosu Y, Rafii MY, Abdullah N, Magaji U, Hussin G, Ramli A, et al. Fermentation quality and additives: A case of rice straw silage. BioMed Res Int 2016; 2016: 7985167.
[http://dx.doi.org/10.1155/2016/7985167]
[46]
Hansen B, Bittner C, Boyd B, Hilscher F, MacDonald J, Erickson G. Finishing performance of steers fed increasing inclusions of corn condensed distillers solubles. In: Evaluation of Corn Condensed Distillers Solubles in Beef Cattle Diets and Grazing Double-Cropped Forages Following Corn Harvest. 2017.
[47]
Li X, Xu W, Yang J, Zhao H, Xin H, Zhang Y. Effect of different levels of corn steep liquor addition on fermentation characteristics and aerobic stability of fresh rice straw silage. Anim Nutr 2016; 2(4): 345-50.
[http://dx.doi.org/10.1016/j.aninu.2016.09.003] [PMID: 29767130]
[48]
Karigidi KO, Olaiya CO. Antidiabetic activity of corn steep liquor extract of Curculigo pilosa and its solvent fractions in streptozotocin-induced diabetic rats. J Tradit Complement Med 2020; 10(6): 555-64.
[http://dx.doi.org/10.1016/j.jtcme.2019.06.005] [PMID: 33134131]
[49]
Trenkle A, Ribeiro C. Evaluation of a mixture of corn steep liquor and distillers solubles as a replacement for corn and supplement in cattle finishing diets. Iowa State Univer Animal Ind Report 2000; 1(1)
[50]
Zahedi-Moghadam P, Azarfar A, Azizi A. Effects of different carbohydrate sources on the performance, ruminal and blood metabolites and nutrients digestibility in fattening male-lambs fed corn steep liquor. J Livestock Sci Technol 2023; 11(1): 21-8.
[51]
Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis - A review. Mater Sci Energy Technol 2019; 2(3): 442-54.
[http://dx.doi.org/10.1016/j.mset.2019.03.002]
[52]
Martinez-Burgos WJ, Sydney EB, de Paula DR, et al. Hydrogen production by dark fermentation using a new low-cost culture medium composed of corn steep liquor and cassava processing water: Process optimization and scaleup. Bioresour Technol 2021; 320(Pt B): 124370.
[http://dx.doi.org/10.1016/j.biortech.2020.124370] [PMID: 33220544]
[53]
Stoyancheva G, Kabaivanova L, Hubenov V, Chorukova E. Metagenomic analysis of bacterial, archaeal and fungal diversity in two-stage anaerobic biodegradation for production of hydrogen and methane from corn steep liquor. Microorganisms 2023; 11(5): 1263.
[http://dx.doi.org/10.3390/microorganisms11051263] [PMID: 37317237]
[54]
Siddeeg SM, Tahoon MA, Ben Rebah F. Agro-industrial waste materials and wastewater as growth media for microbial bioflocculants production: A review. Mater Res Express 2020; 7(1): 012001.
[http://dx.doi.org/10.1088/2053-1591/ab5980]
[55]
Berger L, Stamford T, Stamford-Arnaud T, et al. Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by Cunninghamella elegans and their physicochemical characteristics and cytotoxicity. Molecules 2014; 19(3): 2771-92.
[http://dx.doi.org/10.3390/molecules19032771] [PMID: 24590203]
[56]
Orekan J, Barbé B, Oeng S, et al. Culture media for clinical bacteriology in low- and middle-income countries: challenges, best practices for preparation and recommendations for improved access. Clin Microbiol Infect 2021; 27(10): 1400-8.
[http://dx.doi.org/10.1016/j.cmi.2021.05.016] [PMID: 34015533]
[57]
Taiwo AE. Application of bioprocess-supercritical fluid extraction techniques in the production and recovery of some selected bioproducts. Cape Peninsula University of Technology 2020.
[58]
Falowo OA, Taiwo AE, Afolabi I, Fakinle BS, Ojediran JO, Eds. Optimization of corn steep liquor as a sole substrate for bioethanol production using Saccharomyces cerevisiae. International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG). Omu-Aran, Nigeria. 2023.05-07 April;
[http://dx.doi.org/10.1109/SEB-SDG57117.2023.10124599]
[59]
Taiwo AE, Musonge P. Comparative evaluation of bioethanol fermentation process parameters using RSM, ANN and ANFIS. Biofuels Bioprod Biorefin 2023; 17(4): 961-75.
[http://dx.doi.org/10.1002/bbb.2490]
[60]
Ng HS, Wan PK, Kondo A, Chang JS, Lan JCW. Production and recovery of ectoine: A review of current state and future prospects. Processes 2023; 11(2): 339.
[http://dx.doi.org/10.3390/pr11020339]
[61]
Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J. Exploring the additive bio-agent impacts upon ectoine production by Halomonas salina DSM5928T using corn steep liquor and soybean hydrolysate as nutrient supplement. J Biosci Bioeng 2020; 130(2): 195-9.
[http://dx.doi.org/10.1016/j.jbiosc.2020.03.011] [PMID: 32370929]
[62]
Taiwo AE, Ojumu TV, Madzimbamuto TN. Statistical optimization of acetoin production using corn steep liquor as a low-cost nitrogen source by Bacillus Subtilis CICC 10025. In: Renewable Resources and Biorefineries. London: IntechOpen 2018.
[63]
Yu L, Lei T, Ren X, Pei X, Feng Y. Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem Eng J 2008; 39(3): 496-502.
[http://dx.doi.org/10.1016/j.bej.2007.11.008]
[64]
Pant M, Joshi T, Omre PK, Awasthi P, Chauhan L. Development of novel media formulation using rice straw and corn steep liquor for pyruvate production. Biomass Convers Biorefin 2021; 1-9.
[65]
López-Prieto A, Rodríguez-López L, Rincón-Fontán M, Cruz JM, Moldes AB. Characterization of extracellular and cell bound biosurfactants produced by Aneurinibacillus aneurinilyticus isolated from commercial corn steep liquor. Microbiol Res 2021; 242: 126614.
[http://dx.doi.org/10.1016/j.micres.2020.126614] [PMID: 33045681]
[66]
Kang CK, Jeong SW, Yang JE, Choi YJ. High-yield production of lycopene from corn steep liquor and glycerol using the metabolically engineered Deinococcus radiodurans R1 Strain. J Agric Food Chem 2020; 68(18): 5147-53.
[http://dx.doi.org/10.1021/acs.jafc.0c01024] [PMID: 32275417]
[67]
Hamdi M, Hamza S, Mtimet N, et al. Effect of Corn steep liquor supplementation and scale up on Lactococcus starter production. Bioprocess Eng 2000; 22(1): 23-7.
[http://dx.doi.org/10.1007/PL00009095]
[68]
Rodríguez-López L, Vecino X, Barbosa-Pereira L, Moldes AB, Cruz JM. A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food Funct 2016; 7(9): 3724-32.
[http://dx.doi.org/10.1039/C6FO00979D] [PMID: 27492045]
[69]
Taiwo A, Madzimbamuto T, Ojumu T. Development of an integrated process for the production and recovery of some selected bioproducts from lignocellulosic materials. In: Valorization of Biomass to Value-Added Commodities: Current Trends. Challenges, and Future Prospects 2020; pp. 439-67.
[70]
Ferreira de Oliveira AP, Bragotto APA. Microalgae-based products: Food and public health. Future Foods 2022; 6: 100157.
[http://dx.doi.org/10.1016/j.fufo.2022.100157]
[71]
Loke Show P. Global market and economic analysis of microalgae technology: Status and perspectives. Bioresour Technol 2022; 357: 127329.
[http://dx.doi.org/10.1016/j.biortech.2022.127329] [PMID: 35589045]
[72]
UNESCO. Water reuse within a circular economy context. 2020. Available from: https://unesdoc.unesco.org/ark:/48223/pf0000374715.locale=en
[73]
Kim S, Lee D, Lim D, et al. Paramylon production from heterotrophic cultivation of Euglena gracilis in two different industrial byproducts: Corn steep liquor and brewer’s spent grain. Algal Res 2020; 47: 101826.
[http://dx.doi.org/10.1016/j.algal.2020.101826]
[74]
Wu M, Qin H, Deng J, et al. A new pilot-scale fermentation mode enhances Euglena gracilis biomass and paramylon (β-1,3-glucan) production. J Clean Prod 2021; 321: 128996.
[http://dx.doi.org/10.1016/j.jclepro.2021.128996]
[75]
Huang J, Zhu S, Li C, Zhang C, Ji Y. Cost-effective optimization of gellan gum production by Sphingomonas paucimobilis using corn steep liquor. Prep Biochem Biotechnol 2020; 50(2): 191-7.
[http://dx.doi.org/10.1080/10826068.2019.1692215] [PMID: 31738649]
[76]
Gudiña EJ, Couto MR, Silva SP, et al. Sustainable exopolysaccharide production by Rhizobium viscosum CECT908 using corn steep liquor and sugarcane molasses as sole substrates. Polymers 2022; 15(1): 20.
[http://dx.doi.org/10.3390/polym15010020] [PMID: 36616373]
[77]
Ma Y, Chen X, Zahoor Khan M, et al. Biodegradation and hydrolysis of rice straw with corn steep liquor and urea-alkali pretreatment. Front Nutr 2022; 9: 989239.
[http://dx.doi.org/10.3389/fnut.2022.989239] [PMID: 35990351]
[78]
Saha BC, Racine FM. Effects of pH and corn steep liquor variability on mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 2010; 87(2): 553-60.
[http://dx.doi.org/10.1007/s00253-010-2552-0] [PMID: 20361324]
[79]
Noor AA, Hameed A. Optimization studies for bioconversion of corn steep liquor to ethanol by Saccharomyces cerevisiae strain KA-1 and AAN-2. Pak J Biol Sci 1999; 2: 137-40.
[80]
Xi Y, Chen K, Dai W, et al. Succinic acid production by Actinobacillus succinogenes NJ113 using corn steep liquor powder as nitrogen source. Bioresour Technol 2013; 136: 775-9.
[http://dx.doi.org/10.1016/j.biortech.2013.03.107] [PMID: 23558185]
[81]
Silveira MM, Wisbeck E, Hoch I, Jonas R. Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins. Appl Microbiol Biotechnol 2001; 55(4): 442-5.
[http://dx.doi.org/10.1007/s002530000569] [PMID: 11398924]
[82]
Chen CY, Lee MH, Dong CD, Leong YK, Chang JS. Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochem Eng J 2020; 154: 107429.
[http://dx.doi.org/10.1016/j.bej.2019.107429]
[83]
Kim S, Lim D, Lee D, Yu J, Lee T. Valorization of corn steep liquor for efficient paramylon production using Euglena gracilis: The impact of precultivation and light-dark cycle. Algal Res 2022; 61: 102587.
[http://dx.doi.org/10.1016/j.algal.2021.102587]
[84]
Wu W, Pang B, Yang R, et al. Improvement of the probiotic potential and yield of Lactobacillus rhamnosus cells using corn steep liquor. Lebensm Wiss Technol 2020; 131: 109862.
[http://dx.doi.org/10.1016/j.lwt.2020.109862]
[85]
Alvarez-Risco A, Del-Aguila-Arcentales S, Rosen MA. Waste Management and the circular economy. In: Towards a Circular Economy: Transdisciplinary Approach for Business. Springer 2022; pp. 119-31.
[http://dx.doi.org/10.1007/978-3-030-94293-9_6]
[86]
Castrillón HDC, Aguilar CMG, Álvarez BEA. Circular economy strategies: Use of corn waste to develop biomaterials. Sustainability 2021; 13(15): 8356.
[http://dx.doi.org/10.3390/su13158356]
[87]
Lvova K, Martínez-Arcos A, López-Prieto A, et al. Corn steep liquor as a secondary raw material for direct sourcing of gramicidin. Science Talks 2023; 6: 100193.
[http://dx.doi.org/10.1016/j.sctalk.2023.100193]
[88]
Du YH, Wang MY, Yang LH, Tong LL, Guo DS, Ji XJ. Optimization and scale-up of fermentation processes driven by models. Bioengineering 2022; 9(9): 473.
[http://dx.doi.org/10.3390/bioengineering9090473] [PMID: 36135019]
[89]
Taiwo AE, Okoji AI, Eloka-Eboka AC, Musonge P. The role of artificial neural networks in bioproduct development: a case of modeling and optimization studies. In: Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering. Elsevier 2022; pp. 417-31.
[90]
Lvova K, Martínez-Arcos A, López-Prieto A, Vecino X, Moldes AB, Cruz JM. Optimization of the operational conditions to produce extracellular and cell-bound biosurfactants by Aneurinibacillus aneurinilyticus using corn steep liquor as a unique source of nutrients. Fermentation 2023; 9(4): 351.
[http://dx.doi.org/10.3390/fermentation9040351]
[91]
Betiku E, Taiwo AE. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew Energy 2015; 74: 87-94.
[http://dx.doi.org/10.1016/j.renene.2014.07.054]
[92]
Adesina OA, Taiwo AE, Akindele O, Igbafe A. Process parametric studies for decolouration of dye from local ‘tie and dye’ industrial effluent using Moringa oleifera seed. S Afr J Chem Eng 2021; 37: 23-30.
[http://dx.doi.org/10.1016/j.sajce.2021.03.005]
[93]
Okoji AI, Anozie AN, Omoleye JA, Taiwo AE, Babatunde DE. Evaluation of adaptive neuro-fuzzy inference system-genetic algorithm in the prediction and optimization of NOx emission in cement precalcining kiln. Environ Sci Pollut Res Int 2023; 30(19): 54835-45.
[http://dx.doi.org/10.1007/s11356-023-26282-0] [PMID: 36882651]
[94]
Guan X, Zhang J, Xu N, et al. Optimization of culture medium and scale-up production of astaxanthin using corn steep liquor as substrate by response surface methodology. Prep Biochem Biotechnol 2023; 53(4): 443-53.
[http://dx.doi.org/10.1080/10826068.2022.2098324] [PMID: 35838518]
[95]
de Lima CB, Coelho LF, Blanco KC, Contiero J. Response surface optimization of D (-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. Afr J Biotechnol 2009; 8(21)
[96]
Vijayendra SVN, Rastogi NK, Shamala TR, Anil Kumar PK, Kshama L, Joshi GJ. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J Microbiol 2007; 47(2): 170-5.
[http://dx.doi.org/10.1007/s12088-007-0033-7] [PMID: 23100662]
[97]
Sekoai PT, Ayeni AO, Daramola MO. Parametric optimization of citric acid production from apple pomace and corn steep liquor by a wild type strain of Aspergillus niger: A Response surface methodology approach. Int J Eng Res Africa 2018; 36: 98-113.
[http://dx.doi.org/10.4028/www.scientific.net/JERA.36.98]
[98]
Wischral D, Zhang J, Cheng C, et al. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. Bioresour Technol 2016; 212: 100-10.
[http://dx.doi.org/10.1016/j.biortech.2016.04.020] [PMID: 27085150]
[99]
De Almeida FCG, Silva T, Garrard I, Asfora L, Sarubbo G, Tambourgi EB. Optimization and evaluation of biosurfactant produced by Pantoea sp. using pineapple peel residue, vegetable fat and corn steep liquor. J Chem Chem Eng 2015; 2015(9): 269-79.
[100]
Wang Y, Wen J, Jia D, Piao C, Liu J, Yu H, et al. Response surface optimization of the nitrogen source for pullulan production by Aureobasidium pullulans CGMCC3945 with corn steep liquor. In: International Forum on Energy, Environment and Sustainable Development. Atlantis Press 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy