Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

In-silico Design, ADMET Screening, Prime MM-GBSA Binding Free Energy Calculation and MD Simulation of Some Novel Phenothiazines as 5HT6R Antagonists Targeting Alzheimer’s Disease

In Press, (this is not the final "Version of Record"). Available online 09 January, 2024
Author(s): PREMA V*, Meena A and Ramalakshmi N
Published on: 09 January, 2024

DOI: 10.2174/0115734099282836231212064925

Price: $95

Abstract

Background: Alzheimer's disease is a type of dementia that affects neuronal function, leading to a decline in cognitive functions. Serotonin-6 (5HT6) receptors are implicated in the etiology of neurological diseases. 5HT6 receptor antagonists act as anti-dementia agents. PDB ID: 7YS6 represents a membrane protein, and amplification and overexpression of this protein are associated with Alzheimer's disease. Coumarin-fused phenothiazines are significant anti-Alzheimer's agents due to their inhibitory activity on the Serotonin- 6 receptor.

Objectives: Numerous previously unreported Coumarin-substituted Phenothiazines [A2 to A50] were designed using in-silico methods to evaluate their 5HT6 receptor antagonistic activity. Molecular modeling techniques were employed to study the ligands [A2 to A50] in interaction with the Serotonin-6 receptor (PDB ID: 7YS6) using Schrödinger Suite 2019-4.

Methods: Molecular modeling studies of the designed ligands [A2 to A50] were conducted using the Glide module. In-silico ADMET screening was performed using the QikProp module, and binding free energy calculations were carried out using the Prime MM-GBSA module within the Schrödinger Suite. The binding affinity of the designed ligands [A2 to A50] towards 5HT6 receptors was determined based on Glide scores. Subsequently, ligand A31 underwent a 100 ns molecular dynamics simulation using the Desmond module of Schrödinger Suite 2020-1, which is based in New York, NY.

Results: The majority of the designed ligands exhibited strong hydrogen bonding interactions and hydrophobic associations with the serotonin-6 receptor, which hinder its activity. These ligands achieved remarkable Glide scores within the range of -4.2859 to -7.7128, in comparison to reference standards such as Idalopirdine (-7.78149), Intepirdine (-5.20103), Latrepirdine (-5.54853), and the co-crystallized ligand (-7.02889). In-silico ADMET properties for these ligands fell within the recommended values for drug-likeness. It is worth noting that the MM-GBSA binding free energy of the most potent inhibitor was positive, indicating a strong binding interaction. Additionally, the dynamic behavior of the protein (7YS6)-ligand (A31) complex was studied by subjecting ligand A31 to a 100 ns molecular dynamics simulation.

Conclusion: The results of this study reveal strong evidence supporting the potential of coumarin- substituted phenothiazine derivatives as effective Serotonin-6 receptor antagonists. Ligands [A2 to A50], which exhibited noteworthy Glide scores, hold promise for significant anti- Alzheimer activity. Further in-vitro and in-vivo investigations are warranted to explore and confirm their therapeutic potential.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy