Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Bioinformatics-based Study on the Effects of Umbilical Cord Mesenchymal Stem Cells on the Aging Retina

Author(s): Ya-Hui Shi, Jun-Qi Li, Min-Xu, Yu-Ying Wang, Ting-Hua Wang*, Zhong-Fu Zuo* and Xue-Zheng Liu*

Volume 19, Issue 11, 2024

Published on: 09 January, 2024

Page: [1497 - 1513] Pages: 17

DOI: 10.2174/011574888X277276231215110316

Price: $65

Abstract

Background: Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved.

Methods: A retinal ganglion cell senescence model was established in vitro and treated with UCMSC. Successful establishment of the senescence system was demonstrated using β- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference.

Results: β-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1β (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement.

Conclusion: This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.

[1]
Harwerth, R.S.; Wheat, J.L. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch. Clin. Exp. Ophthalmol., 2008, 246(2), 305-314.
[http://dx.doi.org/10.1007/s00417-007-0691-5] [PMID: 17934750]
[2]
Tatham, A.J.; Medeiros, F.A. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology, 2017, 124(12), S57-S65.
[http://dx.doi.org/10.1016/j.ophtha.2017.07.015] [PMID: 29157363]
[3]
Chen, M.; Luo, C.; Zhao, J.; Devarajan, G.; Xu, H. Immune regulation in the aging retina. Prog. Retin. Eye Res., 2019, 69, 159-172.
[http://dx.doi.org/10.1016/j.preteyeres.2018.10.003] [PMID: 30352305]
[4]
Zhao, L.; Feng, Z.; Zou, X.; Cao, K.; Xu, J.; Liu, J. Aging leads to elevation of O-GlcNAcylation and disruption of mitochondrial homeostasis in retina. Oxid. Med. Cell. Longev., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/425705] [PMID: 24987494]
[5]
Nag, T.C. Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells. Eye, 2021, 35(11), 2917-2929.
[http://dx.doi.org/10.1038/s41433-021-01602-1] [PMID: 34079093]
[6]
Fu, X.; Liu, G.; Halim, A.; Ju, Y.; Luo, Q.; Song, A.G. Mesenchymal stem cell migration and tissue repair. Cells, 2019, 8(8), 784.
[http://dx.doi.org/10.3390/cells8080784] [PMID: 31357692]
[7]
Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther., 2018, 9(1), 63.
[http://dx.doi.org/10.1186/s13287-018-0791-7] [PMID: 29523213]
[8]
Ding, D.C.; Chang, Y.H.; Shyu, W.C.; Lin, S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant., 2015, 24(3), 339-347.
[http://dx.doi.org/10.3727/096368915X686841] [PMID: 25622293]
[9]
Zappa Villar, M.F.; Lehmann, M.; García, M.G. Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behav. Brain Res., 2019, 374, 111887.
[http://dx.doi.org/10.1016/j.bbr.2019.04.001] [PMID: 30951751]
[10]
Yan, Q.; Xiao, Q.; Ge, J. Bioinformatics-based research on key genes and pathways of intervertebral disc degeneration. Cartilage, 2021, 13, 582S-591S.
[http://dx.doi.org/10.1177/1947603520973247] [PMID: 33233925]
[11]
Berglund, A.; Putney, R.M.; Hamaidi, I.; Kim, S. Epigenetic dysregulation of immune-related pathways in cancer: Bioinformatics tools and visualization. Exp. Mol. Med., 2021, 53(5), 761-771.
[http://dx.doi.org/10.1038/s12276-021-00612-z] [PMID: 33963293]
[12]
Liu, K.; Zhang, Y.; Martin, C.; Ma, X.; Shen, B. Translational bioinformatics for human reproductive biology research: examples, opportunities and challenges for a future reproductive medicine. Int. J. Mol. Sci., 2022, 24(1), 4.
[http://dx.doi.org/10.3390/ijms24010004] [PMID: 36613446]
[13]
Dan, Q.Q.; Chen, L. shi LL, Zhou X, Wang TH, Liu H. Urine-derived mesenchymal stem cells-derived exosomes enhances survival and proliferation of aging retinal ganglion cells. BMC Mol. Cell Biol., 2023, 24(1), 8.
[http://dx.doi.org/10.1186/s12860-023-00467-4] [PMID: 36879194]
[14]
Liu, X.; Chen, F.; Chen, Y. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res. Ther., 2020, 11(1), 142.
[http://dx.doi.org/10.1186/s13287-020-01651-5] [PMID: 32234075]
[15]
Shen, J.; Tower, J. Effects of light on aging and longevity. Ageing Res. Rev., 2019, 53, 100913.
[http://dx.doi.org/10.1016/j.arr.2019.100913] [PMID: 31154014]
[16]
Cano, M.; Datta, S.; Wang, L. Nrf2 deficiency decreases NADPH from impaired IDH shuttle and pentose phosphate pathway in retinal pigmented epithelial cells to magnify oxidative stress‐induced mitochondrial dysfunction. Aging Cell, 2021, 20(8), e13444.
[http://dx.doi.org/10.1111/acel.13444] [PMID: 34313391]
[17]
Xu, N.; Chen, Y.; Dean, K.C. Sphere-induced rejuvenation of swine and human müller glia is primarily caused by telomere elongation. Stem Cells, 2017, 35(6), 1579-1591.
[http://dx.doi.org/10.1002/stem.2585] [PMID: 28152565]
[18]
Sui, B.D.; Hu, C.H.; Zheng, C.X.; Jin, Y. Microenvironmental views on mesenchymal stem cell differentiation in aging. J. Dent. Res., 2016, 95(12), 1333-1340.
[http://dx.doi.org/10.1177/0022034516653589] [PMID: 27302881]
[19]
Denu, R.A. SIRT3 enhances mesenchymal stem cell longevity and differentiation. Oxid. Med. Cell. Longev., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/5841716] [PMID: 28717408]
[20]
Zheng, C.X.; Sui, B.D.; Qiu, X.Y.; Hu, C.H.; Jin, Y. Mitochondrial regulation of stem cells in bone homeostasis. Trends Mol. Med., 2020, 26(1), 89-104.
[http://dx.doi.org/10.1016/j.molmed.2019.04.008] [PMID: 31126872]
[21]
Fafián-Labora, J.; Morente-López, M.; Sánchez-Dopico, M.J. Influence of mesenchymal stem cell-derived extracellular vesicles in vitro and their role in ageing. Stem Cell Res. Ther., 2020, 11(1), 13.
[http://dx.doi.org/10.1186/s13287-019-1534-0] [PMID: 31900239]
[22]
Zhou, X.; Wang, L.; Zhang, Z. Fluorometholone inhibits high glucose-induced cellular senescence in human retinal endothelial cells. Hum. Exp. Toxicol., 2022, 41.
[http://dx.doi.org/10.1177/09603271221076107] [PMID: 35264022]
[23]
He, Y.; Leung, K.W.; Ren, Y.; Pei, J.; Ge, J.; Tombran-Tink, J. PEDF improves mitochondrial function in RPE cells during oxidative stress. Invest. Ophthalmol. Vis. Sci., 2014, 55(10), 6742-6755.
[http://dx.doi.org/10.1167/iovs.14-14696] [PMID: 25212780]
[24]
Fernandes, A.F.; Guo, W.; Zhang, X. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Exp. Eye Res., 2006, 83(6), 1472-1481.
[http://dx.doi.org/10.1016/j.exer.2006.07.024] [PMID: 17027001]
[25]
Chen, Q.; Tang, L.; Zhang, Y. STING up-regulates VEGF expression in oxidative stress-induced senescence of retinal pigment epithelium via NF-κB/HIF-1α pathway. Life Sci., 2022, 293, 120089.
[http://dx.doi.org/10.1016/j.lfs.2021.120089] [PMID: 35007563]
[26]
Arroba, AI; Rosa, LR; Murillo-Cuesta, S Autophagy resolves early retinal inflammation in Igf1 -deficient mice. Dis Model Mech, 2016, 9(9), dmm.026344.
[http://dx.doi.org/10.1242/dmm.026344] [PMID: 27483352]
[27]
Lee, H.; Hwang-Bo, H.; Ji, S.Y. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ. Pollut., 2020, 262, 114301.
[28]
Campbell, D.S.; Okamoto, H. Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J. Cell Biol., 2013, 203(4), 657-672.
[http://dx.doi.org/10.1083/jcb.201303072] [PMID: 24385488]
[29]
Sasaki, F.; Koga, T.; Ohba, M. Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight, 2018, 3(18), 96902-2.
[30]
Kandarakis, S.A.; Piperi, C.; Moschonas, D.P.; Korkolopoulou, P.; Papalois, A.; Papavassiliou, A.G. Dietary glycotoxins induce RAGE and VEGF up-regulation in the retina of normal rats. Exp. Eye Res., 2015, 137, 1-10.
[http://dx.doi.org/10.1016/j.exer.2015.05.017] [PMID: 26026876]
[31]
Smith, R.O.; Ninchoji, T.; Gordon, E. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. eLife, 2020, 9, e54056.
[http://dx.doi.org/10.7554/eLife.54056] [PMID: 32312382]
[32]
Marneros, A.G. Increased VEGF ‐A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol. Med., 2016, 8(3), 208-231.
[http://dx.doi.org/10.15252/emmm.201505613] [PMID: 26912740]
[33]
Hao, Y.; Zhou, Q.; Ma, J.; Zhao, Y.; Wang, S. miR-146a is upregulated during retinal pigment epithelium (RPE)/choroid aging in mice and represses IL-6 and VEGF-A expression in RPE cells. J. Clin. Exp. Ophthalmol., 2016, 7(3), 562.
[http://dx.doi.org/10.4172/2155-9570.1000562] [PMID: 27917303]
[34]
Liao, W.L.; Turko, I.V. Accumulation of large protein fragments in prematurely senescent ARPE-19 cells. Invest. Ophthalmol. Vis. Sci., 2009, 50(10), 4992-4997.
[http://dx.doi.org/10.1167/iovs.09-3671] [PMID: 19458325]
[35]
Rose, K.; Schröer, U.; Volk, G.F. Axonal regeneration in the organotypically cultured monkey retina: biological aspects, dependence on substrates and age-related proteomic profiling. Restor. Neurol. Neurosci., 2008, 26(4-5), 249-266. [J].
[PMID: 18997304]
[36]
Peng, H.; Han, W.; Ma, B. Autophagy and senescence of rat retinal precursor cells under high glucose. Front. Endocrinol., 2023, 13, 1047642.
[http://dx.doi.org/10.3389/fendo.2022.1047642] [PMID: 36686430]
[37]
Itakura, T.; Webster, A.; Chintala, S.K. GPR158 in the visual system: Homeostatic role in regulation of intraocular pressure. J. Ocul. Pharmacol. Ther., 2019, 35(4), 203-215.
[http://dx.doi.org/10.1089/jop.2018.0135] [PMID: 30855200]
[38]
Marazita, M.C.; Dugour, A.; Marquioni-Ramella, M.D.; Figueroa, J.M.; Suburo, A.M. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol., 2016, 7, 78-87.
[http://dx.doi.org/10.1016/j.redox.2015.11.011] [PMID: 26654980]
[39]
Chucair-Elliott, A.J.; Ocañas, S.R.; Pham, K. Translatomic response of retinal Müller glia to acute and chronic stress. Neurobiol. Dis., 2022, 175, 105931.
[http://dx.doi.org/10.1016/j.nbd.2022.105931] [PMID: 36423879]
[40]
Sims, S.M.; Holmgren, L.; Cathcart, H.M.; Sappington, R.M. Spatial regulation of interleukin-6 signaling in response to neurodegenerative stressors in the retina. Am. J. Neurodegener. Dis., 2012, 1(2), 168-179.
[PMID: 23024928]
[41]
Mangold, C.A.; Masser, D.R.; Stanford, D.R. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(1), 16-29.
[http://dx.doi.org/10.1093/gerona/glv232] [PMID: 26786204]
[42]
Du, X.; Byrne, E.M.; Chen, M.; Xu, H. Minocycline inhibits microglial activation and improves visual function in a chronic model of age-related retinal degeneration. Biomedicines, 2022, 10(12), 3222.
[http://dx.doi.org/10.3390/biomedicines10123222] [PMID: 36551980]
[43]
Wang, J.; Feng, Y.; Han, P. Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence. Cell Death Dis., 2018, 9(2), 178.
[http://dx.doi.org/10.1038/s41419-017-0200-7] [PMID: 29415988]
[44]
Eriksdotter, M.; Navarro-Oviedo, M.; Mitra, S. Cerebrospinal fluid from alzheimer patients affects cell-mediated nerve growth factor production and cell survival in vitro. Exp. Cell Res., 2018, 371(1), 175-184.
[http://dx.doi.org/10.1016/j.yexcr.2018.08.007] [PMID: 30092220]
[45]
Cao, L.; Wang, H.; Wang, F.; Xu, D.; Liu, F.; Liu, C. Aβ-induced senescent retinal pigment epithelial cells create a proinflammatory microenvironment in AMD. Invest. Ophthalmol. Vis. Sci., 2013, 54(5), 3738-3750.
[http://dx.doi.org/10.1167/iovs.13-11612] [PMID: 23557734]
[46]
López-Luppo, M.; Nacher, V.; Ramos, D. Blood vessel basement membrane alterations in human retinal microaneurysms during aging. Invest. Ophthalmol. Vis. Sci., 2017, 58(2), 1116-1131.
[http://dx.doi.org/10.1167/iovs.16-19998] [PMID: 28196225]
[47]
Manabe, S.; Gu, Z.; Lipton, S.A. Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to NMDA-induced retinal ganglion cell death. Invest. Ophthalmol. Vis. Sci., 2005, 46(12), 4747-4753.
[http://dx.doi.org/10.1167/iovs.05-0128] [PMID: 16303975]
[48]
Li, L.; Huang, Y.; Gao, Y. EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. BMC Cancer, 2018, 18(1), 1215.
[http://dx.doi.org/10.1186/s12885-018-5056-4] [PMID: 30514230]
[49]
Li, Y.; Zhao, L.; Qi, W. Uric acid, as a double-edged sword, affects the activity of epidermal growth factor (EGF) on human umbilical vein endothelial cells by regulating aging process. Bioengineered, 2022, 13(2), 3877-3895.
[http://dx.doi.org/10.1080/21655979.2022.2027172] [PMID: 35152831]
[50]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: Impact on the aging process and age-related diseases [J/OL]. Inflamma Res Official J Europ Hista Res Soc, 2021, 70(10-12), 1043-1061.
[51]
Tabibzadeh, S. Signaling pathways and effectors of aging. Front. Biosci., 2021, 26(1), 50-96.
[http://dx.doi.org/10.2741/4889] [PMID: 33049665]
[52]
Dowery, R.; Benhamou, D.; Benchetrit, E. Peripheral B cells repress B-cell regeneration in aging through a TNF-α/IGFBP-1/IGF-1 immune-endocrine axis. Blood, 2021, 138(19), 1817-1829.
[http://dx.doi.org/10.1182/blood.2021012428] [PMID: 34297797]
[53]
Huang, Y.; Xu, Z.; Xiong, S. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov., 2018, 4(1), 9.
[http://dx.doi.org/10.1038/s41421-018-0011-8] [PMID: 29507754]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy